

Django 1.2 e-commerce

Build powerful e-commerce applications using Django,
a leading Python web framework

Jesse Legg

 BIRMINGHAM - MUMBAI

Django 1.2 e-commerce

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Production Reference: 1120510

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-00-9

www.packtpub.com

Cover Image by Sujay Gawand (sujay0000@gmail.com)

Table of Contents
Preface 1
Chapter 1: Django and e-commerce Development 7

21st Century web development 8
Django as an e-commerce platform 8
The model-template-view pattern 11
Payment processors and shopping carts 11
Exploring the Django framework 12
What's in a Django app? 13
Solving small problems 13
Reusable apps 14
Organizing Django projects 15
Preparing the development environment 16
Django 1.2 18
Summary 19

Chapter 2: Setting Up Shop in 30 Minutes 21
Designing a product catalog 22
Creating the product model 24
Categorizing products 25
Adding additional product details 28
Viewing the product catalog 30
Designing simple product HTML templates 32
Getting paid: A quick payment integration 34
Summary 36

Chapter 3: Handling Customers and Their Orders 37
Django's auth module 38
Django users and profiles 39
Creating accounts with django-registration 41
Extending the user model with django-profiles 43
The customer profile 44

Taking orders: Models 45

Table of Contents

[ii]

Taking orders: Views 48
Shopping carts and Django sessions 52
Checking out: Take two 54
Super-simple customer reviews 56
Summary 58

Chapter 4: Building Payment Processors 59
Building a generic payment processor app 59

Class-based views 60
Implementing a checkout view base class 61
Saving the order 63

A Google Checkout class 65
An Amazon Checkout class 68

The Amazon Callback view 72
PayPal and other payment processors 73
Summary 75

Chapter 5: From Payment to Porch: An Order Pipeline 77
Adding status information to orders 77

SSL and security considerations 80
Order processing overview 81
Notification API 82
Order Processing API 86
Calculating shipping charges 89
A simple CRM tool 92
Other payment services 93
Summary 94

Chapter 6: Searching the Product Catalog 95
Stupidly simple search 95
MySQL simple index searches 97
Search engines overview 99

Sphinx 100
Solr 100
Whoosh 101
Xapian 101
Haystack 102

Configuring the Sphinx search engine 102
Defining the data source 103
Defining the indexes 104
Building and testing our index 105

Searching Sphinx from Python 106
Simplifying searching with django-sphinx 107

Table of Contents

[iii]

The Whoosh search engine 109
Haystack search for Django 111

Haystack searches 113
Haystack for real-time search 115

Xapian/Djapian 115
Searching indexes 117

Advanced Xapian features 117
Summary 118

Chapter 7: Data and Report Generation 119
Exposing data and APIs 119

Django-piston: A mini-framework for data APIs 123
Django's syndication framework 125
Django sitemaps 127
ReportLab: Generating PDF reports from Python 129
Creating PDF views 138
Salesforce.com integration 139

Salesforce Object Query Language 141
Practical use-cases 142
Summary 143

Chapter 8: Creating Rich, Interactive UIs 145
JavaScript: A quick overview 145

JavaScript Object Notation 148
Event-driven programming 148
JavaScript frameworks: YUI 149
JavaScript frameworks: jQuery 150
Graceful degradation and progressive enhancement 150

Creating product ratings 151
Design aside: User experience and AJAX 153
Product rating view 154
Constructing the template 156
Writing the JavaScript 162
Debugging JavaScript 167

Summary 168
Chapter 9: Selling Digital Goods 169

Subscription sales 169
Digital goods sales 170
Content storage and bandwidth 171
Django and Amazon S3 172

Query string request authentication 174
About Amazon AWS services requests 175

Table of Contents

[iv]

Amazon FPS for digital goods 176
Prepaid payments 177

Obtaining a prepaid token 177
Funding the prepaid token 180
Prepaid pay requests 183
Checking prepaid balances 184

Postpaid payments 184
Obtaining a postpaid token 185
Postpaid pay requets 187
Settling debts 187
Writing off debt 188
Getting debt balances 189

Django integration 190
View implementation 191

Google Checkout Digital Delivery 193
Summary 194

Chapter 10: Deployment and Maintenance Strategies 195
Apache and mod_wsgi 196

A Django WSGI script 197
An example httpd.conf 198
Configuring daemon mode 198
Thread-safety 200

Automating deployment with Fabric 200
Writing a Fabfile 201
Using the fab tool 202
Fabric for production deployments 202

zc.buildout 203
Buildout bootstraps 204
buildout.cfg: The buildout section 205
Writing the setup script 206
buildout.cfg: The parts sections 207

Virtualenv 211
Creating an environment 212
Working in the environment 215
Virtualenvwrapper 216

Distutils and module distributions 217
Installing distributions 218
Distutils metadata and PyPI 219
Easy_install 219

Pip 220
Summary 221

Index 223

Preface
This book presents the implementation of web-based e-commerce applications using
Django, the powerful Python-based web framework. It emphasizes common Django
coding patterns, writing reusable apps, and leveraging community resources and
open-source tools.

Django and Python can be used to build everything from quick application prototypes
in an afternoon, to full-blown production applications with long-term lifecycles.

What this book covers
Chapter 1, Django and E-commerce Development, introduces Django, provides a
quick overview of its history, and evaluates it as an e-commerce platform. We
also introduce the concept of Django applications versus "apps", how to code for
reusability, and why Django's project layout allows us to write more powerful,
flexible software. Finally, we will begin configuring the sample project built-upon
throughout the book.

Chapter 2, Setting Up Shop in 30 Minutes, shows us how to create a very simple, but
complete, e-commerce store in 30 minutes. This includes the creation of a product
catalog and categorization system using Django models, using built-in generic views
to expose our catalog to the Web, and attaching a simple Google Checkout integration.

Chapter 3, Handling Customers and Their Orders, deals with customer and order
management, including the use of Django's auth module, registration and profile
forms. We'll also build a simple order-taking system and connect it to our customer
data. Finally, we demonstrate a quick and easy way of handling customer
product reviews.

Chapter 4, Building Payment Processors, starts to extend the simple system built
thus far by creating a "pluggable" payment processing system, and updating our
Google Checkout support to take advantage of it. Finally, this chapter discusses
the Django pattern of class-based views and how to use them with our payment
processing framework.

Preface

[2]

Chapter 5, From Payment to Porch: An Order Pipeline, adds additional information to
our order-taking system, including tracking status and shipping, plus automatic
calculation of shipping and handling charges. We integrate these new features into a
simple CRM tool that would allow staff to look-up order details and monitor status.

Chapter 6, Searching the Product Catalog, explores the options for adding search
capabilities to our catalog, including use of Django with, Sphinx, Solr, Whoosh,
Haystack, and Xapian search. We integrate several of these search engines into our
project and present the Haystack community-project that allows generic integration
of a variety of search-engine backends.

Chapter 7, Data and Report Generation, covers report generation and working with
our application's data. This includes serializing and exposing data via a web API,
generating RSS and Atom feeds, and the basics of Salesforce integration. We also
use Python charting modules to automatically generate PDF-based reports.

Chapter 8, Creating Rich, Interactive UIs, provides an overview of JavaScript and AJAX
integration with our Django project. We discuss how to expose our Django model
data as JSON and write clean JavaScript to enhance our user interfaces. We finish
by demonstrating a simple AJAX rating tool.

Chapter 9, Selling Digital Goods, presents digital goods and the various tools and
APIs to sell them. Digital goods include products, like music or video media, which
are sold and distributed electronically. We cover using Amazon S3 for storage with
Django and integrating with the Amazon Flexible Payment Services, which offers
an API for handling micropayments.

Chapter 10, Deployment and Maintenance Strategies, offers us a variety of pointers for
configuring, deploying, and maintaining our Django applications. This includes
setting up Apache with mod_wsgi, automating a deployment process with fabric,
handling virtual environments, and building distributable modules.

What you need for this book
This book requires Django 1.0 or higher and assumes a basic working knowledge
of the Django framework and novice Python programming skills.

Who this book is for
This book is for anyone who is interested in learning more about application
development with the Django framework. E-commerce applications contain a lot
of general application design issues and make for a great example development
project for anyone interested in Django applications generally.

Preface

[3]

We've assumed a fairly minimal amount of knowledge about the Django framework
and Python language. But the book is geared at Django developers who have at least
completed the Django tutorial and/or written some trivial apps.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "To start with, create a new directory
and place it on your PYTHONPATH".

A block of code is set as follows:

class Catalog(models.Model):
 name = models.CharField(max_length=255
 slug = models.SlugField(max_length=150)
 publisher = models.CharField(max_length=300)
 description = models.TextField()
 pub_date = models.DateTimeField(default=datetime.now)

Any command-line input or output is written as follows:

$ django-admin.py index—rebuild

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "This code
defines a two-column table with headings Product Name and Product Description,
and then renders the product inventory into each row in the table".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit https://www.packtpub.com//sites/default/files/
downloads/7009_Code.zip to directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Django and e-commerce
Development

The explosion of the Web in the late 1990s sparked a major evolution in the core
operation of businesses everywhere. The impact initially seemed minor, as the Web
was made up of very simple sites that were time consuming to create and offered
limited functionality. But the eventual success of new companies such as Amazon.
com and eBay demonstrated that buying and selling online was not only possible,
but revolutionary.

This book will explore how the Django web framework, and its related technologies,
can power the next leap forward for e-commerce and business on the Web. As a tool,
Django is like a power drill: it's fast, efficient, and full of momentum. It represents
a major competitive advantage over previous development platforms. Along
with competing frameworks, such as Ruby on Rails, it heralds a new era for web
development and the Internet as a whole.

This chapter will explore what makes Django so unique. Here we will:

Discuss the pros and cons of Django as an e-commerce platform
Learn to leverage Django's strengths to build powerful applications quickly
Explore core concepts such as Django's approach to application and
project layout
Begin configuring our sample e-commerce project to be extended throughout
the book

•

•

•

•

Django and e-commerce Development

[8]

21st Century web development
An emerging trend in recent years has been the arrival of powerful new web
development frameworks, of which Django is a premier example. These frameworks
are designed to build content-rich websites quickly and easily. They have different
individual philosophies, but all seek to solve one main problem—simplifying
the repetitive and time-consuming development tasks that all websites and
applications demand.

Solving this problem achieves two things:

First, it radically alters the time and resources required to build web
applications. Previous generations of development tools were either not
designed specifically for the Web or were created during a different era with
different needs. This new class of development tools is built specifically for
today's applications and software schedules.
The second benefit is quality. As the most basic and repetitive tasks are
handled by the framework, developers can focus on adding value by
building higher quality core application features and even advanced
functionality that would previously be lost due to time or budget constraints.
In many cases it also allows for a simplified division of labor; designers can
focus on designing HTML templates, content producers can write content,
and programmers can build software. When each team can focus exclusively
on their task, with minimal interruption from the others, quality tends
to increase.

Django is specifically designed to optimize for these characteristics. One unofficial
motto is "don't repeat yourself". This means, do not reproduce the wheel,
instead focus on the unique aspects of your application that provide new and
profitable functionality.

Django as an e-commerce platform
Many of the problems that affect content-driven websites actually affect all
businesses, even traditional brick-and-mortar ones. For instance, consider a
restaurant that offers a menu of daily specials or whose menu changes frequently
based on the selection of fresh food available in the city or region. To market this
menu on the Web requires tools for quickly producing and updating content. We
can imagine similar examples in the retail world, where product inventories ebb
and flow depending on seasons, styles, and trends.

•

•

Chapter 1

[9]

In the online world, this kind of content production is often taken for granted. The
entire business of Amazon.com is built around a large, structured, and highly-detailed
database of product information, along with customer ratings and reviews. Netflix's
enormous selection of movie rentals would not be possible without an equally large
content database.

Django provides an excellent basis to build e-commerce websites in part because of
its ability to handle these content problems. Content is one of Django's specialties,
having been created to serve the needs of the newspaper industry. It provides many
out-of-the-box tools to handle these demands. For example, the built-in admin
interface (as shown in the following screenshot) can automatically manage any
application's data, in a way that anyone with a web browser can access. The admin
tool can be attached to any Django project with a trivial amount of effort and just
a few lines of code.

Handling content so effectively is possible because of Django's excellent
Object-relational Mapper (ORM). Data-driven approaches to web development
have been around for a decade. Originally this involved lots of tedious SQL code,
but over a period of time much of this has been abstracted away in libraries or
framework code. Django's ORM is arguably one of the best abstractions created thus
far and its query interface is often cited as a killer feature. It's even possible to use
the ORM portion of Django in standalone mode and take advantage of its expressive
power. Django's ORM has even inspired other projects, most notably Google's App
Engine project, which borrows features and syntax. We will highlight many features
of Django's ORM throughout this book.

Django and e-commerce Development

[10]

There are many other advantages to Django as an e-commerce platform. Rapid
development tools, in general, mean cost reductions for initial development and
long-term maintenance. Decreasing these costs is another specialty of Django. As an
example, in Chapter 2, Setting Up Shop in 30 Minutes, we will create a fully functional
web-based store, from scratch, in 30 minutes.

What about competing frameworks? What advantages does Django have over them?
A big one is Python. Without stoking religious debate, Python, by its own merits, is an
excellent programming language for the Web. Django is built in Python and features
many "Pythonic" tactics at the core of its design. The language includes numerous
modules that are useful to web developers, including a URL manipulation library,
XML parsing tools, and web service tools. The Python community is massive, and
provides additional modules and tools. Python developers can frequently avoid
reinventing the wheel because either the language or the community already
provides what they need.

Django is flexible and able to handle content as well as other e-commerce problems,
such as shopping carts, user management, and payment processing. Built-in
support for cookie-based user sessions and basic account authentication gives
Django developers a major head-start over developers who must implement these
from scratch. Submitting orders and processing payments through any of the
Web's payment services is also very easy, as we will see in Chapter 4, Building
Payment Processors.

All of these factors exhibit a common theme: competitive advantage. Cost savings,
code reusability, and flexibility of use all allow businesses to do more with less.
E-commerce sites built using Django can be deployed faster and respond quickly
to change.

There are a few important criticisms of Django that might affect the decision to use it
in your specific projects. First, it's relatively new and has yet to enter the mainstream
software community. It's also open source, which unfortunately still prevents its
use in some corporate environments, due to concerns over support, maintenance,
and security. And finally, it is written in a different language and paradigm than
many current mainstream e-commerce products. There are armies of Java developers
because many e-commerce applications are built with it. By comparison there are
fewer skilled Python developers.

Chapter 1

[11]

The model-template-view pattern
The term "e-commerce" encompasses a wide array of applications. It includes
everything from simple shopping-cart powered Internet stores to large-scale
business-to-business systems. Fortunately, many of these applications begin with
a similar set of technical needs. These include storing, updating, and retrieving
important information from a data store (usually a database), rendering information
in a common format such as HTML or XML, and interacting with users who will
consume, manipulate, and process the information.

These basic needs happen to align with a design pattern known as Model-View-
Controller (MVC). MVC is intended to simplify the construction of applications by
dividing it up into three manageable parts: the model, which is focused on storing
and structuring data, the view, which presents data exposed by the model, and
finally the controller, which provides a means of interacting with and manipulating
model data.

Django follows this design pattern, but prefers to call it Model-Template-View (MTV).
It retains the model concept from MVC, but refers to the controller portion as "views"
while replacing the MVC view with what it calls the "template". These can be standard
HTML templates with added functionality provided by a Django specific template
language. This language can be replaced with other template languages, such as
Python's popular Jinja or Cheetah template systems. Django can also use templates
to render other formats such as XML or JSON.

Django's MTV pattern is a powerful approach, especially for designing web-based
applications. It allows components to be created in a reusable and modular way so
that pieces of the system can be upgraded or replaced without disrupting the others.
This simplifies development. By focusing on the abstraction each MTV component
represents, developers need not worry about the implementation details of the other
components, only how to interact with them. Django's implementation of the MTV
pattern should be a comfort to e-commerce developers because it is a well known
and solid foundation to build upon.

Payment processors and shopping carts
Another critical e-commerce component is the payment processor, sometimes
called a payment gateway or a checkout system. There are hundreds of companies
offering payment solutions today. Almost all process credit cards, but some allow
for "e-checks" and other more obscure payment types. These payment processors
generally compete on the fees they charge per transaction. The standard rates usually
involve a small fee per transaction in addition to a percentage of the transaction
(usually between 1.5 percent and percent).

Django and e-commerce Development

[12]

PayPal has historically been one of the major web-based payment processing
companies and continues to process a large majority of Internet payments. There are
many alternatives, however, and two of the most formidable are powered by Google
and Amazon. In my opinion the latter two processors are more developer-friendly
and highly recommended. Google's processor is called "Checkout" and Amazon has
built a payment processor called "Flexible Payment Services" as part of their suite
of web-services tools. We will build Django apps for these payment processors in
Chapter 4.

The traditional means of bundling products for sale and submitting them to a
payment processor involves a shopping cart. Usually, this involves the customer
who selects products from the catalog web pages by adding them to their shopping
cart, and then checks out with their payment method via a payment processing
service. We will begin implementing a Django-based shopping cart in Chapter 3,
Handling Customers and Their Orders.

Django is able to interface with these payment processing systems easily, thanks in
part to the availability of tools and modules in the Python community that simplify
common tasks. Python code examples and in some cases entire wrapper modules
are available for many payment processing solutions. In addition, Django's template
system can be used to simplify rendering of XML and other data files required to
submit payment requests.

Shopping carts are also relatively simple to implement using Django. The built-in
session's framework provides an easy way to store cart and checkout information
between pages in a user's session. We will build our sample project on this approach
later in this book.

Exploring the Django framework
Django takes a disciplined approach to constructing websites. It has many
conventions and design constructs that sometimes are not obvious to new
developers. All frameworks employ their own philosophy in solving problems and
the philosophical underpinnings tend to appear throughout. Some developers feel
restricted by this effect, but it's a natural trade-off in the usage of frameworks (or any
code library). If you leverage a framework in your development, it will steer you in
certain directions. Much like a programming language can inform one's view of the
world, so can frameworks.

There's an old proverb: When in Rome, do as the Romans do. The same can be said for
development platforms. Some developers tend to apply their own philosophies in
the context of a library or framework and end up frustrated. There is a great deal of
grey-area here, of course, but it is important to spend some time understanding the
Django-way of application development.

Chapter 1

[13]

Much of Django's approach is informed by Python itself. Python is a programming
language built on distinct philosophies. Its creator, Guido van Rossum, baked in
many of these design decisions from the beginning.

What's in a Django app?
Django's introductory tutorials take a simplified approach to getting up and
running on the platform. They introduce the concept of a Django project using
django-admin.py and the startproject command. This is the easiest way to get
going, but it hides a significant amount of activity that goes on under-the-hood. For
the project that we will build throughout this book, we will take a more sophisticated
approach, by thinking of our Django projects as a collection of normal, plain Python
modules. Django calls these modules "apps."

In some ways the term "app" is unfortunate because it hints at something large, a
full-blown application. But in Django, apps are usually small and simple. Properly
designed apps can be plugged together to form powerful combinations, with each
app solving its own portion of a larger problem.

Apps, like any good Python module, encapsulate a specific set of functionality; this
is usually by focusing on a small problem and solving it. This is actually a well-
established pattern of software design, originating in the UNIX operating system.
Past and current versions of UNIX provided numerous tiny programs that solved
a simple problem: pattern matching with grep, word counting with wc, and so on.

By emphasizing this approach in our projects, we can take full advantage of Django's
rapid development philosophy. It will lead to better code and cleaner designs.

Solving small problems
Let's consider the role of Django apps in our e-commerce platform. The "solving
small problems approach" fits well; many pieces of our e-commerce project will be
common across multiple sites. By keeping our apps small and focused, we will be
able to assemble the individual components in different ways for different projects.

For example, two e-commerce stores may share the same payment processor, but
have entirely different needs for interacting with their customers. One site might
need the ability to send an e-mail newsletter, while the other would not. If we were
to build our Django project in large, monolithic sections, it would require more time
and effort to satisfy the needs of these two projects. If, however, we use small, tiny
pieces, we can simply plug-in the parts they have in common and upgrade or build
separately the pieces that differ.

Django and e-commerce Development

[14]

In larger development shops, this also allows for the internal reuse of apps across
departments or functional groups. It can make code sharing and reuse much easier
for in-house teams.

Keeping a modular design has other advantages. When a project decides to change
payment processors, the upgrade is much simpler when the processing code lives
alone in its own module. We can standardize the interface across all payment
processors so other apps can interact with all of them the same way. In Python
this is sometimes called "duck typing" and we will explore it more in Chapter 4.

Django's settings file has an important attribute known as INSTALLED_APPS. This is
a Python sequence of module names that will be used for the project. In some ways
this is Django's secret weapon. Ideally we can deploy dozens of entirely different
sites by doing nothing more than creating a new settings file with an appropriate
set of modules in INSTALLED_APPS and pointers to different databases and
template locations.

Solving small problems with focused Django apps is the best way to achieve these
goals. It is important to remember that we will be writing apps, or better yet,
normal Python modules. These will be pieces of something larger, not full-blown
applications themselves.

Reusable apps
Reusability is software engineering's Holy Grail. Unfortunately, over time it has
often proven difficult to attain. It's almost impossible to build for reuse on the first
try and other times it's just not practical. But it's still an important goal that often
does work and leads to many efficiency gains.

In frameworks like Django that utilize an ORM to interact with and store
information in a database, reusability faces additional challenges. The object-oriented
programming model that is typically the heart of reusable code does not always
translate into a relational database. Django's ORM does its best to accommodate this
by offering a limited form of inheritance, for example, but it still has many challenges.

Another tendency is to build Django models that store data for overly specific
problems. In Chapter 2, we will begin writing models for a product database. It
would be very easy to apply model inheritance in an attempt to solve specific
problems. For example, we may be tempted to extend a product model into a
subclass specific for food: FoodProduct. We then may try and build a subclass
specifically for noodles: NoodleProduct. Using inheritance this way often makes
sense in other software projects, but when Django maps these models to the
database, it can become a mess of entangled relationships and primary keys.

Chapter 1

[15]

To avoid these issues with inheritance, some Django developers employ various
model hacks. This includes things such as pickling attribute data into a text field
or otherwise encoding extra attributes into a single field. These are often clever
and sometimes very effective solutions, but they can also lead to bad designs and
problems later on.

The best advice seems to be to keep things simple. Limit what your app does and
the dependencies it needs to serve its core duty. Don't be afraid of developing a
large app library.

Organizing Django projects
As mentioned earlier, Django projects are essentially collections of regular Python
modules. These are managed using a settings file. We can have more than one
settings file for any project—separate production and a development settings file,
for example. Django settings files are also code, which adds even greater flexibility.
Using import statements, for example, we can include a standard set of Django
settings in every project and simply override the ones we need to change.

When using version control software, it's helpful to keep many different settings
files. These files can be organized by developer, by server name, or by code branch.
Keeping multiple settings files simplifies deployment and testing. A settings file for
each test server or individual developer reduces confusion and prevents breakage as
developers create and integrate new apps. However, it retains the convenience and
safety of version control. Trying to maintain a large project with multiple developers
and a single settings file is a recipe for disaster.

With multiple settings files floating around, how does Django know which one to use?
In the command line environment for running interactive Python shells or scripts, this
is controlled using an environment variable called DJANGO_SETTINGS_MODULE. Once
your settings are in place, you can quickly switch back and forth between them by
modifying this environment variable. For example:

switch to our testing settings and run a Django interactive shell

$ export DJANGO_SETTINGS_MODULE=myproject.settings_testing

$ django-admin.py shell

switch back to our production settings

$ export DJANGO_SETTINGS_MODULE=myproject.settings_production

Django and e-commerce Development

[16]

A convenient alternative to the preceding manual process is to use the settings
flag of django-admin.py, which will adjust the settings module appropriately.
Switching to production settings looks like this:

$ django-admin.py–-settings myproject.settings_production

A simple set of shell scripts can automate the use of several settings files. The
following shell script wraps Django's django-admin.py and sets a specific settings
module. This way we can run our project from the command line with a single
simple command, like this.

#!/bin/sh

myproject_dev - a shell script to run myproject in development mode

export DJANGO_SETTINGS_MODULE=myproject.settings_dev

django-admin.py $@

For server deployments, the settings file is specified as part of the server configuration.
Sometimes this involves changing the environment variable from an Apache config
file (SetEnv DJANGO_SETTINGS_MODULEmyproject.settings). On mod_wsgi setups,
it usually means modifying the Web Server Gateway Interface (WSGI) script.
We will explore these configuration techniques in Chapter 10, Deployment and
Maintenance Strategies.

The other core piece of all Django projects is the root URLs file. Again, this is just a
code that defines a set of URL patterns using regular expressions. We can include
multiple versions (production vs. development) for our project and use normal
Python flow-control to make adjustments such as adding special URL patterns
when our project has the DEBUG setting turned on.

For larger Django projects, multiple settings and URL files can quickly get out of
hand. As a result it is a smart practice to keep project files, such as settings and root
URL configurations, completely separate from app code. Structuring your project
and app libraries is often dependent on personal taste or company standards, but
keeping a modular and loosely-coupled mindset is always beneficial.

Preparing the development environment
Arguably the most important part of preparing a new Django project is choosing a
name. All kidding aside, the name is important and in that it has a few restrictions:
it cannot be the same as a Django or Python module and it should conform to usual
Python module naming conventions (no spaces, dashes, or other illegal characters).
Django projects have a tradition of naming themselves after jazz musicians (Django
itself refers to Django Reinhardt, a jazz guitarist). The project we will build in this
book will be named Coleman.

Chapter 1

[17]

To start with, create a new directory and place it on your PYTHONPATH. The
easiest way to do this is to make a directory in the usual way and then create a
corresponding .pth file to copy to your system's site-packages. For example, if
you're working directory is /home/jesse/ecommerce-projects, then create a
single line file called ecommerce.pth that looks like this:

/home/jesse/ecommerce-projects

Copy the file to your system-wide site-packages directory. This varies based on your
operating system and how you installed Python. See your documentation or the
value of sys.path from the Python interpreter.

Later on in this book we will examine some tools and techniques to drastically
simplify Django and Python project dependencies and layouts. One of these tools
is called virtualenv, which can help us to better manage $PYTHONPATH. For now,
though, we'll do everything the old fashioned way.

Next we will create our project directory and subdirectories. These will correspond
to Python modules in our code. From your working directory create two folders: one
for our app library and one for our project. Call the first one coleman and the second
ecommerce_book. We will refer to the coleman module as our app library and to
ecommerce_book as our project module. Next we will create our first app module by
creating a directory called products inside our app library module. We will
begin building the products app in Chapter 2. Your final directory structure will look
like this:

./coleman

./coleman/products

./ecommerce_book

One final piece of preparation: we must create a Python __init__.py file in each of
these module locations. This will look like the following:

./coleman/__init__.py

./coleman/products/__init__.py

./ecommerce_book/__init__.py

Lastly, we will create our settings file and a root URLs file in our project module:
ecommerce_book/settings.py and ecommerce_book/urls.py. It is recommended
that you copy these files from the companion source code. We will then refer to
ecommerce_book.settings in our DJANGO_SETTINGS_MODULE.

Django and e-commerce Development

[18]

The project settings file in the companion code assumes that you have a working
sqlite3 installation as the database backend (sqlite3 is included with Python 2.5 and
later). You can change this by editing the settings.py file, which you will need to
do in order to complete the full path to your sqlite3 database file. This is another file
that fits nicely into the projects directory, and by placing it there you gain the ability
to use Python's os module to locate it. This is more desirable than hard coding a path
into settings.py. To take this approach with the database file, for example, you
could define a setting to represent the project's location on the file system, and then
append the database name:

PROJECT_HOME=os.path.dirname(os.path.realpath(__file__))
DATABASE_NAME=os.path.join(PROJECT_HOME, 'mydatabase.db')

Once you've made the appropriate changes, run django-admin.pysyncdb to create
your initial database.

These instructions assume that you already have a working installation of Django
and have the django-admin.py script installed on your system's path. For more
information on configuring and installing Django, please see the documentation
at djangoproject.org/docs.

Django 1.2
Django 1.2 includes a number of new features and very minimal backwards
incompatible changes. As of Django 1.0, the Django development team adopted an
API stability policy that alleviates the worry about backwards incompatible changes
being introduced into the framework throughout the 1.x series of releases. In other
words, with few exceptions, if your application runs on version 1.0, it should run
on all 1.x versions.

Major new additions to the Django framework in version 1.2 include multiple-database
support, improved if template tag, object-level permissions, e-mail backends, and
much, much more.

Per the API stability policy, a minimal number of backwards incompatible changes
are included in 1.2. Major changes to existing framework features, like the new if
tag, necessitate some incompatible changes. In 1.2 these have been very minor and
are well documented in the release notes.

The Django 1.2 release notes also include an overview and brief documentation of
the new features and functionality available, and are an excellent starting point for
projects that are upgrading.

Chapter 1

[19]

Summary
This chapter has outlined several basic tenets of software development using Django.
Planning is one of the most important steps for any project, and understanding
Django's particular way of approaching web development helps in the planning
phase. The Django way includes:

Building apps that serve a single function and can be reused easily
Keeping the design of models relatively focused
Leveraging the power of Python when possible
Organizing our projects, including settings and URL files

We also explored the reasons why Django makes a powerful platform for
e-commerce applications and explained some of the basic needs these applications
tend to have in common. In Chapter 2 we will jump right in to starting our project
by building a very basic web-based store in 30 minutes.

•

•

•

•

Setting Up Shop in 30 Minutes
In order to demonstrate Django's rapid development potential, we will begin by
constructing a simple, but fully-featured, e-commerce store. The goal is to be up and
running with a product catalog and products for sale, including a simple payment
processing interface, in about half-an-hour. If this seems ambitious, remember
that Django offers a lot of built-in shortcuts for the most common web-related
development tasks. We will be taking full advantage of these and there will be
side discussions of their general use.

Before we begin, let's take a moment to check our project setup. In the first chapter
we planned a project layout that included two directories: one for files specific to
our personal project (settings, URLs, and so on), and the other for our collection of
e-commerce Python modules (coleman). This latter location is where the bulk of the
code in the following chapters will live. If you have downloaded the source code
from the Packt website, the contents of the archive download represents everything
in this second location.

In addition to building our starter storefront, this chapter aims to demonstrate some
other Django tools and techniques. In this chapter we will:

Create our Django Product model to take advantage of the automatic
admin tool
Build a flexible but easy to use categorization system, to better organize our
catalog of products
Utilize Django's generic view framework to expose a quick set of views on
our catalog data
Take further advantage of generic views by building templates using
Django's automatic naming conventions
Finally, create a simple template for selling products through the Google
Checkout API

•

•

•

•

•

Setting Up Shop in 30 Minutes

[22]

Designing a product catalog
The starting point of our e-commerce application is the product catalog. In the
real world, businesses may produce multiple catalogs for mutually exclusive or
overlapping subsets of their products. Some examples are: fall and spring catalogs,
catalogs based on a genre or sub-category of product such as catalogs for differing
kinds of music (for example, rock versus classical), and many other possibilities. In
some cases a single catalog may suffice, but allowing for multiple catalogs is a simple
enhancement that will add flexibility and robustness to our application.

As an example, we will imagine a fictitious food and beverage company, CranStore.
com, that specializes in cranberry products: cranberry drinks, food, and deserts. In
addition, to promote tourism at their cranberry bog, they sell numerous gift items,
including t-shirts, hats, mouse pads, and the like. We will consider this business
to illustrate examples as they relate to the online store we are building throughout
this book.

We will begin by defining a catalog model called Catalog. The basic model structure
will look like this:

class Catalog(models.Model):
 name = models.CharField(max_length=255
 slug = models.SlugField(max_length=150)
 publisher = models.CharField(max_length=300)
 description = models.TextField()
 pub_date = models.DateTimeField(default=datetime.now)

This is potentially the simplest model we will create in this book. It contains only
five, very simple fields. But it is a good starting point for a short discussion about
Django model design. Notice that we have not included any relationships to other
models here. For example, there is no products ManyToManyField. New Django
developers tend to overlook simple design decisions such as the one shown
previously, but the ramifications are quite important.

The first reason for this design is a purely practical one. Using Django's built-in
admin tool can be a pleasure or a burden, depending on the design of your
models. If we were to include a products field in the Catalog design, it would be a
ManyToManyField represented in the admin as an enormous multiple-select HTML
widget. This is practically useless in cases where there could be thousands
of possible selections.

If, instead, we attach a ForeignKey to Catalog on a Product model (which we will
build shortly), we instantly increase the usability of Django's automatic admin tool.
Instead of a select-box where we must shift-click to choose multiple products, we
have a much simpler HTML drop-down interface with significantly fewer choices.
This should ultimately increase the usability of the admin for our users.

Chapter 2

[23]

For example, CranStore.com sells lots of t-shirts during the fall when cranberries
are ready to harvest and tourism spikes. They may wish to run a special catalog of
touristy products on their website during this time. For the rest of the year, they sell
a smaller selection of items online. The developers at CranStore create two catalogs:
one is named Fall Collection and the other is called Standard Collection.

When creating product information, the marketing team can decide which catalog
an individual product belongs to by simply selecting them from the product editing
page. This is more intuitive than selecting individual products out of a giant list
of all products from the catalog admin page.

Secondly, designing the Catalog model this way prevents potential "bloat" from
creeping into our models. Imagine that CranStore decides to start printing paper
versions of their catalogs and mailing them to a subscriber list. This would be a
second potential ManyToManyField on our Catalog model, a field called subscribers.
As you can see, this pattern could repeat with each new feature CranStore decides
to implement.

By keeping models as simple as possible, we prevent all kinds of needless
complexity. In addition we also adhere to a basic Django design principle, that of
"loose coupling". At the database level, the tables Django generates will be very
similar regardless of where our ManyToManyField lives. Usually the only difference
will be in the table name. Thus it generally makes more sense to focus on the
practical aspects of Django model design. Django's excellent reverse relationship
feature also allows a great deal of flexibility when it comes time to using the ORM
to access our data.

Setting Up Shop in 30 Minutes

[24]

Model design is difficult and planning up-front can pay great dividends later.
Ideally, we want to take advantage of the automatic, built-in features that make
Django so great. The admin tool is a huge part of this. Anyone who has had to
build a CRUD interface by hand so that non-developers can manage content should
recognize the power of this feature. In many ways it is Django's "killer app".

Creating the product model
Finally, let's implement our product model. We will start with a very basic set of
fields that represent common and shared properties amongst all the products we're
likely to sell. Things like a picture of the item, its name, a short description, and
pricing information.

class Product(models.Model):
 name = models.CharField(max_length=300)
 slug = models.SlugField(max_length=150)
 description = models.TextField()
 photo = models.ImageField(upload_to='product_photo',
 blank=True)
 manufacturer = models.CharField(max_length=300,
 blank=True)
 price_in_dollars = models.DecimalField(max_digits=6,
 decimal_places=2)

Most e-commerce applications will need to capture many additional details about
their products. We will add the ability to create arbitrary sets of attributes and add
them as details to our products later in this chapter. For now, let's assume that these
six fields are sufficient.

A few notes about this model: first, we have used a DecimalField to represent the
product's price. Django makes it relatively simple to implement a custom field and
such a field may be appropriate here. But for now we'll keep it simple and use a
plain and built-in DecimalField to represent currency values.

Notice, too, the way we're storing the manufacturer information as a plain
CharField. Depending on your application, it may be beneficial to build a
Manufacturer model and convert this field to a ForeignKey. We will explore
more issues like this later in the book, but for now we'll keep it simple.

Chapter 2

[25]

Lastly, you may have realized by now that there is no connection to a Catalog
model, either by a ForeignKey or ManyToManyField. Earlier we discussed the
placement of this field in terms of whether it belonged to the Catalog or in the
Product model and decided, for several reasons, that the Product was the better
place. We will be adding a ForeignKey to our Product model, but not directly to the
Catalog. In order to support categorization of products within a catalog, we will be
creating a new model in the next section and using that as the connection point for
our products.

Categorizing products
So far we've built a simple product model and simple catalog model. These models
are excellent building blocks on which to begin adding new, more sophisticated
functionality. As it stands, our catalog model design is unconnected to our products.
We could add, as mentioned earlier, a ForeignKey from Product to Catalog. But
this would allow for little in the way of organizing within the catalog, other than
what we can do with the basic filter(), order_by(), and other ORM methods
that Django provides.

Product categories are an extremely common solution to organization problems in
web-based stores. Almost all major Internet retailers organize their products this
way. It helps them to provide a more structured interface for their users and can give
search engine indexers more precise pages to crawl. We'll discuss more about these
tactics later, but let's begin by adding categories to the simple model designs that we
created earlier.

Even though our Catalog model is relatively simple, we must make some design
decisions before adding our category information. First, we have designed Catalog
so that our e-commerce site can produce different catalogs for different scenarios.
Each scenario, however, may have different category requirements.

Suppose our fictitious cranberry business, CranStore.com, wants to create a special
catalog for the holiday season, when it begins selling numerous gifts and decorative
items such as cranberry garland, dried cranberry ornaments, cranberry scented
candles and the like. The majority of these special holiday gifts are not available
year-round. However, some products will be available in other catalogs at different
times of the year—for example, the very popular cranberry-scented candles.

Setting Up Shop in 30 Minutes

[26]

We need to be able to support this use-case. In order to do so, we have to structure
our models in a way that may feel awkward at first, but ultimately allows for great
flexibility. Let's write a category model called CatalogCategory and add it to our
products application's models.py:

class CatalogCategory(models.Model):
 catalog = models.ForeignKey('Catalog',
 related_name='categories')
 parent = models.ForeignKey('self', blank=True, null=True,
 related_name='children')
 name = models.CharField(max_length=300)
 slug = models.SlugField(max_length=150)
 description = models.TextField(blank=True)

In addition, we can now add a relationship between the Product model we wrote
earlier and our new CatalogCategory model. The full, updated model appears
as follows:

class Product(models.Model):
 category = models.ForeignKey('CatalogCategory',
 related_name='products')
 name = models.CharField(max_length=300)
 slug = models.SlugField(max_length=150)
 description = models.TextField()
 photo = models.ImageField(upload_to='product_photo',
 blank=True)

Chapter 2

[27]

 manufacturer = models.CharField(max_length=300,
 blank=True)
 price_in_dollars = models.DecimalField(max_digits=6,
 decimal_places=2)

There are a couple of big changes here, so let's tackle the CatalogCategory first.
This model creates a relationship to our earlier Catalog model, but also includes
a ForeignKey relationship to itself. This is called a recursive relationship and
is designed as a simple way of creating category hierarchies. A category is a
top-level category if it has no parent relationship to other category. Otherwise,
it is a sub-category.

The second change is the addition of the ForeignKey to a category on our Product
model. An initial design inclination here is to relate products directly to their catalog.
We even discussed this design earlier in the chapter, and it would be great for simple
catalogs where we didn't need the extra organization functionality of categories.

However, when categories and sub-categories get involved, the design has the
potential to become seriously complex. This approach to our Product model
allows us to manage a single relationship between products and their categories,
thus keeping it relatively simple. This relationship is also implicitly a relationship
between our product and a catalog. We still have access to the catalog our product
lives in, via the category.

Another advantage of this design is that it remains extremely easy for non-developers
to create products, catalogs, and complicated category structures, all within the
built-in Django admin tool. As illustrated in the screenshots throughout this chapter,
this model design gives us an extremely intuitive admin interface.

One final note about the above code: the default description when CatalogCategory
model objects are printed or displayed in the admin is not particularly helpful. Let's
add a custom __unicode__ method to this model that prints a more informative
display of our categories. This method will include the parent category information
if we're working with a sub-category, as well as the catalog to which the
category belongs.

def __unicode__(self):
 if self.parent:
 return u'%s: %s - %s' % (self.catalog.name,
 self.parent.name,
 self.name)
 return u'%s: %s' % (self.catalog.name, self.name)

Setting Up Shop in 30 Minutes

[28]

Adding additional product details
The application we've built so far is actually quite powerful, but in this section
we'll take our design to another level of flexibility. Products, as they currently exist,
have a limited amount of information that can be stored about them. These are
the six fields discussed earlier: name, description, photo, manufacturer, and price.
These attributes will be common to all products in our catalog. There may be more
attributes appropriate for this model, for example, size or weight, but we have left
those unimplemented for now.

A lot of product information, though, is specific to only certain products or certain
kinds of products. Capturing this information requires a more sophisticated
design. Our goal, as always, will be to keep things as simple as possible and
to take advantage of the built-in functionality that Django offers.

In an ideal world, we would like to allow an unlimited number of fields to capture
all the potential descriptive information for any product. Unfortunately, this is not
possible using the relational database systems that drive the majority of web-based
applications. Instead, we must create a set of models with relationships in such a
way that it effectively gives us what we need.

Database administrators are constantly implementing designs like this. But when
it comes to frameworks like Django, with their own ORM systems, there's a great
temptation to try and create fancy models with ManyToManyFields all over the place,
which can capture everything and do so very cleverly. This is almost always more
complex than is necessary, but because Django makes it so easy, it becomes
a great temptation.

In our case we will build a fairly simple pair of models that allow us to store
arbitrary information for any product. These models are the ProductDetail
and ProductAttribute and they are as follows:

class ProductDetail(models.Model):
 '''
 The ``ProductDetail`` model represents information unique to a
 specific product. This is a generic design that can be used
 to extend the information contained in the ``Product`` model with
 specific, extra details.
 '''
 product = models.ForeignKey('Product',
 related_name='details')
 attribute = models.ForeignKey('ProductAttribute')

Chapter 2

[29]

 value = models.CharField(max_length=500)
 description = models.TextField(blank=True)

 def __unicode__(self):
 return u'%s: %s - %s' % (self.product,
 self.attribute,
 self.value)

class ProductAttribute(models.Model):
 '''
 The ``ProductAttribute`` model represents a class of feature found
 across a set of products. It does not store any data values
 related to the attribute, but only describes what kind of a
 product feature we are trying to capture. Possible attributes
 include things such as materials, colors, sizes, and many, many
 more.
 '''
 name = models.CharField(max_length=300)
 description = models.TextField(blank=True)

 def __unicode__(self):
 return u'%s' % self.name

As noted in the model docstrings, the ProductDetail design relates a kind of
attribute to a specific product and stores the attribute value, as well as an optional
extended description of the value.

Suppose our friends at CranStore.com offer a new selection of premium cranberries,
created from special seedlings developed over years of careful breeding. Each variety
of these premium cranberries features different characteristics. For example, some
are extremely tart, while others are extra sweet, and so on.

Setting Up Shop in 30 Minutes

[30]

To capture this additional information, we created a Tartness ProductAttribute
and used it to add ProductDetail instances for the relevant product. You can see
the end-result of adding this attribute in the previous screenshot.

Viewing the product catalog
We now have a relatively complete and sophisticated product catalog with products,
categories, and additional product information. This acts as the core of our e-
commerce application. Now we will write some quick views and get our catalog
running and published to a web server.

In the Django design philosophy, views represent a specific interpretation of the data
stored in our models. It is through views that templates, and ultimately the outside
world, access our model data. Very often the model data we expose in our views are
simply the model objects themselves. In other words, we provided direct access
to a model object and all of its fields to the template.

Other times, we may be exposing smaller or larger portions of our model data,
including QuerySets or lists of models or a subset of all model data that match
a specific filter or other ORM expression.

Exposing a full model object or set of objects according to some filter parameter, is
so common that Django provides automatic built-in assistance. This is accomplished
using 'generic views', of which Django includes over a dozen. They are broken into
four basic kinds: simple, date-based, list-based, and create/update/delete (CRUD).

Simple generic views include two functions: direct_to_template and redirect_to.
These are by far the simplest possible views and writing by hand more than once
would be overkill. The direct_to_template generic view simply renders a regular
Django HTML template, with an optional set of variables added to the context. The
redirect_to generic view is even simpler; it raises a standard HTTP 302 status code,
otherwise known as a "non-permanent redirection". It can also optionally raise
a permanent redirection (HTTP 301).

The real power behind generic views becomes evident in the next set: the date-based
views. These are designed to create automatic archives for all of your site content
organized by date. This is ideal for newspaper or blog applications, where content
is published frequently and finding content based on a date is an effective way
to interact with the information.

Chapter 2

[31]

There are seven different date-based views. The majority of these are for specific
time intervals: by year, by month, by week, by day, and for the current day. The
remaining two views are for content indexes, called archive_index, which can
often be used for homepages and for details on a specific object, useful for
permalink pages.

The next set of views is called list-based because they process and present lists
of model data. There are only two kinds of list-based views: object_list and
object_detail. The former provides a template with context variable that
represents a list of objects. Usually the template will iterate over this list using a
for-loop tag. The latter view, object_detail, provides a simple view of a single item
in the list—for example, a single product out of a list of all products in the catalog.

And lastly we have CRUD views. CRUD stands for create, update, and delete, and
is used to provide automatic interfaces for users to modify model data in templates.
Sometimes users will need to edit information, but are not staff members and cannot
use the Django admin tool. This often happens, when users are editing content they
have created (user-generated content) or more simply when they need to edit their
profile information, such as payment method or shipping address.

CRUD views are extremely useful for simplifying a very common pattern of
gathering and editing data. When combined with Django's forms module, its power
can be extended even further. We will utilize generic CRUD views in later chapters.

For now, let's build an initial set of views on our product catalog using the list-based
generic views. We have two use-cases. The first use-case is where we enlist a set of
products in our catalog or within a category in our catalog. The second use-case is a
detail page for every product we are selling. Generic views make writing these pages
easy. For our catalog homepage we will implement a special-case of the list-based
object_list view.

When using generic views, it is rarely necessary to create a views.py file or write
any view handling code at all. The bulk of the time, generic views are integrated
directly into the URL pattern definitions in our urls.py file. Here is the basic set
of URLs for our product catalog:

urlpatterns = patterns(
 'django.views.generic.list_detail',
 url(r'^product/$', 'object_list',
 {'queryset': Product.objects.all()}),
 url(r'^product/(?P<slug>[-\w]+)/$', 'object_detail',
 {'queryset': Product.objects.all()}))

Setting Up Shop in 30 Minutes

[32]

Designing simple product HTML
templates
Now that we have exposed our product data via generic views and created
corresponding URL patterns, we need to implement some templates to render the
product information to our browser. Another advantage of using generic views is
that templates are automatically specified for each view based upon the name of
the application and model in use. Since our urls.py file is part of the products
application and we are rendering generic views on our Product model, our application
will automatically look for templates in the following locations within the template
folder: products/product_detail.html and products/product_list.html.

These templates will get rather simple contexts. The object_list template
will receive a variable whose default name is object_list. It is a QuerySet
corresponding to the data exposed by your view. The object_detail template will
receive a variable whose default name is object. It corresponds to the object you are
viewing in more detail.

In our example, the list view will receive a QuerySet of all Product objects, while the
detail view receives the object specified by the slug in the URL. In our list template
we loop over the products like so (extra HTML portions are removed):

{% for object in object_list %}
 <h3>
 {{ object.name }}</h3>
 <p>{{ object.description }}</p>
{% endfor %}

Chapter 2

[33]

The detail template works similarly, though the output in the template includes
more details about the item:

<h1>{{ object.name }}</h1>
<p>{{ object.description }}</p>
<p>Price: ${{ object.price_in_dollars }}</p>
<hr/>
<p>Back to product list</p>

We can print the extra attributes, if any happen to exist, very easily in the template.
The output from the snippet below is demonstrated in the following screenshot:

<h1>{{ object.name }}</h1>
<p>{{ object.description }}</p>
<p>Price: ${{ object.price_in_dollars }}</p>
{% for detail in object.details.all %}
{% if forloop.first %}<p>Additional details:</p>{%endif%}
{{ detail.attribute.name }}: {{ detail.value }}
{% endfor %}

Setting Up Shop in 30 Minutes

[34]

We now have a very spartan, but functional product catalog rendering to HTML
from our Django database. We can add, modify, and delete products, catalogs
and additional attributes. Now let's get started selling. In the next section we will
create a Google Checkout API account and use its sandbox to set up a simple order
mechanism for our online store.

Getting paid: A quick payment
integration
An online store is of little use if you can't sell products to customers. We will
thoroughly explore the topic of payment processors in Chapter 4, Building Payment
Processors. For now, however, to succeed in our promise to build a fully functional
web store in 30 minutes, we will make use of a quick payment-integration with the
Google Checkout API.

First, you will need to sign-up for a Google Checkout account. For the examples in
this book, it is recommended that you use the Checkout sandbox, which is a test bed,
non-live version of the Google Checkout system. You can get a seller account in the
sandbox at the following URL: http://sandbox.google.com/checkout/sell.

Once you have an account, you can access the API document from this URL:
http://code.google.com/apis/checkout/developer/.

We will create a very simple Buy It Now button using the Checkout API. After you
create a sandbox seller account and log in for the first time, you can access several
automatic checkout tools via the Tools tab at the top of the page. From here, select
the Buy It Now button and you can generate HTML for an initial button. We will
build on top of this HTML in our templates.

The buy it now HTML will looks like this (note that the actual merchant ID numbers,
even though they're in a sandbox account, have been removed):

<form action="https://sandbox.google.com/checkout/api/checkout/
v2/checkoutForm/Merchant/xxxxx" id="BB_BuyButtonForm" method="post"
name="BB_BuyButtonForm">
 <input name="item_name_1"
 type="hidden" value="Cranberry Preserves"/>
 <input name="item_description_1"
 type="hidden" value="Tasty jam made from cranberries."/>
 <input name="item_quantity_1" type="hidden" value="1"/>
 <input name="item_price_1" type="hidden" value="0.5"/>
 <input name="item_currency_1" type="hidden" value="USD"/>
 <input name="_charset_" type="hidden" value="utf-8"/>

Chapter 2

[35]

 <input alt="" src="https://sandbox.google.com/checkout/buttons/
buy.gif?merchant_id=xxxxx&w=117&h=48&style=white&varia
nt=text&loc=en_US" type="image"/>
</form>

Now we can copy and paste this HTML code into our product detail template.
We will then modify the form code to use our Django template variables for the
appropriate HTML form fields. Ultimately the form will look like this:

<form action="https://sandbox.google.com/checkout/api/checkout/v2/
checkoutForm/Merchant/xxxxx" id="BB_BuyButtonForm" method="post"
name="BB_BuyButtonForm">
 <input name="item_name_1" type="hidden" value="{{ object.name
 }}"/>
 <input name="item_description_1"
 type="hidden" value="{{ object.description }}"/>
 <input name="item_quantity_1" type="hidden" value="1"/>
 <input name="item_price_1"
 type="hidden" value="{{ object.price_in_dollars }}"/>
 <input name="item_currency_1" type="hidden" value="USD"/>
 <input name="_charset_" type="hidden" value="utf-8"/>
 <input alt="" src="https://sandbox.google.com/checkout/buttons/
 buy.gif?merchant_id=xxxxx&w=117&h=48&style=white&
 variant=text&loc=en_US" type="image" />
</form>

Setting Up Shop in 30 Minutes

[36]

Our simple product catalog that started out as a couple of Django models in the
beginning of this chapter is now fully capable of processing transactions and selling
products. If these Buy It Now buttons were activated through the real Google
Checkout web service and not the sandbox, they would be totally live and able
to sell any item in our product database.

Unfortunately, the Buy It Now button only supports selling a single item at a time.
The method we've covered above will work for some very simple applications, but
more than likely we will need something more sophisticated for a larger site. The
typical method of supporting complicated transactions is to implement a "shopping
cart" tool, a pattern that can be seen on many of the largest e-commerce sites.

The buy it now button has other problems as well. You cannot specify a choice of
sizes, for example: small, medium, or large. These may be stored on our Product
model, but could not be specified in a single Buy It Now button without additional
work. It is also a requirement of the "buy it now" tool that the customer checkout on
Google's site with a minimal amount of custom branding. If we want to provide a
full-fledged checkout experience, including our own branding and HTML design,
we must look to the full Checkout API. In Chapter 4 we will cover these topics
and more.

Summary
Congratulations! You have built a complete, functional e-commerce site in
30 minutes. It is spartan and simple, but it will work for some applications. We have
skipped over many aspects of an e-commerce application, but will build upon this
skeleton framework throughout the remainder of this book. You should now have
built a basic framework that:

Represents Product information, such as price and description in a
Django model
Stores and organizes products using the database and a catalog
Django model
Employs generic views and their related templates to run a simple
web-based storefront
Sells products and accepts payment through the Google Checkout system

In the next chapter we will construct a new module to handle our customer's
information, accounts, and their orders. We will also implement some basic
promotional activities, such as product discounts. We will also create a simple
shopping cart and further refine the checkout process.

•

•

•

•

Handling Customers and
Their Orders

Now that we have a basic e-commerce framework constructed in Django, we will
begin enhancing it with additional functionality. The first obvious need is a method
of tracking our customer's information, especially their orders, and providing them
with access to information about their accounts. Django will once again help us with
these features. Utilizing some popular third-party modules, the Django community
will be playing a part as well. In short, this chapter will explain:

The Django authentication framework and User model
Use of third-party modules, django-registration, and django-profiles to
simplify the account creation process
Creation of an ordering system, including a model to track customer orders
A very simple customer product review tool

First, we will discuss Django's built-in module for handling authentication,
users, and permissions. We will implement an account creation system using
django-registration and django-profiles, two third-party modules that have a
significant adoption rate in the Django community.

Once we've established accounts for our customers, we can begin associating orders
with them. In fact, we will build a very general order framework that will not only
support orders from registered users, but also anonymous ones. To assist in these
goals, we will build a classic shopping cart tool and discuss how to implement it
using Django's session framework. We will also survey the requirements of a more
powerful payment processing system, which we will ultimately create in Chapter 4,
Building Payment Processors.

Finally, we will end the chapter with a discussion of Django's comments framework
and how to employ it as a rudimentary customer feedback tool. This feedback tool
will allow our customer's to provide feedback for any product in our database.

•
•

•
•

Handling Customers and Their Orders

[38]

Django's auth module
One of the most tedious and error-prone tasks of a web developer is managing
account details. The reason this is so difficult is because it has to be perfect. If a user
cannot log in, most sites are useless. It's also really important to maintain the security
of user accounts, allow users to update their information, change their passwords,
and many other administrative tasks.

This functionality must be present in almost all major websites and applications. This
is another area where Django can save a lot of time and effort, while improving the
quality of your software. By providing a standard user account system, developers
can avoid the headaches inherent in writing their own user code or developing an
in-house library.

All Django sites can use the same authentication interface, thus relieving developers
not just of the burden of developing their own interface, but also of maintenance.
Django's auth module is heavily used and rigorously tested, so when bugs are
found, especially critical security problems, they are generally fixed very quickly. An
in-house module or a one-off utility generally will not have this many eyes looking at
it, monitoring it for changes, and testing any additions.

The auth module, like many of Django's built-in tools, is also very flexible. It
supports a pluggable authentication back-end that allows developers to write
custom authentication sources. This means if you have a system of authenticating
users already, you can very easily replace the default authentication back-end with
one that supports your system. Possible systems include LDAP, SQL, or almost
anything that can be accessed via Python code. Django can even support multiple
back-ends that are accessed depending on the user. More information on custom
authentication back-ends is available in the Django documentation at: http://docs.
djangoproject.com/en/dev/topics/auth/#other-authentication-sources.

Django's default authentication system uses a database table to store user
information, including passwords. Passwords are not an ideal authentication
mechanism, but it's the standard idiom for most networked software. As a result,
one of the most important security concerns is to protect user passwords at all
costs. Often users use the same password for multiple sites or applications and
their password is only as secure as the weakest site they use.

To ensure that a user's password is kept secure, a website or application should
never deal in plaintext passwords. This means it should never e-mail passwords in
plaintext or display a password in plaintext on an account profile, and it definitely
means passwords should never be stored in a database in plaintext. It may come as
a surprise to many developers (and users!) how often passwords are passed around
in plaintext.

Chapter 3

[39]

It is unfortunate, but true, that many web-based login forms are accessed via
standard HTTP connections and not a secure SSL connection. This means that
passwords are sent across the Internet in plaintext. Though it requires a small degree
of skill, the implication of this is that anyone listening on a connection can retrieve
a user's login password.

It is highly recommended that any serious e-commerce system secure their login
process, at the very least. If your site displays any kind of sensitive data, it is also
recommended that you secure those connections using HTTPS. SSL Certificates are
required to use secure HTTP, but for trivial or intranet applications, it is possible
to generate your own certificates. However, for anything public-facing that will be
used by a large number of people, it is recommended you purchase a certificate from
one of the well-known, trusted root certificate authorities. Further discussion of this
issue is beyond the scope of this book, but you can find much more information on
the Web. A good place to start, for Apache users, is the Apache SSL/TLS Encryption
page: http://httpd.apache.org/docs/2.0/ssl/.

The other cases of plaintext passwords are easily mitigated, either automatically by
Django, or using some simple best practices. For example, Django's auth module
automatically stores user passwords in the database using a salted hash technique.
By default, Django uses the standard Python sha1 hash algorithm. This ensures
that no passwords are readable simply by browsing the database, by making sure
they are not stored in plaintext. And, the salt ensures the stored hashed value is not
decipherable without knowing the password.

The case of sending plaintext passwords in e-mail is easily avoided: just don't do it! If
you need to implement a password reset function, there are many ways to do so using
simple URLs that can be included in an e-mail. The third-party django-registration
tool handles this automatically, as we will see later in this chapter.

Django users and profiles
Django's auth module provides all user accounts with a User object. The User model
can be found in django.contrib.auth.models. It provides a number of basic user
functionalities, including storage of a name, e-mail address, and access privileges—as
in whether the user is a staff member, has an active account, or is a super user. It also
records when the user signed-up for an account and when they last logged-in.

For an e-commerce application, the default set of information stored by Django for
each user is useful, but likely not enough. For example, any web store that needs to
ship its product to their customers will want to store the customer's mailing address.
The User model does not include a field for mailing address, nor does it include
phone numbers, birthdays, or a lot of other information that might be useful.

Handling Customers and Their Orders

[40]

This is an intentionally minimalistic design on Django's part. Instead of trying to
predict what fields Django developers require, the decision was made to provide
a simple method of extending the Django User model. This way the application
developers can create whatever representation of additional user data they need
and attach it automatically to Django's built-in User model.

Extending this user information is very simple: write your own model with a
ForeignKey to the User model and whatever extra data attributes you require. This
is called a profile model. When you have built this model, you can tell Django about
it using a special setting: AUTH_PROFILE_MODULE. This setting will point to your
custom extension model using the app.model syntax. For example, if your app is
called myapp and this app contains a model called UserProfile, you would refer
to it as the string 'myapp.UserProfile'.

By creating this setting, you automatically enable a built-in feature for each
User object: the get_profile() method. This method automatically returns an
instance of your profile model specific to the User object you're working with.
You can even access profile fields using dot-notation like so: user_object.get_
profile().address1.

Note that when a User object is created, by a new user registering an account,
a corresponding profile model is not automatically created. You must create it
yourself. The best way to accomplish this is to use Django's signals feature and
write a handler to listen for django.db.models.signals.post_save on the
User model. This would look something like this:

fromdjango.db.models.signals import post_save
fromdjango.contrib.auth.models import User
frommyapp.models import UserProfile

defprofile_creation_handler(sender, **kwargs):
instance = kwargs['instance']
profile, created = UserProfile.objects.get_or_create(user=instance)

post_save.connect(profile_creation_handler, sender=User)

Django uses signals to send messages from one piece of code to any other piece,
which is called "listening". In the previous source code, we were setting up a listener,
or handler, called profile_creation_handler. This handler function will run every
time Django sends the post_save signal. But this particular handler will ignore
any post_save signals that are not sent by a User object, as specified by the sender
keyword argument in the connect call. The connect method is how we attach
handlers to a specific signal. Django's documentation includes an explanation
of the signal system and a full list of all built-in signals.

Chapter 3

[41]

Creating accounts with django-registration
The auth module provides a set of functions to handle basic operations involving
user accounts. There are built-in views that you can use to allow users to log in, log
out, and reset passwords. There are also forms included in the auth module that you
can use for similar functionality. One such form is the UserCreationForm, which
provides a very simple mechanism to create new user accounts.

The built-in views and forms are very useful, but somewhat low-level. There is a lot
of functionality you must provide yourself if you intend to use them. You could also
write your own forms and views to handle these operations, especially if you need
some custom functionality. Generally, though, it's best not to repeat ourselves. If
code already exists, and looks like it will meet our needs, then we should try using
it first.

The ultimate example of this is the community of third-party applications that exist
for Django. Sometimes these exist as a small snippet of code on djangosnippets.org.
Other times these are fully-fledged open source projects with multiple contributors
and their own homepage.

One such larger project is django-registration, a reusable Django application
designed to provide several convenient functions for handling new user creation.
This registration app was created by James Bennett, the current Django release
manager, and it is very popular and widely used. The current version of the project,
with installation instructions, is available at this URL: http://bitbucket.org/
ubernostrum/django-registration/wiki/Home.

After installing the registration app, as with any well-written third-party Django
app, adding it to your project is very simple. Simply update the INSTALLED_APPS
setting in your settings file by adding an entry for 'registration'. Once added to
your settings, you can run syncdb to create the necessary tables. Django-registration
uses a few extra models to manage the current state of a user registration.

For example, when a user signs up for an account, it creates a new User object and
then sends them an e-mail to verify their e-mail address. Until the link provided
in this e-mail is clicked, the new User object is marked as inactive and cannot be
used for logging in. This behavior is customizable, of course, but it is recommended
that you verify e-mail addresses of new user accounts to prevent spam or other
fraudulent account creations.

Handling Customers and Their Orders

[42]

There are currently a few competing philosophies around how to build and
distribute third-party Django applications. It doesn't make sense, often, to include
things such as templates in a third-party utility, because every developer will require
customization to these templates. Instead, projects are often designed with default
template names in their included views. These default templates are not included
with the app, but can quickly be built by the developer for their project and the app
views will automatically locate them. This is very similar to the way generic views
worked in the previous chapter.

If you prefer to get up and running quickly, you can simply add an entry for the
default URLs file, included with the registration app, to your root URLs. This
would look something like this (on registration v0.8):

(r'^accounts/', include('registration.backends.default.urls')),

This will automatically create URL patterns for the views exposed by django-
registration. These include a register view and an account verification view. For
example, if you included the above URL pattern in your root URLs, the registration
view will be at /accounts/register/.

The register view is the main view in the registration app. This view and all the
others are described in detail in the registration documentation. We will only
discuss the register view here. By default the register view renders a template called
registration/registration_form.html and provides this template with a context
variable called form. The form variable is an instance of the RegistrationForm class,
which is included in the app. This form provides all the necessary fields to create an
account. These fields include: username, e-mail, and two fields to verify a password.

It is possible to substitute your own form class for the default RegistrationForm
returned by the register view. To do this, you will need to add a custom URL pattern
for the register view and provide a view parameter called form_class, which
points to a Python class to use as the form. For example, to add a custom form to
the register view, but keep all other registration views at their defaults, you could
modify the above URL pattern like so:

(r'^accounts/register/$', 'registration.views.register',
 {'form_class': MyRegistrationForm}),
(r'^accounts/', include('registration.backends.default.urls')),

By placing the custom URL pattern ahead of the defaults, we can override
registration's built-in register view. We've also instructed the register view to use
our own registration form instead of the default. Note also that each view in the
registration app has many parameters to override. Another useful example is the
template_name parameter, which can be changed to use your own template
instead of the default registration/registration_form.html.

Chapter 3

[43]

Generally, when creating a custom registration form, you will want to inherit from
registration's default RegistrationForm and add your own fields. The registration
app also includes some additional registration forms with added functionality,
which you can use as examples when writing your own.

Using django-registration to allow your users to create accounts is completely
optional. We could spend time implementing our own approach to this problem,
but as we've seen that the flexibility provided by this particular third-party tool is
enough to allow many customizations. We have only scratched the surface of the
available customizations in this app, so it is highly recommended you explore the
documentation further to see all that it can do.

Extending the user model with
django-profiles
Just as django-registration provides a basic set of services for users to create
accounts, login, and change passwords, another third-party app provides similar
services for profile creation. Django-profiles is also written by James Bennett
and is available from the following URL: http://bitbucket.org/ubernostrum/
django-profiles/wiki/Home.

The django-profiles app builds off of Django's built-in support for extending
the User model using the AUTH_PROFILE_MODULE setting we discussed earlier. It
essentially adds a set of generic views, URL patterns, and templates to allow your
site to quickly and automatically handle profile creation and changes.

Like django-registration, the profiles app is installed by following the
system installation instructions included in the app documentation, then adding
'profiles' to your INSTALLED_APPS setting. You will also need to create a profile
model, as we previously discussed, and set AUTH_PROFILE_MODULE appropriately.
Once installed, you can add the profile URL patterns to your root URL patterns
file like so:

(r'^profiles/', include('profiles.urls')),

As before, you can customize almost all of the profiles application using custom
template names, custom forms, and even custom URL patterns.

In the next section we will build a profile class that will extend Django's User model.
Using django-profiles is not necessary to proceed to the next section, nor is it
required for the rest of this book. In the remaining chapters we will assume that the
profile we built in the next section is available on all User objects, whether it was
created manually, using django-profiles, or by some other means.

Handling Customers and Their Orders

[44]

The customer profile
We will now build a very lightweight profile model to store additional information
about our customers. The Customer model will initially include three fields: a
ForeignKey to the User model, an address, and a phone number. Because the
profile model is simply a regular Django model class, any additional information
can be added using the usual fields.

To simplify this model design slightly, we will also be creating a CustomerAddress
model that represents a specific address. It will include fields such as three lines
of address information (apartment number, street name, and so on), city, postal
code, and state information. The CustomerAddress model will be referenced as
a ForeignKey from the Customer profile.

Here is the sample code for the profile model:

class Customer(models.Model):
'''
The Customer model represents a customer of the online store. It
extends Django's built-in auth.User model, which contains information
such as first and last name, and e-mail, and adds phone number and
address information.
'''
 user = models.ForeignKey(User)
 address = models.ForeignKey('CustomerAddress')
 phone_number = PhoneNumberField(blank=True)

classCustomerAddress(models.Model):
 '''
 The CustomerAddress model represents a customer's address. It is
 biased in favor of US addresses, but should contain enough fields
 to also represent addresses in other countries.
 '''
 line_1 = models.CharField(max_length=300)
 line_2 = models.CharField(max_length=300)
 line_3 = models.CharField(max_length=300)
 city = models.CharField(max_length=150)
 postalcode = models.CharField(max_length=10)
 state = USStateField(blank=True)
 country = models.CharField(max_length=150)

The idea here is that our USStateField is optional, with postal code and country
information captured for non-US addresses. This could be modified to be even more
flexible for international addresses by using a CharField instead of USStateField.

Chapter 3

[45]

These models will live in an application called customers in the coleman framework.
Once we've created them, we will need to do two things to activate the Customer
class as an extension to the User model. First, add 'coleman.customers' to
INSTALLED_APPS, then, set AUTH_PROFILE_MODULE='customers.Customer'. These
two steps will also allow django-profiles, if in use, to automatically detect the
profile model.

Taking orders: Models
Now that we have a way for customers to create accounts and update their profiles
with their address information, we can build a simple order taking system. Broadly
speaking, there are three parts to the order taking process:

A set of views to allow customers to manage their orders. This includes a
shopping cart utility that they can view at any time. It also includes an order
review/check-out page.
The checkout process itself. This is where the order is translated from our
internal representation to a format that can be processed by a payment
processor. For example, for Google Checkout's API, an XML document
is created and submitted via HTTP Post to a Checkout endpoint on
Google's servers.
An order model to store data about an order, what products are involved and
who is doing the ordering. This will usually only be stored after an order is
completed, so that customers and site staff can review or confirm the details.

We will begin by constructing a model to represent orders. Even though in the
ordering process this is the last task we perform, we need to know exactly what
information to gather during the earlier parts of the process. The best way to do this
is to define the model in advance and build views, a shopping cart, and checkout
processor around this data.

A simple order model has two main actors: the customer doing the ordering and the
products they want. Additional data we will probably need include things such as:

The date the order was placed
The total price of the order
The price of individual products in the order and a status of where the order
currently stands

•

•

•

•

•

•

Handling Customers and Their Orders

[46]

This model looks something like the following:

class Order(models.Model):
 '''
 The Order model represents a customer order. It includes a
 ManyToManyField of products the customer is ordering and stores
 the date and total price information.
 '''
 customer = models.ForeignKey(User, blank=True, null=True)
 status_code = models.ForeignKey('StatusCode')
 date_placed = models.DateTimeField()
 total_price = models.DecimalField(max_digits=7, decimal_places=2)
 comments = models.TextField(blank=True)
 products = models.ManyToManyField(Product,
 through='ProductInOrder')

Notice that we have built the order model around Django's built-in User object
instead of our Customer profile model. This is partly because it's easier to work with
User objects in views, but also to prevent changes to the profile model from affecting
our orders. The User model is mostly guaranteed to never change, whereas if we
decided to replace our Customer profile model, deleted a profile accidentally, or
had some other change, it could damage or delete our Order information.

There are two relationship fields in the Order model, status_code and products.
We will discuss status codes first. This field is intended to function as a tracking
system. Using a ForeignKey and a StatusCode model lets us add new statuses to
reflect future changes in our ordering process, but still require all Orders to have
a standard set of statuses for filtering and other purposes. The StatusCode model
looks like this:

classStatusCode(models.Model):
 '''
 The StatusCode model represents the status of an order in the
 system.
 '''
 short_name = models.CharField(max_length=10)
 name = models.CharField(max_length=300)
 description = models.TextField()

Returning to our fictitious business example from Chapter 2, Setting Up Shop in 30
Minutes, imagine that CranStore.com has a four-step ordering process. This includes
orders that are newly placed, those that have been shipped, those that were shipped
and received by the customer, and those that have a problem. These status conditions
map to the StatusCode model using the following values for short_name: NEW,
SHIPPED, CLOSED, EXCEPTION. Additional details as to what each state involves
can be added to the name and description fields for use on customer-friendly status
tracking pages.

Chapter 3

[47]

The second relationship field in the Order model is significantly more complicated
and probably the most important field for all orders. This is the ManyToManyField
called products. This field relates each order to a set of Product models from our
design in Chapter 2. However, this relationship from Orders to Products requires
a lot of additional information that pertains to the actual relationship, not the order
or product themselves.

For example, CranStore.com sells a lot of canned Cranberries around late November.
When a customer places an order for canned Cranberries, we need to know not just
what they ordered, but how many cans they wanted and how much we charged
them for each can. A simple ManyToManyField is not sophisticated enough to
capture this information. This is the purpose behind this field's through argument.

In Django the through argument on a ManyToManyField lets us store information
about the relationship between two models in an intermediary model. This way
we can save things like of a product in an order, without too much complexity
in our design. The downside of using the through argument is that we can no
longer perform operations such as add and create, directly on an object instance's
ManyToManyField.

If our Order model used a standard ManyToManyField, we could add Product
objects to an order simply by calling add like so:

order_object.products.add(cranberry_product)

This is no longer possible with the through field, we must instead create an instance
of the intermediary model directly to add something to our Order object's products
field, as in the following:

ProductInOrder.objects.create(order=order_object, product=cranberry_
product)

This creates a new ProductInOrder instance and updates the products field of
order_object to include our cranberry_product. We can still use the usual
ManyToManyFieldQuerySet operations, such as filter and order_by, on fields
using the through argument.

In addition we can filter the Order model using fields on the ProductInOrder
intermediary model. To find all open Orders that include canned Cranberries,
we could perform the following:

Product.objects.filter(productinorder__product=cranberry_product,
status_code__short_name='OPEN')

Handling Customers and Their Orders

[48]

The full ProductInOrder model is listed below:

classProductInOrder(models.Model):
 '''
 The ProductInOrder model represents information about a specific
 product ordered by a customer.
 '''
 order = models.ForeignKey(Order)
 product = models.ForeignKey(Product)
 unit_price = models.DecimalField(max_digits=7, decimal_places=2)
 total_price = models.DecimalField(max_digits=7, decimal_places=2)
 quantity = models.PositiveIntegerField()
 comments = models.TextField(blank=True)

These three models represent our basic order taking system. Now that we have an
idea of the data we will be collecting for each order, we can begin building a set of
views so that customers can place orders through the Web.

Taking orders: Views
We will build four views for our initial order taking system. These will perform
basic e-commerce operations such as: review a shopping cart, add an item to the cart,
remove an item from the cart, and checkout. We will discuss the mechanics of the
shopping cart system in the next section. For now, we will just focus on these four
operations, how they translate to Django views, and what their templates would
look like.

The most important view is the shopping_cart view, which allows a customer
to review the products they have selected for purchase. The code for this view
appears below:

defshopping_cart(request, template_name='orders/shopping_cart.html'):
 '''
 This view allows a customer to see what products are currently in
 their shopping cart.
 '''
 cart = get_shopping_cart(request)
 ctx = {'cart': cart}
 return render_to_response(template_name, ctx,

context_instance=RequestContext(request))

Chapter 3

[49]

The view retrieves the shopping cart object for this request, adds it to the template
context, and returns a rendered template whose only variable is the shopping cart,
called cart. We will discuss get_shopping_cart shortly, but for now let's just note
that we are using this as a helper function in our views. The retrieval operation is
very simple and would easily fit on one line in this view function. However, by
using a helper function, if we ever need to make changes in the future to how
our cart works, we have a single piece of code to change and can avoid having
to touch every view.

The next two operations are related: add_to_cart and remove_from_cart. The code
for these views is as follows:

def add_to_cart(request, queryset, object_id=None, slug=None,
 slug_field='slug', template_name='orders/add_to_cart.
 html'):
 '''
 This view allows a customer to add a product to their shopping
 cart. A single GET parameter can be included to specify the
 quantity of the product to add.
 '''
 obj = lookup_object(queryset, object_id, slug, slug_field)
 quantity = request.GET.get('quantity', 1)
 cart = get_shopping_cart(request)
 cart.add_item(obj, quantity)
 update_shopping_cart(request, cart)
 ctx = {'object': obj, 'cart': cart}
 return render_to_response(template_name, ctx,

context_instance=RequestContext(request))

def remove_from_cart(request, cart_item_id,
 template_name='orders/remove_from_cart.html'):
 '''
 This view allows a customer to remove a product from their
 shopping cart. It simply removes the entire product from the cart,
 without regard to quantities.
 '''
 cart = get_shopping_cart(request)
 cart.remove_item(cart_item_id)
 update_shopping_cart(request, cart)
 ctx = {'cart': cart}
 return render_to_response(template_name, ctx,

context_instance=RequestContext(request))

Handling Customers and Their Orders

[50]

A careful review of these two functions will reveal that they have two different
interfaces for managing cart items. The add_to_cart view works with an
object directly, an instance of our Product model from Chapter 2, usually. The
remove_from_cart function needs a cart_item_id variable. This is simply an
integer value that indexes into the shopping cart's item list.

We must use two different interfaces here, because once we've added a product
to the cart, we need a unique way of talking about that particular product at that
particular index in the cart. If our remove function tries to remove items based on
the item's model or a primary key value, we would have difficulty when the same
item has been added to our cart twice.

The solution is to give every item added to the cart a unique identifier. The Cart
model in the next section handles this unique ID internally; all we need to do is
render it in our templates when necessary. This way we can add arbitrary objects
to our shopping cart as often as we want and retain the ability to remove a specific
addition, whether it was performed in error or because the customer changed
their mind.

When adding an item to the cart, we simply need to look up the item's slug or
object_id value from the Django ORM and store the object directly into the cart.
When added, the cart will assign it an identifier.

There is another helper function in these views called lookup_object, which
performs the actual retrieval of our Product or other object that we're adding
to the cart. This helper function looks like this:

def lookup_object(queryset, object_id=None, slug=None, slug_
field=None):
 if object_id is not None:
 obj = queryset.get(pk=object_id)
 elif slug and slug_field:
 kwargs = {slug_field: slug}
 obj = queryset.get(**kwargs)
 else:
 raise Http404
 return obj

This allows some flexibility and reuse for our add_to_cart view, because we
can define which lookup fields (object_id or slug and slug_field) to use for
retrieving the object. If we decided to use a different Product model than the one
written in Chapter 2 and this alternative model did not use slug fields as identifiers,
then we would still be able to use our add_to_cart view without any modification.
Separating the lookup with a helper function allows us to write clean, short, and easy
to read views.

Chapter 3

[51]

This view is not so flexible, however, that we can feel comfortable calling it a
"generic view", without some additional work. Generic views, patterned after
Django's built-in generic views discussed in Chapter 2, allow almost every aspect
of their functionality to be configurable. For example, if these views were really
generic, we could specify a custom class to use as our shopping cart, instead of
what get_shopping_cart gives us. We could even add a keyword argument
to get_shopping_cart that would allow different cart classes and pass through
a value from our view's arguments.

The last view in our order taking system is the checkout view. This will act as a
stepping stone into our payment processor system. In the previous chapter we saw
a very simple payment processor; we will build a more advanced one here, and
discuss the issue in detail in Chapter 4. The checkout view is listed below, note that
it is specifically designed for the Google Checkout API we discussed previously:

def checkout(request, template_name='orders/checkout.html'):
 '''
 This view presents the user with an order confirmation page and
 the final order button to process their order through a checkout
 system.
 '''
 cart = get_shopping_cart(request)
 googleCart, googleSig = sign_google_cart(cart)
 ctx = {'cart': cart,
 'googleCart': googleCart,
 'googleSig': googleSig,
 'googleMerchantKey': settings.GOOGLE_MERCHANT_KEY,
 'googleMerchantID': settings.GOOGLE_MERCHANT_ID}
 return render_to_response(template_name, ctx,

context_instance=RequestContext(request))

The various Google context variables are needed to compose a Checkout API form
in the rendered template. The additional merchant key and ID information is stored
in our project's settings file. There is also a helper function, sign_google_cart,
which generates a Google-compatible representation of our shopping cart as well
as a cryptographic signature.

The Google-compatible representation of our shopping cart is simply an XML file
that conforms to the specifications documented by the Checkout API. The signature
is a base64 encoded HMAC SHA-1 signature generated from the shopping cart XML
and our secret Google merchant key. This prevents tampering when our checkout
form is submitted to the Google Checkout system. More information on this process
is available at: http://code.google.com/apis/checkout/developer/index.html.

We will write these functions and examine the XML file in detail later in this chapter.

Handling Customers and Their Orders

[52]

Shopping carts and Django sessions
Django makes it very easy to build a shopping cart for our web-based e-commerce
stores and applications. In fact, Django does an excellent job of solving a more
general problem: persisting temporary data between browser requests in a simple
way. This is what Django's session framework gives us.

Any pickleable Python object can be stored using the session framework. The
session object is attached to incoming requests and is accessible from any of
our views. Requests from users that are not logged in, or haven't even created
accounts, get session objects too. Django manages all of this by associating a cookie
in the user's browser with a session ID. When the browser issues a request, the
SessionMiddleware attaches the appropriate session object to the request so
that it is available in our views.

Sessions, and the cookies that manage them, have an expiration date. This expiration
is not necessarily tied to the expiration of browser cookies and can be controlled in
our views using the session object's set_expiry() method. This method allows for
four expiration possibilities:

Never
When the user's browser is closed
After a specified amount of time has elapsed
The default global Django setting

If the user happens to clear their browser's cookies, then any previous session
information will be lost and they will receive a new session object the next time they
visit the site. The information attached to these abandoned sessions is retained by
Django in the database until it's manually cleared using the cleanup command
to django-admin.py.

As we can use Django's session framework to store any pickleable Python object
(see http://docs.python.org/library/pickle.html for more information on
pickling), it makes storing shopping cart information very easy. We will build a
simple Cart class that represents a list of items with methods that can add and
remove from the list. Each item in the list is represented by an inner-class called
Item that manages the item's ID in a particular shopping cart and a quantity value.
This code appears as shown:

class Cart(object):
 class Item(object):
 def __init__(self, itemid, product, quantity=1):
 self.itemid = itemid
 self.product = product
 self.quantity = quantity

•

•

•

•

Chapter 3

[53]

 def __init__(self):
 self.items = list()
 self.unique_item_id = 0

 def _get_next_item_id(self):
 self.unique_item_id += 1
 return self.unique_item_id
 next_item_id = property(_get_next_item_id)

 def add_item(self, product, quantity=1):
 item = Item(self.next_item_id, product, quantity)
 self.items.append(item)

 def remove_item(self, itemid):
 self.items = filter(lambda x: x.itemid != itemid, self.items)

Cart objects manage their own list of unique item IDs by incrementing a variable
each time we add a new item. This is the purpose of the next_item_id property.
At removal time, we can use the item's unique ID to easily find it in the items list
and remove it.

As a further convenience, particularly when we need to access the contents of a
shopping cart in our templates, we can make the Cart class iterable. This is a Python
convention that allows container classes to function like sequences or lists. For
example, using a non-iterable version of the Cart class, we could access the items
list like so:

for item in cart_instance.items:
 ...

By transforming our cart into an iterable, however, we can simplify the above to just:

for item in cart_instance:
 ...

What's the big deal? We saved a few keystrokes and some syntax. But in the future,
if we need to change the interface to our items list, the iterable approach prevents us
from relying on semantic knowledge of the internal workings of our shopping cart.
The underlying storage of items in the cart can change and we only need to update
our iterable code. To make our Cart class iterable, we add the following two methods:

def __iter__(self):
 return self.forward()
def forward(self):
 current_index = 0
 while (current_index<len(self.items)):
 item = self.items[current_index]
 current_index += 1
 yield item

Handling Customers and Their Orders

[54]

Later, if our shopping cart needs change, the Cart class's forward() method will act
as a single point of control. We can implement any changes needed, but retain the
same iterable interface in our views and templates.

Checking out: Take two
Now we can adapt our checkout process to use our new shopping cart. Previously
we created a simple checkout process using Django templates and the Google
Checkout buy-it-now button. The obvious limitation of this approach was that
customers can only purchase one item at a time. Using our shopping cart, we allow
customers to select as many items as they like, but this requires us to modify the
checkout process.

Earlier we discussed the checkout view and a helper method, doGoogleCheckout(),
which performed two actions. First, it converted our internal representation of the
customer's shopping cart to a format that Google Checkout API can understand.
Second, it created a cryptographic signature of this shopping cart using our secret
Merchant Key identification. This signature is how Google Checkout's API verifies
that the purchase request is coming from our web application.

Here is the doGoogleCheckout function in its entirety:

Import hmac, sha, base64
from django.template.loader import render_to_string
from django.conf import settings

def sign_google_cart(cart):
 cart_cleartext =render_to_string('orders/googlecheckout.xml',
 {'cart': cart})
 cart_sig = hmac.new(settings.GoogleMerchantKey,
 cart_cleartext, sha).digest()
 cart_base64 = base64.b64encode(cart_cleartext)
 sig_base64 = base64.b64encode(cart_sig)
 return cart_base64, sig_base64

As stated earlier, Google Checkout API-compatible shopping carts are represented
as XML documents. Here we render this XML document using Django's standard
template rendering functions. We provide a context that includes an instance of our
internal Cart class.

After rendering the XML, we capture it as the string variable cart_cleartext. This
is what we use to generate a cryptographic signature. The Checkout API is specific
about how to sign our shopping cart: it must use the HMAC SHA-1 algorithm.
Fortunately, Python makes this sort of signature generation very easy.

Chapter 3

[55]

Finally, both the cleartext version of our Checkout API-compatible shopping cart
and the digital signature are base-64 encoded so that they can be submitted for
processing through an HTML form field in an HTTP POST request.

These two base-64 encoded values are returned to our checkout view and are
included in the template context. They will be rendered in the template as fields
on an HTML form that submits directly to the Google Checkout API.

The last key piece of this is the XML template to render the cleartext shopping cart.
The specific format and XML schema are documented at the following URL: http://
code.google.com/apis/checkout/developer/Google_Checkout_XML_API.html.

The actual design of this checkout XML file will depend on the specific application
because it includes things such as shipping and tax tables, coupon codes, and
other merchant-specific information. For our example application, here is our basic
googlecheckout.xml template. Note the use of Django template tags and variables,
just as if it were an HTML document.

<?xml version="1.0" encoding="UTF-8"?>

<checkout-shopping-cart xmlns="http://checkout.google.com/schema/2">
<shopping-cart>
<items>
 {% for item in cart %}
<item>
<item-name>{{ item.product.name }}</item-name>
<item-description>{{ item.product.description }}</item-description>
<unit-price currency="USD">{{ item.product.price_in_dollars }}
</unit-price>
<quantity>{{ item.quantity }}</quantity>
</item>
 {% endfor %}
</items>
</shopping-cart>
<checkout-flow-support>
<merchant-checkout-flow-support>
<shipping-methods>
<flat-rate-shipping name="SuperShip Ground">
<price currency="USD">2.50</price>
</flat-rate-shipping>
</shipping-methods>
</merchant-checkout-flow-support>
</checkout-flow-support>
</checkout-shopping-cart>

Handling Customers and Their Orders

[56]

This is the simplest possible shopping cart XML. It works by iterating over the items
in our cart; it generates an <item> element for each one that includes child elements
that capture details about the item we're selling, including its price. It also includes
a very simple flat-rate shipping fee. There are dozens of additional tags you can
use in the checkout XML. It is a very flexible system that can handle a wide variety
of scenarios. We will discuss payment processing and checkout APIs in even more
depth in the next chapter.

Super-simple customer reviews
Users of our e-commerce application can now sign up for accounts, browse our
product catalog, add items to a shopping cart, and submit payments through the
checkout system. To complete the circle, we will build simple, quick customer
reviews using Django's built-in comments framework.

The comments framework is designed as a general purpose tool to attach comments
to any Django object. To use it for customer reviews, we can attach comments to our
Product model. Doing this is very easy, in fact it is basically automatic—just another
convenience of working in Django.

To implement comments you only need to do two things: add django.contrib.
comments to your INSTALLED_APPS project setting and add django.contrib.
comments.urls to your root URL patterns under the comments/ URL. Once you've
done this, you can begin using comments in your templates.

For our product detail page, we will add a section for user reviews and a form for
customers to complete their own review. All of these will be driven by the comments
framework. In order to access the comment template tags, we need to first load the
comments module into our template using {% load comments%}.

Once we have the comments utility loaded, we can begin using it. The following
Django template snippet will create the customer review section of our product
detail page:

<h4>Customer Reviews</h4>
{% get_comment_list for object as comment_list %}
{% for comment in comment_list %}
<p>#{{ forloop.counter }}: {{ comment.comment }} By {{ comment.user_
name }}</p>
{% endfor %}

Chapter 3

[57]

The {% get_comment_list %} tag is used to obtain the list of reviews for this
particular Product object and store it in a template variable called comment_list. We
can then iterate over this list and display the results using normal HTML and Django
template markup. This is all that is required to add customer reviews or product
comments to every item in your catalog.

Adding a form for customers to leave their own reviews is equally as simple as the
following Django template snippet indicates:

<h4>Leave a Review</h4>
{% render_comment_form for object %}

Using the {% render_comment_form %} template tag creates the Django comments
framework's default form. These simple defaults, with a little bit of CSS styling, will
look like the following screenshot:

You will not be able to customize the fields or specify your own CSS classes in the
HTML using this template tag. For that you will need to either create your own default
comment form template, called comments/form.html, or use the {% get_comment_
form %} template tag and place the Django form and field variables in your template
manually. The full documentation for Django's comments framework is available here:
http://docs.djangoproject.com/en/dev/ref/contrib/comments/.

Handling Customers and Their Orders

[58]

Summary
This chapter aimed to cover the broad topic area surrounding customers and their
orders. This is a very large concern and begins to tread into a much larger subject
known as Customer Relationship Management (CRM). The e-commerce tools we
built in this chapter included:

Simple customer account creation and profile components
A system for taking and tracking orders
Implementation of a custom shopping cart
Integration of our custom cart with the Google Checkout XML API
Very basic customer product review and feedback functions

In the next chapter we will discuss the order payment processing mechanism in
more depth, including building a generic framework to process payments from
vendors other than Google Checkout. Later on in the book we will revisit the order
and customer models we created here to add additional features, such as coupon
codes and customer discounts.

•

•

•

•

•

Building Payment Processors
The goal of this chapter is to extend the basic system we've designed so far with a
more robust and flexible payment system. Currently we have a shopping cart design
that is independent of our payment process. We convert the cart to a format that is
compatible with the Google Checkout API and then we can submit our customer
orders for payment. We will now extend this system to achieve several things:

Create a pluggable design so that payment systems can be reused, swapped
out, or replaced
Migrate our simple Google Checkout processor to our new system
Discuss payment processors for Amazon FPS and PayPal services
Explore advanced Django and Python design concepts such as class-based
generic views and callable objects

After we have built our generic payment system, implementing additional payment
services such as Amazon and PayPal will be relatively straightforward.

An additional goal in this chapter is to build a system that is not constrained to the
payment services mentioned, but could be extended as a basis for any web-based
payment system that can handle shopping cart orders and form-based payment
initiation. Using the design laid out in this chapter, new implementations for other
third-party services should be relatively straightforward.

Building a generic payment processor app
We start by creating an empty framework to act as the skeleton of any payment
processors we will eventually build. This design will assume that there are two
key components to a payment processor:

Shopping cart translation
Checkout submission

•

•

•

•

•
•

Building Payment Processors

[60]

The first step is always to convert the contents of our customer's shopping cart
into a format that can be understood by the payment service. We handled this in
Chapter 3, Handling Customers and Their Orders, using the Django template system
to render an XML file that represented a customer order in an XML document the
Google Checkout API could understand. Many web services use an XML format for
transmitting e-commerce data and fortunately Django makes it very easy to generate
these files.

Step two is to take our newly translated shopping cart data and walk the customer
through a checkout process. Initially we'll render a confirmation page listing the
contents of the shopping cart and the quantity and price for each item. If the user
confirms this information, their order will be submitted to the payment service
where they will complete the payment.

The process described in this book will complete the payment process through the
service provider interface. Often these pages can be customized with a business logo
and other design elements, but the interaction will be entirely handled by the web
service provider. For most organizations this is a highly recommended practice.

Medium to small companies generally don't have the resources to commit to the
security practices necessary to secure a checkout service running on their own site.
Despite the inability to brand and control this portion of your sales process, it is still
preferable for its enhanced security. It also provides peace of mind if there is a major
breach or other crisis; your business will not be required to deal with it directly. You
can rely on the payment service to fix the problem quickly, because it will affect all of
their clients and their own bottom line. For this reason, as well, we will focus on the
biggest, most reliable payment services.

Class-based views
The approach we will take to implement our payments framework involves a focus
on reuse and simplification of code. As this code will generally live in the view-layer
of our application, one excellent pattern to use here is the class-based view. Unlike
functional views, class-based views allow the usual gains in robustness inherent in
object-oriented programming.

Using this method, we will create a standard Python class to act as a superclass
for specialized versions of our views. This parent class will implement all of the
basic functions for the view, but avoids specific details related to our application.
Application specific logic will be implemented in child classes using polymorphism
to modify our parent's basic set of methods.

Chapter 4

[61]

These classes become suitable for use as views in URL patterns once we make them
callable. In Python, any class can be made "callable" by implementing a __call__
method. This allows object instances of the class to be called such as functions.
The following code creates a callable object from a MyCallable class:

>>> obj = MyCallable(initial_data=[...])
>>> # call the object...
>>> result = obj()

Note that this is equivalent to the following:

>>> obj = MyCallable(initial_data=[...])
>>> result = obj.__call__()

The __call__ method is a Python special method that allows any object to be
executed using the function syntax shown in the first example. In Python any object
that can be called this way is generally referred to as callable or as a callable object.
You can use Python's introspection to check whether an object you are working with
is callable or not:

>>> if callable(obj): print "True!"

Implementing a callable object has many advantages over simply writing a method
and referring to that method anywhere you need to obtain certain functionality
from the object. It is a form of abstraction; you can write your code to expect a
callable object and just call it. The implementation details, including the names
of the methods that run, are up to the class.

In our specific example, Django URL patterns were designed to use functions as
views. But really it is more accurate to say that they are designed to use callables.
Thus by writing callable classes, we can construct object instances directly in the
URL patterns. The classes themselves don't matter as long as they are callable. This
is one of several examples that make Python a unique and interesting language
to work with.

Implementing a checkout view base class
The base class for our class-based view checkout system will be called CheckoutView.
All class-based generic views are going to share a basic set of requirements: be
callable, store a template name, create a response to an incoming request that renders
the template, and provide whatever extra functionality, such as form creation, that the
view needs.

Building Payment Processors

[62]

Some of this information, such as the template name and any form classes, can be
stored as data attributes on the view. Others, such as rendering a request, will be
implemented as a method. Anything that is possible with standard Django views
can be implemented using a class-based design. For complex designs, the class-based
solution will often be easier to read, manage, and reuse later.

Using function-based generic views, the typical usage pattern in Django is to include
arguments from the URL pattern to specify the view behavior. For example, Django's
built-in list_detail.object_list generic view takes several arguments: an object
ID, a slug value, the queryset to filter, and so on. These are passed either from the
URL itself, via a regular expression, or a dictionary of parameters defined in the
URLs file. Either way, we have to write extra code.

Using class-based views, it makes more sense to take advantage of polymorphism
and inheritance rather than passing arguments to a function. This simplifies our URL
patterns and cleanly separates view code into a typical class hierarchy. This approach
means we can avoid passing a lot of data from our URLs but still achieve the goal
of code reuse.

There still may be data attributes we can treat as constructor parameters, the
template name for example, but most of the data should exist as class attributes.
An excellent demonstration of this is the extra_context dictionary. This is a
dictionary of additional key-value pairs to be added to the template context when
it is rendered. It can get unwieldy to define this dictionary in the urls.py file, but
using a class-based view it becomes a simple matter of adding a data attribute to
the class. When the view is rendered we can update the context with the value
of self.extra_context.

Let's demonstrate these concepts by revealing our base CheckoutView class:

class CheckoutView(object):
 template = 'payments/checkout.html'
 extra_context = {}
 cart = None
 cart_class = Cart
 request = None
 form = None
 form_class = None

 def __init__(self, template=None, form_class=CheckoutForm,
 context_class=RequestContext):
 self.context_class = context_class
 self.form_class = form_class
 if template is not None:
 self.template = template

Chapter 4

[63]

 def __unicode__(self):
 return self.__class__.__name__

 def get_shopping_cart(self, request):
 self.cart = request.session.get('cart', None) or self.cart_
class()

 def __call__(self, request):
 self.request = request
 return self.return_response()

 def return_response(self):
 self.form = self.form_class()
 context = {'cart': self.cart, 'form': self.form}
 context.update(self.get_extra_context())
 return render_to_response(self.template, context,
 context_instance=self.context_
 class(self.request))

 def get_extra_context(self):
 return self.extra_context

Here are the key features of this class: we made it callable by defining a __call__
method, we store the view parameters as class attributes, and the generic base-class
provides default values for some of these attributes.

Saving the order
As we will be processing payments using third-party payment processors, we need
to save the order before sending it to the customer to make their payment. We also
need to be able to create an order from our shopping cart object so that we can refer
to it when we begin shipping after receiving payment.

Most payment processors allow us to add unique information specific to an order
reference number for this purpose. When payment succeeds, we can update the
status of the order in our system from 'NEW' to something meaningful like 'PAID'.
Most payment processors will notify vendors via e-mail when an order has been
paid and some even allow this to be automated. We will explore this topic more in
Chapter 5, From Payment to Porch: An Order Pipeline.

Using the contents of the customer's shopping cart, we create an Order object from
Chapter 3. This order will record all of the Products and quantities the customer is
ordering. We save this prior to rendering the final checkout view from which the
customer will navigate to the payment processor to complete payment.

Building Payment Processors

[64]

We will implement this as a new method on our CheckoutView class called
save_order. The save_order method is listed below:

def save_order(self):
 cart = self.get_shopping_cart()
 make_order_from_cart(order, customer=self.request.user)

save_order creates an order by passing the current shopping cart to the
make_order_from_cart function. A new order object is created every time the
customer submits their cart for checkout, which leads to a common problem with
shopping cart services: abandonment. A shopping cart is abandoned when a
customer adds items, but never completes the checkout process.

The design above will save these abandoned carts as Order objects with status set
to 'NEW'. We will address this abandonment issue in the next chapter, but saving
these as Orders is not necessarily a bad thing. For example, it can be useful business
knowledge to record what products are almost purchased, but given up at the last
minute. There may be other analysis we can do as well. Maybe at peak traffic times,
the server is responding too slowly and more shopping carts get abandoned out
of user frustration. This would help make a business case for a faster server or
other upgrades.

The make_order_from_cart function has been added to our shopping cart module
from Chapter 3. Its code is listed below:

from coleman.orders.models import StatusCode

def get_status_code(name):
 code, created = StatusCode.objects.get_or_create(short_name=name)
 return code

def make_order_from_cart(cart, customer=None):
 '''
 Takes a shopping cart object and generates a new order object for
 the provided customer. If no customer is provided, an "anonymous"
 order is created.
 '''
 order = Order.objects.create(customer=customer,
 status_code=get_status_code('NEW'))
 for item in cart:
 total_price = item.product.get_price() * item.quantity
 ordered_item = ProductInOrder(
 order=order,

Chapter 4

[65]

 product=item.product,
 unit_price=item.product.get_price(),
 total_price=total_price,
 quantity=item.quantity)
 ordered_item.save()
 return order

We start by creating the Order object, then looping over each item in the shopping
cart. Remember that the shopping cart stores Item objects, not Products directly.
This helps us manage quantities and other information. We can access the
actual Product object via the Item's product attribute. We do this to create our
ProductInOrder intermediary model, which creates the list of Products in our
Order. Refer to the design of this model in the previous chapter.

The save_order method is called from our return_response, which renders
the final checkout view to the user. With our Order saved, we can begin building
specialized checkout procedures for specific payment processors.

A Google Checkout class
The Checkout API is capable of several checkout patterns. In Chapter 2, Setting Up Shop
in 30 Minutes, we implemented the simplest pattern involving a single "Buy It Now"
button. In Chapter 3 we implemented a custom shopping-cart solution. In the previous
section we built a generic approach to implement checkout functionality for any
service. We will now implement our Google Checkout shopping cart solution using
this generic framework. Later in this chapter we will also implement another checkout
service, Amazon's Flexible Payment System, on top of our generic framework.

To build our Google Checkout class, we inherit all of the functionality from our
generic checkout view and add some additional data and methods. We will store our
Google API and merchant key as class attributes as well as the shopping cart XML
template name. Our XML template will be treated like the checkout HTML template,
which will give us the flexibility to use different XML shopping cart templates for the
same website if needed.

We'll also implement a shopping cart conversion method that converts our site's
Cart model into a Google Checkout cart using the XML template. This is the same
conversion function we used in the previous chapter to render the XML template
and calculate a base-64 signature. The conversion method will update our class's
extra_context data member to automatically include the Google cart when the
view is rendered.

Building Payment Processors

[66]

This system will be represented by a subclass called GoogleCheckoutView. The code
listing for this class is below:

class GoogleCheckoutView(CheckoutView):
 google_cart_template = 'payments/googlecheckout.xml'
 merchant_key = getattr(settings, 'GOOGLE_MERCHANT_KEY', '')
 merchant_id = getattr(settings, 'GOOGLE_MERCHANT_ID', '')

 def convert_shopping_cart(self):
 cart = self.get_shopping_cart()
 cart_cleartext = render_to_string(self.google_cart_template,
 {'cart': cart})
 cart_sig = hmac.new(self.merchant_key, cart_cleartext, sha).
digest()
 cart_base64 = base64.b64encode(cart_cleartext)
 sig_base64 = base64.b64encode(cart_sig)
 self.extra_context.update({'googleCart': cart_base64,
 'googleSig': sig_base64})

 def return_response(self):
 self.convert_shopping_cart()
 return super(CheckoutView, self).return_response()

The only new code here is the return_response method, which uses polymorphism
to call our shopping cart conversion method before returning the view response as
normal by calling the parent class's implementation. This method has been modified
slightly from our original version earlier in the book. Instead of returning the cart
and signature data, it adds them to the extra_context attribute. This attribute
is automatically added to the template context when the view is rendered from
return_response.

Much more functionality is available in the XML version of the Checkout API, but if
your implementation requires support for the HTML Checkout API version, we can
implement another view to support this very easily. The HTML API uses a similar
approach to the XML, but is not cryptographically signed and submits a full HTML
form with hidden input fields for all products in the cart.

An HTML version of the GoogleCheckoutView class is as follows:

class GoogleCheckoutHTMLView(CheckoutView):
 google_cart_template = 'payments/googlecheckout.html'
 merchant_key = getattr(settings, 'GOOGLE_MERCHANT_KEY', None)
 merchant_id = getattr(settings, 'GOOGLE_MERCHANT_ID', None)

Chapter 4

[67]

 def convert_shopping_cart(self):
 cart = self.get_shopping_cart()
 checkout_form = render_to_string(self.google_cart_template,
 {'cart': cart})
 self.extra_context.update({'checkout_form': checkout_form})

 def return_response(self):
 self.convert_shopping_cart()
 return super(CheckoutView, self).return_response()

In this case, we render a special HTML template called google_cart_template, just
as we did in the XML version. We store the resulting HTML fragment string in the
extra_context. The HTML form in this fragment will contain all hidden fields and
the submit button that features the Google logo. An example of this HTML template
looks like this:

<form method="POST"

action="https://sandbox.google.com/checkout/api/checkout/v2/
checkoutForm/Merchant/REPLACE_WITH_YOUR_SANDBOX_MERCHANT_ID"
accept-charset="utf-8">
 {% for item in cart %}
 {% with counter as forloop.counter %}
 <input type="hidden" name="item_name_{{ counter }}"
 value="{{ item.product.name }}"/>
 <input type="hidden" name="item_description_{{ counter }}"
 value="{{ item.product.description }}"/>
 <input type="hidden" name="item_price_{{ counter }}"
 value="{{ item.price_in_dollars }}"/>
 <input type="hidden" name="item_currency_{{ counter }}"
 value="USD"/>
 <input type="hidden" name="item_quantity_{{ counter }}"
 value="{{ item.quantity }}"/>
 <input type="hidden" name="item_merchant_id_{{ counter }}"
 value="PROD{{ item.product.id }}"/>
 {% endwith %}
 {% endfor %}
 <input type="hidden" name="_charset_" />

 <!-- Button code -->
 <input type="image"
 name="Google Checkout"

Building Payment Processors

[68]

 alt="Fast checkout through Google" src="http://sandbox.
google.com/checkout/buttons/checkout.gif?merchant_id=REPLACE_WITH_
YOUR_SANDBOX_MERCHANT_ID&w=180&h=46&style=white&variant=text&loc=e
n_US"
 height="46"
 width="180" />
</form>

We've just written two different implementations of the Google Checkout API in
a very small amount of code by building on our generic checkout view framework.
The Google Checkout API has numerous additional features that could be integrated
to the above designs. Additional features are fully described in the Checkout
API documentation.

An Amazon Checkout class
Amazon Web Services provides developers with another option for payment
processing. Their Flexible Payments Service (FPS) is slightly more complex than
the Google Checkout API, but also offers some additional robustness. It uses
a significantly different technical approach, however, and will require some
adjustments to our payment processor designs.

FPS allows developers to create more advanced payment mechanisms, as well. For
example, you can use FPS to set up recurring payments, such as subscriptions, as
well as single-click payments whose parameters will be remembered over time.
Google Checkout API offers similar advanced functionality. These features of both
services will not be implemented here, but are well documented on the Web. Later
in this book we will discuss using Amazon's payment services for digital goods, such
as music and software.

The FPS uses a similar interaction flow to Google Checkout. We present our customer
with the full contents of their shopping cart, show them a Pay with Amazon checkout
button, which when clicked directs them to a co-branded Amazon payments page.
After their payment is complete, they are redirected to our e-commerce website and
we are given a payment token. This payment token can be used to charge the customer
right away or saved for later, after an order is fulfilled, for example.

The payment token portion is the main feature that differs between Checkout and
FPS. The Google Checkout API does not charge the customer right away, either. But
instead of passing back a token, it creates a record in the vendor's checkout order
dashboard. It may also notify an e-mail address. The vendor is required to log in
to Checkout and charge the order.

Chapter 4

[69]

With Amazon, there is no dashboard. This means we have to provide a callback URL
to the Amazon service, which handles the return of the customer and stores their
token for later processing. A token just means the customer has been authorized for
payment, but has not yet been charged. We submit the token separately, when we're
ready to charge the order.

As a result of these API differences, processing FPS payments requires additional
steps. We will build a CheckoutView subclass as before, but customize it for the
Amazon service. We will also need a view to handle the callback that FPS makes
after authorizing the customer's payment. This callback will extract the token, which
the FPS service adds as part of URI parameters. We will need to save this token and
associate it with the specific order we're handling in order to charge the customer.

Let's tackle the CheckoutView subclass first. The AmazonCheckoutView class will
include a convert_shopping_cart method as we saw earlier, but instead of
converting to an XML format, it constructs a standard Internet URI. We will use this
URI as the action attribute on an HTML form that is rendered to the customer. This
form will act as the final checkout button, just like the Google Checkout API created.
Our Amazon checkout button will use the Amazon branded Pay with Amazon
image as a submit button.

When the user submits this form, the URI we generate will be submitted as an
HTTP POST. This, kicks off the Amazon authorization step; the user can sign in or
create an Amazon account and pay with the usual payment methods that Amazon
supports. When payment authorization completes, Amazon will redirect the user to
the callback URL mentioned earlier. This page will do two things: first, it presents a
thank you message or other confirmation and encourages the customer to continue
browsing our e-commerce site.

Second, when our Django backend handles the request, it will extract the token
information Amazon adds to our URL, and saves it to the database in a model
that associates this customer's order with the token. Later on, when we fulfill the
order, for example, this token will be submitted to Amazon to actually charge the
customer's account. This view could also attempt to charge the customer right away.
In the next chapter we will discuss how to optimize this process using an order
pipeline and build some tools to simplify the procedure.

Building Payment Processors

[70]

Let's examine the convert_shopping_cart and related methods of our
AmazonCheckoutView class:

Class AmazonCheckoutView:
 default_aws_params = {'currencyCode': 'USD',
 'paymentMethod': 'ABT,ACH,CC',
 'version': '2009-01-09',
 'pipelineName': 'SingleUse'}

 def make_signature(self, params):
 path = u'%s?' % self.endpoint
 keys = params.keys()
 keys.sort()

 sign_string = path
 for key in keys:
 sign_string += '%s=%s&' % (urlquote(k),
 urlquote(params[k]))
 sign_string = sign_string[:-1]
 sig = hmac.new(self.aws_secret_key, sign_string, sha).digest()
 return base64.b64encode(sig)

 …

 def convert_shopping_cart(self):
 cart = self.get_shopping_cart()
 site = Site.objects.get_current()
 params = dict(self.default_aws_params)
 caller_reference = self.create_reference()
 callback_path = reverse('amazon_callback',
 kwargs={'reference': callerReference})
 callback_url = 'http://%s%s' % (site.domain, callback_path)
 params.update({'callerKey': self.aws_access_key,
 'callerReference': caller_reference,
 'paymentReason': 'Purchase from %s' %
 site.name,
 'returnURL': callback_url,
 'transactionAmount': cart.total()})
 signature = self.make_signature(params)
 params.update({'signature': signature,
 'signatureMethod': 'HmacSHA256',
 'signatureVersion': '2'})
 urlstring = urllib.urlencode(params)
 aws_request = '%s?%s' % (self.endpoint, urlstring)
 self.extra_context.update({'requestUrl': aws_request})

Chapter 4

[71]

We begin by retrieving the shopping cart for this request. We also need information
about our site, specifically about the domain we're running on. This information is
retrieved via a call to Django's sites framework as Site.objects.get_current().
With this information, we are able to construct the callback URL where we will have
Amazon return the customer after they've authorized payment. This is stored in the
callback_url variable.

Next we build the list of parameters to pass to Amazon FPS. This includes other
information such as our Amazon Web Services access key, a caller_reference
variable, a description of the purchase, and a total cost of the payment.

The caller_reference variable is simply a reference number for the order
associated with this purchase. We can use this reference number to look up the
corresponding Order object from our database. Notice how this avoids passing
any information about the products the customer has ordered. Instead we pass this
reference to our Order object, which contains all of the products in the order. Our
callback URL can use this reference number to obtain the correct order and associate
it with the returned Amazon token.

Once we've constructed this basic set of parameters, we need to generate a base-64
encoded digital signature, very similar to the signature we generated for Google
Checkout. After computing this signature, we add it to the FPS parameters and
urlencode the whole set of data. We now have full FPS URI and we add it to the
view context so that our template can render the appropriate HTML form (the Pay
with Amazon button).

One final note regarding the caller_reference parameter. In our simple design, we
will use the primary key of the Order object for this request. This gives us a simple
way to look up the Order on the callback. Other applications may have different
requirements, depending on how you store order data. As a result, we've broken the
retrieval of this reference number into a create_reference method. In our case it's
very simple:

def create_reference(self):
 if self.order:
 return self.order.id
 raise AttributeError("No order exists for this view.")

It just returns the ID of the Order object in the view. If our needs changed later, we
would only need to update this method to return the appropriate value. Remember,
though, that we must be able to use this reference number to find our customer's
order in the callback routine. The simplest approach is to use the primary key.

Building Payment Processors

[72]

The Amazon Callback view
Now that we can generate a checkout button that contains the necessary information
and send the customer to Amazon to authorize payment, we next need to implement
the callback view. When we defined the callback_path in our convert_shopping_
cart method, we included the reference number directly on the URL. The URL
pattern was designed this way for simplicity, but the reference number could
also be retrieved from GET parameters. Our URL pattern looks like this:

url(r'^amazon/(?P<reference>\d+)/$', 'amazon_callback',
 name='amazon_callback'))

The view code is implemented as a regular Django functional view, not a class-based
view. The reuse potential of this view is low, so for simplicity a standard Django
view seems appropriate. The view expects one argument, the reference value,
from the URL. Inside the view, we look up the information Amazon has added
to the request as HTTP GET parameters. These parameters include copies of the
parameters we constructed in our convert_shopping_cart method. This is useful
for debugging.

Two new values are also present in these parameters, both of which Amazon has
generated. These are tokenId and status. The tokenId is the key piece, which
we will save with our Order object so that we can charge the customer. Without a
tokenId, we cannot get Amazon to send us payment, so it's a very important piece
of data. The status simply reflects the status of the authorization request, whether
it was denied or not. We will save this value as well. The full view code for this
function is as shown:

def amazon_callback(request, reference,
 template_name='payments/amazon_complete.html'):
 order = get_order_by_reference(reference)
 token = request.GET.get('tokenId')
 status = request.GET.get('status')

 # save the Amazon FPS token for this order to the database
 save_amazon_transaction(order, token, status)
 return render_to_response(template_name, {},
 context_instance=RequestContext(request))

Chapter 4

[73]

There are two helper methods, get_order_by_reference and save_amazon_
transaction. The code for these functions is as follows:

def get_order_by_reference(reference):
 return Order.objects.get(id=reference)

def save_amazon_transaction(order, token, status):
 try:
 transaction = AmazonTransacion.objects.get(order=order)
 except AmazonTransaction.DoesNotExist:
 transaction = AmazonTransaction.objects.create(order=order)
 transaction.token = token
 transaction.status = status
 transaction.save()

These are simply using Django's ORM to retrieve and store the information we
need. Breaking the view up with these helper functions simplifies the view code
and improves readability.

Finally, the view renders a template whose default name is payments/amazon_
complete.html. This is where we thank the customer for their order and encourage
them to continue browsing. At this point we've successfully taken their order,
recorded it in the database, and authorized the payment. The next step is to fulfill the
order and actually charge the customer. We will discuss this "order pipeline" in the
next chapter.

PayPal and other payment processors
The Web has a full ecosystem of payment processing services. We have detailed the
use of two of the major players: Google Checkout and Amazon Flexible Payment
Services. These two companies provide excellent solutions for payment processing.
The primary benefit of building your application for these services is that they are
extremely developer friendly. Libraries are available in many languages and their
documentation is complete and well tested.

Most payment processors follow a similar design as the two we've discussed.
One of the oldest services on the web, PayPal, offers a variety of payment
services-everything from "Buy Now" style buttons to shopping cart integration.

Building Payment Processors

[74]

We will not implement a PayPal payment processor here, but will discuss the
general approach to building one. Unfortunately, the PayPal payment APIs are not
particularly friendly for Python developers. They have not yet published official
Python tools, though they do offer implementations for PHP, Java, Ruby, ASP,
and ColdFusion. Some attempts to implement PayPal APIs as community Python
projects do exist, but their success has been limited.

One of the difficulties with PayPal is that they offer so many different services and
APIs that it's difficult to evaluate the right one for your e-commerce application.
Further complicating matters, some of PayPal's more advanced tools require
merchants to pay monthly service fees in addition to standard per transaction costs.

The PayPal service that is most similar to the payment processors we've built in
this chapter is called Express Checkout. It works by the same pattern we've
seen before: show the user their shopping cart with a checkout button, authorize
payment at PayPal's site using a PayPal account, and return to our application for
a confirmation page.

Instead of submitting a form directly to the payment processor, PayPal's Express
Checkout service requires you to process a form in a back-end view. This view
makes a call to PayPal's API and sends an HTTP Redirect to the customer's browser.
The PayPal API call obtains a token, which you add to the redirection URL when
you return the redirect response. This token is used to identify the order throughout
the payment process, similar to Amazon's FPS, and it will be included when PayPal
redirects to your site taking the user's payment.

When the customer returns to our application, we can make another call to the
PayPal API with the returned token to obtain details about how the checkout went.
We can then create or update our Order object or other Django models as needed.

Other PayPal services follow totally different patterns. PayPal offers advanced
functionality, such as processing the entire payment through your web application.
This method means the customer never leaves your site and makes you responsible
for managing their data. Some organizations may prefer this approach, but it does
present unique complications and potential for security disasters.

If we were to implement the entire payment processing directly on our site, we need
to ensure that we handle all requests via HTTPS with an SSL certificate and that our
web servers are tightly secured. An unsecure web server could open the potential for
security risks because all of the processing is handled by our server. Even though we
do not need to store credit card information or other payment details, there is always
potential for our processing to be snooped or otherwise intercepted.

Chapter 4

[75]

For small to medium sized organizations, the traditional objective is to look
professional in the way they handle payments. Some may find that an offsite
payment service such as Google Checkout, FPS, or PayPal Express Checkout appears
amateurish. This is an unfortunate viewpoint, however, because using such services
mitigates a substantial amount of risk from online payments. It also simplifies the
design, development, and maintenance of payment solutions, which saves both
time and money.

Summary
This chapter focused on extending our payment system from a simple set of views
to a rudimentary payment framework that can be reused and extended as needed.
Topics discussed include:

Support for a full shopping cart experience on both Google Checkout and
Amazon's Flexible Payment Services
Extended our Google Checkout processor to use both XML and HTML APIs
Use of class-based generic views in Django apps
Discussed the implementation of PayPal
Reviewed security issues related to on-site payment processing

In the next chapter we will begin to tie the various components we've built thus
far into a user-friendly backend. We call this an "order pipeline" and the goal
of it is to simplify the handling of orders, interacting with the customer, and
arranging shipments.

•

•

•

•

•

From Payment to Porch:
An Order Pipeline

So far we've built a variety of useful e-commerce tools. These include a product catalog,
a customer information model, an order and shopping cart interface, and payment
processors. These apps cover the customer interaction portion of the e-commerce
selling process. In this chapter we will build a simple set of tools for handling the
steps that come after we've received a customer's payment. This includes:

Updating/assigning status information to our orders
Using Google Checkout API's automatic payments system
Calculating shipping and handling charges
A simple CRM tool to allow customer feedback on orders

The process that happens after an order is completely submitted and paid for by the
customer tends to be very specific to a company and the products they're selling.
However, the outline above reflects typical areas of need in almost all e-commerce
operations. As in the rest of this book, we will build a very simple set of tools with
emphasis on highlighting particular Django techniques that can simplify or enhance
the development process.

Adding status information to orders
When we built the Order model in Chapter 3, Handling Customers and Their Orders,
we included a field and related model to manage the status of particular orders. This
status was designed to be simple and lightweight, but capable of describing a variety
of circumstances. Some simple example status messages could be:

Awaiting Payment
Payment Received
Shipped
Closed

•
•
•
•

•
•
•
•

From Payment to Porch: An Order Pipeline

[78]

When we initially constructed the simple checkout view in Chapter 3, we did not
integrate our Order model. This was added in the last chapter as part of our more
general purpose checkout and payment processors. We wrote the following method
into our payment processor base class:

def save_order(self):
 cart = self.get_shopping_cart()
 self.order = make_order_from_cart(order, customer=self.request.
 user)

Here we convert the customer's shopping cart into an Order object. This happens
prior to completing the checkout process with the payments provider (Google
Checkout or Amazon). As a result, we will inevitably accumulate Order objects for
shopping carts that have been abandoned. This happens when the customer adds
items to their carts, proceeds to our checkout page, but does not take the final step
to checkout with the payment processor.

The make_order_from_cart function was a module-level function added to our cart
module. It is listed below along with the helper function get_status_code:

def make_order_from_cart(cart, customer=None):
 '''
 Takes a shopping cart object and generates a new order object
 for the provided customer. If no customer is provided, an
 "anonymous" order is created.
 '''
 order = Order.objects.create(customer=customer,
 status_code=get_status_code('NEW')) for item in cart:
 total_price = item.product.get_price() * item.quantity
 ordered_item = ProductInOrder(order=order,
 product=item.product,
 unit_price=item.product.get_price(),
 total_price=total_price,
 quantity=item.quantity)
 ordered_item.save()
 return order

def get_status_code(name):
 code, created = StatusCode.objects.get_or_create(short_name=name)
 return code

These two functions create a new Order object from our shopping cart class and, if
necessary, constructs a new StatusCode object to represent the status of the order.
In the case of make_order_from_cart we created a StatusCode with the short
description of 'NEW'. The NEW status code is designed to mark orders that have just
come in and have not yet completed the payment portion of the checkout process.

Chapter 5

[79]

Some system of clean-up would be necessary, either a simple cron job that runs
periodically or a clean-up/delete script that could be run manually, to delete Orders
whose status is 'NEW' but that have been abandoned. Abandoned orders could be
defined as those with a 'NEW' status created more than two weeks ago. You would
have a query like the following:

>>> twoweeks = datetime.today() - datetime.timedelta(days=14)
>>> old_orders = Order.objects.filter(status_code__short_name='NEW',
 date_placed__lte=twoweeks).
 delete()

Using the system we've built in this book, it is very safe to delete NEWOrders after
even a short period of time because every time a customer proceeded to checkout we
would create a unique, new Order. This was a design decision to simplify the order
taking process and prevent the need for cookies or sessions to manage a customer's
order and shopping cart combination. Instead of attempting to update the same
Order object when a customer makes changes, we simply create a new one.

This is the entry point for all orders in our system. When a customer does not
abandon their order and proceeds to the payment service to enter their payment
information, two things should happen. First, the payment service will notify us,
the e-commerce vendor, which payment succeeded. This notification must include
our systems unique Orderid, which we can provide as extra information that will
be returned to us when we render the checkout request for the customer. Second,
upon receipt of notice from the payment service, we should locate the Order that
was paid for in our system and update its status. This will be a new status code of
our choosing to reflect the fact that payment has been received and the order should
enter our fulfillment process.

Depending on the payment service we're using, the notification of payment could
arrive in several ways. For example, Google Checkout by default sends an e-mail
notification to the administrative address we entered when we created our API
account. This shows the order details including the extra information we include,
like our own Orderid.

With this information, a manual solution for low-volume sites could be as simple as
logging into the Django admin, locating the Order, and updating its status. We can
automate this process, however; using Google Checkout's order processing interface
we can build a sophisticated, automatic integration with our Django system.

The order processing aspect of the Checkout API uses a secure SSL callback, which
is hosted on our e-commerce site. Google Checkout will notify this callback when
an order payment is completed. This requires an SSL certificate and secure Apache
installation; see the Apache documentation for more information on configuring this
for your site.

From Payment to Porch: An Order Pipeline

[80]

This SSL channel delivers order notifications to our system in a secure, timely
manner. We can respond, after charging an order, for example, through another set
of SSL-secured endpoints on the Checkout API side. This in effect performs all of the
operations that are available through the Checkout dashboard, but in a custom way
that is integrated with our Django project. The Amazon Flexible Payment Service
offers a similar callback approach, as do many other payment services.

Even relatively simple systems with low order volume could benefit from integrating
order processing. Despite the extra work involved in developing a Django interface
and configuring a secure web server, having all the order management happen
in a single tool may be a productivity boost to staff managing orders. The extra
work involved in implementation, however, could be significant and requires
a skilled developer.

SSL and security considerations
We've already briefly mentioned SSL, but we should stop and emphasize its
importance in securing e-commerce applications. Secure Sockets Layer (SSL)
is the standard approach to encrypting web communications. Google Checkout
requires the secure endpoints we discussed in the previous section because they
will be transmitting potentially sensitive order information. Without using SSL, this
information would be sent in clear text and could be intercepted or read by anyone
positioned between Google and our servers.

With the growing use of public wireless access points, mobile devices, and other
"un-trusted" connections to the Internet, securing communications between browser
and server has become essential. But similar risks are involved with server-to-server
communications and these connections also require protection. Fortunately, SSL is
capable of handling both.

A certificate is required to implement SSL on your server. This certificate must be
purchased and issued from a trusted authority. There are numerous companies selling
these authenticated certificates on the Web; prices and packages vary widely amongst
vendors. A purchased certificate will typically require renewal on an annual basis.

Once in possession of a certificate, implementation of a secure server in Apache
requires enabling mod_ssl and creating additional configuration sections that use
port 443 (instead of 80) and include the SSLEngine on directive. The certificate file
should be installed in a secure location (usually readable only by the root account)
and specified in the SSLCertificateFile and SSLCertificateKeyFile directives.

Chapter 5

[81]

After these changes, our Django application can be configured as normal within the
SSL configuration section. More sophisticated approaches exist to limit the secured
views to a subset of all our site's views. For example, we could write a WSGI script
that loads a special, secure settings file and points to a different ROOT_URLCONF that
contains only our secure URL patterns and views.

Order processing overview
The order processing system begins immediately after a customer has placed their
order. As mentioned, this is dependent on the payment processing service, but in
the Google Checkout world the next step is authorization. During this phase, Google
performs some anti-fraud checks on the customer's payment and then verifies that
the payment method is good for the complete amount of the order.

If the customer's payment passes these safety checks, Google changes the payment
status to Ready to Charge. This means the merchant can now log in to the Checkout
service and charge the order. By default, this is a manual process for the merchant
that requires logging into Google Checkout.

Once the merchant has charged the order, they must begin the fulfillment process,
which includes picking the product from their shelf or warehouse, preparing it for
shipping, packing, and sending. Once these steps are completed, the merchant can
log in to Google Checkout and change the payment status to Shipped. These manual
steps, charging and shipping, are what the order processing system seeks to automate,
or at the very least, integrate into the tools that run our e-commerce websites.

There are two Google Checkout APIs to help with this task: the Notification API
and the Order Processing API. The Notification service simply provides a means
for Google Checkout to notify your application when new orders arrive, pass risk
checks, or when the order is charged. This is a one-way API, your application cannot
communicate with Checkout, it only receives updates.

The Order Processing API is used to initiate actions with the Checkout service. These
actions include not only charging and shipping, but also refunds and cancellations.
You can also use this API to manage the status of individual items in an order. This
is useful for situations where items will be fulfilled or shipped separately. You can
also use this API to add shipping tracking numbers to orders or partial orders, and
allow your application to send messages to your buyers automatically.

These two APIs are very powerful and have myriad uses depending on the needs of
your business. Not all features of the API must be implemented, so solutions can be
tailored directly to the application needs.

From Payment to Porch: An Order Pipeline

[82]

Other payments services, such as Amazon FPS and PayPal, support a similar set of
tools. For simplicity, our discussion here will cover Google Checkout, but the basic
flow is similar to other vendors. The support for programmable APIs and callbacks
varies from vendor to vendor, so some features of the Checkout API may not be
available in FPS or vice-versa.

Notification API
There are two possible implementations of Google Checkout notifications. The
first, called simply the Notification API, is a push-based solution. A data pull-based
solution, called Notification History API, is also available. Developers can implement
either or both, depending on their needs, but for our examples we will stick with the
push-based Notification API.

To implement support for Notification API, we must only use Django views that are
secured using SSL. In addition, each request that comes into our application via a
secure view must be verified as an authenticated Google Checkout notification. This
is accomplished using HTTP Basic Authentication, wherein the Authorization header
includes a base64 encoded pairing of our Checkout Merchant ID and Merchant Key.

These ID and key values should remain secret, which is part of the necessity of using
SSL for Notification API communications. All notification requests should be verified
by our view. This is done by inspecting the authorization header, which we can do
using a decorator function. The decorator appears below:

def verify_googlecheckout(view_func):
 '''
 Decode the Authorization header for Google Checkout Notification
 API requests and verify that it matches MERCHANT_ID:MERCHANT_KEY
 when base64 decoded.
 '''
 def _verified_view_func(request, *args, **kwargs):
 merchant_key = getattr(settings, 'GOOGLE_MERCHANT_KEY', None)
 merchant_id = getattr(settings, 'GOOGLE_MERCHANT_ID', None)
 b64string = request.META.get('Authorization', None)
 If b64string:
 cleartext = base64.b64decode(b64string)
 auth_id, auth_key = cleartext.split(":")
 if auth_id != merchant_id or auth_key != merchant_key:
 raise Http404
 return view_func(request, *args, **kwargs)
 else:
 raise Http404
 return _verified_view_func(request, *args, **kwargs)

Chapter 5

[83]

The Notification API is configured in the Google Checkout Merchant Center by editing
the Integration settings and entering an API callback URL. This is the primary URL
where Notification information will be sent to us from Google Checkout.

When our view receives a notification it is sent using HTTP POST and the message
is stored as XML in the request body. The contents of the POST are not the usual
key-value combinations we're used to working with in Django views. As a result, the
request.POST QueryDict in our view will not be usable for our purposes. Instead
we will need to access the raw POST data. This is done through the raw_post_data
attribute on the request object. This should contain a valid XML document that
represents the Notification API message.

There are four kinds of notifications: new orders, risk information, order state
change, and amount notifications. The usefulness of each of these is dependent on
the application. For example, an e-commerce site that needs to handle lots of refunds
and cancellations will be certain to implement support for amount notifications
because they cover that type of information.

Our example in this chapter will use the new order notification data to update the
order status in our Django model. We will ignore the other notification types, but the
implementation for each of them will follow the same pattern. The specific actions
required, however, are determined by the application or business need.

When a new order notification arrives, it includes several key pieces of information.
This includes the shopping cart element, as it appeared in our Checkout XML
submissions generated by the payment processors in Chapters 3 and Chapter 4,
Building Payment Processors. It also includes: the buyer's billing and shipping address,
a buyer ID that is unique to Google Checkout, the order total, and order adjustment
information that corresponds to the shipping method and whether any coupons or
gift certificates were used.

For our purposes, the <shopping-cart> element is important here because we can
use it to locate the Order object in our Django application's database. When we built
the cart XML template in earlier chapters, we did not include the Order ID in our
local database. We should modify our shopping cart XML to include this information
in a special tag called <merchant-private-data>.

From Payment to Porch: An Order Pipeline

[84]

The <merchant-private-data> tag can contain any information we choose. We
should structure this information as valid XML and choose a tag name that makes
sense for parsing later on. Here is an example tag to add to the shopping cart XML
for our payment processor:

<shopping-cart>
 ...
<merchant-private-data>
<django-order-id>{{ order.id }}</django-order-id>
</merchant-private-data>
</shopping-cart>

The <merchant-private-data> tag must be added as a subtag to the shopping cart
in our XML file. It should contain private data for the order as a whole.

We could add merchant data to the shopping cart XML for specific items. This could
tie the items a customer is ordering to Product model IDs in our Django database.
The tag to use for this is <merchant-private-item-data> and it must be added as
a subtag to a specific <item> tag in the shopping cart XML. This is not necessary for
our example here, but it would look something like this:

<item>
 ...
<merchant-private-item-data>
<django-product-id>{{ product.id }}</django-product-id>
</merchant-private-item-data>
</item>

With this modification to our payment processor, we gain the ability to tie new order
notifications to specific Order objects in our system. Let's examine the code that
makes this possible. We'll start with the notification callback view:

@verify_googlecheckout
def notification_callback(request):
 '''
 A simple endpoint for Google Checkout's Notification API. This
 handles New Order notifications and ignores all other information.
 '''
 if request.method is not 'POST':
 raise Http404
 dom = parseString(request.raw_post_data)
 notify_type = get_notification_type(dom)
 if notify_type is 'new-order-notification':
 order_id = get_order_id(dom)
 order = Order.objects.get(id=order_id)
 set_status_code(order, 'NEW_CHKOUT')
 return HttpResponse('OK')
 raise Http404

Chapter 5

[85]

Despite the short length of this snippet, there is a lot going on. First, we've wrapped
the view in our verification decorator to make sure we have authentic Notification
API requests. Next, we use the raw_post_data attribute on the HttpRequest object
as input to an XML parser. This is using the parseString function from Python's
xml.dom.minidom package. Finally, if this is a new order notification, we process
it using a series of additional helper functions.

When we use parseString, we get a Python DOM object. This has a variety of
methods for traversing the XML DOM tree. In our case, we'll stick to some very
simple techniques. First, to determine the notification type, we simply look at the
tag name for the whole XML document we receive. A New Order notification XML
will look something like this:

<?xml version="1.0" encoding="UTF-8"?>

<new-order-notification xmlns="http://checkout.google.com/schema/2"
serial-number="85f54628-538a-44fc-8605-ae62364f6c71">
<shopping-cart>
 ...
</shopping-cart>
</new-order-notification>

Whereas a risk information notification XML would look like this:

<?xml version="1.0" encoding="UTF-8"?>

<risk-information-notification xmlns="http://checkout.google.com/
schema/2"
serial-number="0b95f758-0332-45d5-aced-5da64c8fc5b9">
<risk-information>
 ...
</risk-information>
</risk-information-notification>

So by examining the root XML tag, we can determine the type of request. This
is handled by a helper function that simply extracts the tagName of the root
document element:

def get_notification_type(xmldoc):
 return xmldoc.documentElement.tagName

From Payment to Porch: An Order Pipeline

[86]

We traverse the DOM in a similar fashion to obtain the order ID information from
our merchant-private-data tag.

def get_private_data(xmldoc, private_data_tag='merchant-private-
 data'):
 docEl = xmldoc.documentElement
 return docEl.getElementsByTagName(private_data_tag)[0]

def get_order_id(xmldoc, order_tag='django-order-id'):
 private_data = get_private_data(xmldoc)
 order_id = private_data.getElementsByTagName(order_tag)[0]
 return order_id.nodeValue

The full set of DOM traversal methods are described in the Python xml.dom
module documentation.

Once we obtain the order ID, we simply look it up in our Order model and change
its status. You can use whatever status you like here, but the goal is to indicate that
the order has been submitted and payment information was entered in the Checkout
API system. Checkout is still working on verification for the payment at this point,
so we do not want to go any further than this.

At some point the Notification API will let us know that the order payment has
passed fraud and verification checks. This means the order is chargeable. We can
handle these types of notifications as well by adding conditional clauses to our
notification view. The full set of Notification API messages is documented at the
following URL:

http://code.google.com/apis/checkout/developer/Google_Checkout_XML_
API_Notification_API.html.

Order Processing API
Unlike the Notification API, Checkout's Order Processing API is not initiated by
requests from the Checkout system. Instead it is available as a method of updating
Checkout order information by making secure HTTP calls to the Checkout servers.
It allows your application to issue three types of commands: financial, fulfillment,
and archiving.

Financial commands are those that modify an order's financial status. This includes
things such as charging an order, refunding all or part of an order, cancelling an
order, and reauthorizing a customer's credit card (in cases where it failed initially).

Chapter 5

[87]

Fulfillment commands include information about an order's fulfillment state,
particularly with regard to shipping status. It can also include problems such
as backorders and returned items.

Archiving commands are simply housekeeping tools to manage the list of orders
displayed in the Google Checkout Merchant Center. This is useful for removing old
orders that no longer need your attention. It can also unarchive orders that were
previously complete, but now need to be reopened to make changes (for example
when an item is returned).

All Order Processing API requests must be sent over SSL connections and use
HTTP Basic authentication. The endpoints for Order Processing requests are
documented in the Checkout API, but as of this writing they exist at the following
URLs (for sandbox and live data, respectively):

https://sandbox.google.com/checkout/api/checkout/v2/request/Merchant/
MERCH_ID.

https://checkout.google.com/api/checkout/v2/request/Merchant/MERCH_ID.

The messages you send to these endpoints are represented as XML documents in
the format appropriate to the specific command you want to issue. The schemas for
these XML documents are well documented and include many customizable tags.
It is convenient to use Django's template system to define XML templates for the
commands you wish to implement. A full implementation of all the possible Order
Processing commands is a very significant undertaking. Here we will demonstrate
just the basics of how to get started.

First, it is necessary to discuss how we will make these API calls using SSL and Basic
authentication. Python's urllib2 module provides convenient tools to accomplish
this task. However, the Order Processing API requires the use of a client-side SSL
certificate to secure the API transaction. For this purpose we'll need to build a special
urllib2 handler. There are various ways to achieve this, but the easiest is to subclass
the default urllib2HTTPSHandler. An example of this approach is demonstrated on
the Three Pillars Software blog at http://www.threepillarsoftware.com/soap_
client_auth.

You will use the same SSL certificate for these requests that your secure web server
uses to secure incoming connections. Securing your e-commerce application is a
subject worthy of a book in itself, and it is highly recommended that you research
this subject if you're planning to build a Checkout integration to this depth.

From Payment to Porch: An Order Pipeline

[88]

Using a custom handler we can create a URL opener like so:

>>> mykey = '/path/to/ssl_key_file'
>>> mycert = '/path/to/ssl_cert_file'
>>> opener = urllib2.build_opener(HTTPSClientAuthHandler(mykey,
 mycert))
>>> opener.add_handler(urllib2.HTTPBasicAuthHandler())
add our HTTP Basic Authentication information...
>>> opener.add_password(user=settings.GOOGLE_MERCHANT_ID,
 passwd=settings.GOOGLE_MERCHANT_KEY)

We can use this opener to send our requests to the Order Processing API. This would
generally work by rendering an XML template specific to the command we want to
issue, including context data pertaining to the order we want to modify, and then
opening a request using our opener object.

T and C are Django Template and Context objects
>>> xml_cmd_document = T.render(C)
>>> api_endpoint_url = \ 'https://checkout.google.com/api/checkout/v2/
request/Merchant/ID'
>>> response = opener.open(api_endpoint_url, xml_cmd_document)

As you can see, integrating your e-commerce application to this level with Google
Checkout (or any payment system) is a very complex endeavor. It requires
knowledge of secure HTTP transactions as well as the Order Processing API and
XML. Google provides ample documentation for the entire process in their online
documentation. If interested, we recommend starting with the XML API Developer's
Guide for checkout processing:

http://code.google.com/apis/checkout/developer/Google_Checkout_XML_
API_Processing.html.

One potential implementation strategy for these APIs is to use the web-based Merchant
Center for charging and shipping orders, but implement a notification callback so
that your application becomes aware of the order status as it moves through the
fulfillment process. This way your web application can update the customer as to the
status of their order, without any additional work on your part. Your e-commerce
tools will know the status of any order because of the Notification API. This avoids the
complexity involved in integrating charging and shipping features directly into your
application, but still allows you to empower your customers.

Chapter 5

[89]

Calculating shipping charges
Handling shipping and its related charges is one of the most difficult aspects of
an e-commerce platform. In many countries there are a wide variety of shipping
companies, each with their own list of services and fees. The issue is further
complicated by the fact that shipping costs must be computed before accepting
payment from a payment service.

If you ship only a few products with very similar characteristics, it can be relatively
easy to manage. You'll often know exactly how much to charge for shipping and
can hardcode those values into your payment processor (in the Checkout shopping
cart XML, for example). Often this is unfeasible, though, because you sell so many
products in such different sizes and packaging.

There are no one-size-fits-all solutions to these problems, but tools such as Django
and Python can simplify your life if you struggle with generating accurate shipping
charges. The large shipping companies such as FedEx, DHL, UPS, and even the
United States Postal Service, now offer web services APIs to perform shipping
calculations. We'll discuss each of these services briefly, and then demonstrate
another option for shipping calculations, which is builtin to Google Checkout.

Notably, the United States Postal Service offers some of the most useful and
sophisticated web-based APIs. Not only can you calculate shipping charges, but you
can standardize and verify addresses, look up ZIP codes, and even schedule carrier
pickups. All of these services are free and use a very simple XML API, similar to the
Checkout APIs we discussed earlier. The services are well documented and easily
accessed by developers. It's clear that the USPS has tried to build a very web-friendly
toolset. The only downside is that it isn't useful for international developers.

FedEx has implemented a set of web services using the Simple Object Access
Protocol (SOAP) and Web Service Definition Language (WSDL) standards.
Their documentation is good and they provide code samples in several languages.
However, you will be required to sign-up for a developer account before accessing
many of the resources. There is also an excellent third-party Python library called
python-fedex that is a light wrapper around the FedEx tools. It supports shipment
creation, cancellations, and tracking by tracking number. It is available on Google
Code: http://code.google.com/p/python-fedex/.

UPS offers a similar set of services as the previous two, but there is a significant
amount of work to get a developer key and browse the documentation. Their API
can do typical activities such as package tracking, rate and service calculations,
address validation, and so on. In my experience, however, the UPS tools are not the
easiest to use. This includes using their website, which can be a daunting experience
for new, non-technical users attempting their first shipment.

From Payment to Porch: An Order Pipeline

[90]

Integrating any of these API services into our e-commerce Django application could
follow several patterns. One method is to attempt to retrieve shipping calculations
from our checkout view. This is an acceptable solution for many applications, though
you are relying on the shipper's web service to return relatively quickly, otherwise
the rendering time on your checkout view will be extended (this can be mitigated
somewhat with a short timeout and default values). Another alternative is to use
AJAX to retrieve shipping values from the appropriate web service, and dynamically
update the HTML checkout form.

Tracking information is decidedly easier. In the simplest case, we could attach a
tracking field to our Order model. This would have to be populated manually, unless
we went the full step of integrating our label making/shipment printing tool with
our web service. This would be possible using FedEx or UPS, but is a particularly
advanced feature that may require significant development time.

The main alternative to a custom implementation of shipping services is to let your
payment processor handle it. Google Checkout does this very effectively. When
we created our shopping cart XML in earlier chapters, we created as simple a
document as possible. There are many additional features, however, one of which
is carrier-calculated shipping.

The carrier-calculated shipping service in the Checkout API allows you to specify
one or more shipping carriers that the customer can choose from. The checkout
process queries the carrier's appropriate API automatically and retrieves shipping
information. For this to work, however, it is required that you provide a weight for
each item. This could be done using the ProductDetail and ProductAttribute
models we built in Chapter 2.

This feature currently supports UPS, FedEx, and USPS only. There are several
optional features, including adding fixed handling charges or automatically
increasing/decreasing shipping calculations by a certain percentage.

To implement carrier-calculated shipping, we must add several tags to our shopping
cart XML file from previous chapters. The most important thing is that each <item>
block must now contain an <item-weight> tag whose attributes specify the item's
actual weight. The following XML fragment adds a weight of 5.5 pounds to the
listed item:

<item>
<item-name>Fresh Cranberries</item-name>
 ...
<item-weight unit="LB" value="5.5"/>
</item>

Chapter 5

[91]

After adding weights to all our ordered items, we can create the carrier-calculated
shipping rules. These are added to the <checkout-flow-support> tag of our XML
document and look like the following:

<checkout-flow-support>
<merchant-checkout-flow-support>
<shipping-methods>
<carrier-calculated-shipping>
<carrier-calculated-shipping-options>
<carrier-calculated-shipping-option>
<price currency="USD">10.00</price>
<shipping-company>FedEx</shipping-company>
<carrier-pickup>REGULAR_PICKUP</carrier-pickup>
<shipping-type>Priority Overnight</shipping-type>
</carrier-calculated-shipping-option>
</carrier-calculated-shipping-options>

<shipping-packages>
<shipping-package>
<height unit="IN" value="6"/>
<length unit="IN" value="24"/>
<width unit="IN" value="15"/>
<ship-from id="BOS">
<city>Boston</city>
<region>MA</region>
<country-code>US</country-code>
<postal-code>02110</postal-code>
</ship-from>
</shipping-package>
</shipping-packages>
</carrier-calculated-shipping>
</shipping-methods>
 ...
</checkout-flow-support>

Note that the <price> tag in the <carrier-calculated-shipping-options>
section is the default price for shipping using this method. This is required for cases
where Google Checkout is unable to reach the shipper's web service or when another
technical error prevents automatic calculation.

The <carrier-calculated-shipping> is composed of two parts: the shipping
options and the shipping packages. The former is where you can define each vendor
(FedEx, UPS, or USPS), their service and their pickup option. The shipping packages
section is where you define the package size (optional) and the location you will be
shipping from. These details are used by Google Checkout's system to present the
customer with a total for shipping charges when they enter payment.

From Payment to Porch: An Order Pipeline

[92]

Checkout API also supports flat-rate shipping, which you can combine with the
carrier-calculated results to provide customers with even more choices. This is done
using a <flat-rate-shipping> tag added to the <shipping-methods> section of
the checkout flow support. An example follows:

<flat-rate-shipping name="USPS Priority Mail>
<price currency="USD">4.00</price>
</flat-rate-shipping>
<flat-rate-shipping name="Free Shipping>
<price currency="USD">0.00</price>
</flat-rate-shipping>

You can learn more about carrier-calculated shipping at the following
documentation URL:

http://code.google.com/apis/checkout/developer/Google_Checkout_XML_
API_Carrier_Calculated_Shipping.html.

A simple CRM tool
Django makes it relatively easy to combine the information gathered from the order
and shipment process into a simple Customer Relationship Management (CRM) tool.
We can simply wrap a generic view to display a list of the logged-in user's orders.

@login_required
def order_list(request, *args, **kwargs):
 queryset = Order.objects.filter(customer=request.user)
 return list_detail.object_list(request, queryset, *args, **kwargs)

This uses the standard Django object_list generic view we've seen from earlier
chapters. A detail view on a specific Order object is equally as simple. We will wrap
the list_detail.object_detail generic view to ensure that only the current user's
Orders can be inspected:

@login_required
def order_detail(request, *args, **kwargs):
 queryset = Order.objects.filter(customer=request.user)
 return list_detail.object_detail(request, queryset, *args,
 **kwargs)

At first glance these wrapper views seem superfluous, but they are necessary to
ensure that the user who is logged-in can see only their own orders and no others.
The Django generic view framework makes this easy, of course, by allowing us to
pass the same filtered queryset in both instances. This requires wrapping in our own
view code and cannot be defined in the URL pattern, because the request object is
unavailable. We must have access to request to obtain the logged-in user.

Chapter 5

[93]

With the list and detail views in place, we can write simple templates, as we did for
our Product catalog. Because only site administrators and the customer can access
the details for their order, we could use Django's comments framework, again, to
implement a very simple customer feedback feature. Customer feedback is a primary
concern of CRM tools.

The comments framework may lack a complete set of functionality for serious CRM
applications, but it provides a simple, reasonably secure channel of feedback on a
per-order basis. It could also be easily extended or a substitute could be put in place
using the same "pluggable app" design that Django's comments exemplifies.

Other payment services
This chapter has focused on Google Checkout as a payment service provider, but
numerous other providers exist. Amazon offers a Checkout service as well as a
Flexible Payments Service. We will detail the FPS technology later, in the chapter
on selling digital goods.

The Amazon Checkout service functions very similarly to Google Checkout. For
example, constructing a shopping cart and submitting it to the Amazon Checkout
service involves creating an XML document, rendering it with our shopping cart
content information, signing, and submitting it to the appropriate HTTP POST URL.
The views and utility functions written in this chapter could easily be adapted for
Amazon's service. In some cases the only difference will be in the format and tags
used for the XML file.

PayPal is another popular payment vendor. Their payment workflow tends to be
different than Google or Amazon, but this depends entirely on the API you are
writing against. As of this writing, PayPal offers a dozen or so payment APIs,
each with different objectives or target applications.

The most similar PayPal API to what we've discussed in this chapter is their Express
Checkout. The simplest integration with this API does not involve transmitting the
shopping cart contents. An order details feature is available for use with Express
Checkout that provides a similar user experience to the checkout tools we've already
discussed. However, PayPal APIs do not rely on an XML document for transmission
of this information; they instead use a Name-Value Pair (NVP) interface. These are
just encoded HTTP GET parameters added to special endpoint URLs. Alternatively,
PayPal also offers a SOAP interface.

From Payment to Porch: An Order Pipeline

[94]

Summary
This chapter has explored some advanced e-commerce features related to pipe-lining
the order, payment, and shipping process. This sort of integration is traditionally
very complex and expensive. Prior to web frameworks like Django it would often
involve a team of developers and numerous home-grown modules and tools. Using
a modern web framework combined with innovative third-party APIs provided
by Google Checkout and shipping companies, it now becomes feasible for a small
development team to implement on a reasonable schedule. These features include:

Tracking an order's status as it moves through our system
Retrieving information from the payment processor to automatically update
order information
Shipping services APIs for calculating delivery costs
Integrating carrier-calculated shipping costs with our Google Checkout
shopping cart
A simple pair of views for receiving customer feedback

These are relatively advanced features that may not be necessary for all e-commerce
sites. However, for medium-to-large sized organizations that struggle to find an
off-the-shelf e-commerce solution that fits their needs, this sort of integration is easily
within reach and could be customized for any industry or product. This is part of
what makes Django and other frameworks exciting, if unexplored, territory for
e-commerce businesses.

•

•

•

•

•

Searching the
Product Catalog

Search is an extremely powerful and important addition to any e-commerce website.
A lousy search engine means the customer will not find what they want, will not
make a purchase, and will probably go someplace else. Far too many websites fail
to provide their users with an adequate search engine. It's not clear, exactly, why
this has been so, but it could be partly due to the difficulty of implementing
search technology.

Not only is Django easy to integrate with open source search engine software, but
there are dozens of community projects that add sophisticated search functionality
to any Django app with a minimum of effort. This chapter will explore Django and
search, including:

The naïve, but simple, search strategy
Simple MySQL-based index searches
An overview of open source search engine tools
Configuring the Sphinx, Whoosh, and Xapian engines
Using the Haystack Django search module

Stupidly simple search
By far the easiest search functionality in Django is to simply use the ORM filter
method and a contains clause. We'll call this the naïve approach to search, but it can
be useful for quick, relatively simple search needs or when we want to specifically
search an individual field for an exactly matching query term.

•

•

•

•

•

Searching the Product Catalog

[96]

The contains clause makes use of the SQL LIKE statement, which performs a
case-sensitive match against the table column. Django also supports the icontains
clause, which performs the same function but uses SQL's ILIKE statement to perform
case-insensitive matches.

A naive filter-based search can be performed like so:

>>> results = Product.objects.filter(name__icontains='cranberry
 sauce')

Note that the icontains lookup requires the search term to exactly match the
field contents. Thus in the previous example any Product object with a name field
containing just 'cranberry' or just 'sauce' will not be included in the results.
Only exact matches for 'cranberry sauce' are matched.

We can affect a more keyword-like approach by splitting our search term on
whitespace and passing it to a Django in clause:

>>> terms = 'cranberry sauce'.split()
>>> results = Product.objects.filter(name__in=terms)

Here the results QuerySet will include any Product object whose name exactly
matches on of the terms 'cranberry' or 'sauce'. Now we've created the opposite
problem, namely that a Product whose name field is 'cranberry sauce' (the
exact term used for searching) will not be found in the results QuerySet. There are
many similar hacks one could attempt, but they would only marginally increase
our results.

Even if these methods returned better results, they still lack any kind of ordering.
The order_by ORM method can be used to order on fields, but this is completely
disconnected from our search. There is no concept of relevance when using the ORM
filter method. This is as it should be because most of the time this functionality is
not desired. The ORM methods are designed to be quick methods of retrieving
database objects.

As you can see, Django's built-in ORM is not designed for the search problem.
They are of very limited use for the kinds of search functionality to which users
have grown accustomed in web applications, especially in the e-commerce space.
Amazon.com's extremely sophisticated search functionality is the standard many
users now expect.

To achieve better search results, we must move on to more sophisticated tools.
Django has very limited support for searching builtin to the framework, but in the
next section we will examine the primary method that is included. It's not fully
automated, however, and will require us to directly manipulate our database tables
to get up and running.

Chapter 6

[97]

MySQL simple index searches
If you are using the MySQL database system and MyISAM tables, a very simple
Django search interface exists automatically. This is a feature builtin to the Django
ORM layer that allows you to perform boolean full-text searches directly from a
filter() method call on any QuerySet.

The only caveat to this is that you must build a full text index on the columns you
want to search. This is a one-time step, but it's by far the easiest way to get search
up and running on your Django application.

The ORM search syntax looks like this:

>>> results = Product.objects.filter(name__search='+cranberry -sauce')

Note the use of + and - characters, which act as operators to explicitly define the
search criteria. This is a boolean search, which is very different from what you might
expect based on the use of major search engines such as Google or Bing. Boolean
search looks for the presence or absence of the terms provided in the simplest way
possible. If the term is prefixed with a + symbol, it is explicitly included, while
a - symbol excludes the term outright.

The order of the results of this sort of search is not sorted by relevance as you might
expect. In fact, when using this built-in ORM search method, the results do not
include any relevance score. This means it's not possible to use order_by() on
the results QuerySet to sort by relevance.

The above search query '+cranberry -sauce' will return a Product QuerySet for
objects whose name field contains the word cranberry, but does not contain the word
sauce. If we were to modify this query to be 'cranberry -sauce' the results would
be slightly different. This query means 'cranberry' is optional, so Product objects
with this term in their name will also be included in the results. Anything containing
the term 'sauce' will be excluded.

Under the hood, this search method is performing a MATCH() AGAINST() SQL
function. The above query search will translate to SQL that looks something like this:

SELECT ... WHERE MATCH(name) AGAINST (+cranberry -sauce IN BOOLEAN
MODE);

Searching the Product Catalog

[98]

This SQL is currently hard-coded into Django and cannot be changed. However,
you are free to write your own MATCH() AGAINST() routines and add them to your
Django managers. For example, the following Django ORM method call should
produce equivalent SQL as the above:

Product.objects.extra(where=Product.objects.extra(where=
 ['MATCH(name) AGAINST(+cranberry -sauce)IN BOOLEAN MODE'])

This could be extended to a manager method that adds the relevance score, like so:

def search(self, query):
 exp = 'MATCH(name) AGAINST(%%s IN BOOLEAN MODE)'
 return self.extra(where=[exp], params=[query],
 select={'relevance': exp})

In order to support any of these search methods, we first must create a full-text index
on our table's columns. In this case, the name column is the only one we're searching.
The index is created by issuing the following SQL statement directly to MySQL:

CREATE FULLTEXT INDEX name_idx ON products_product (name);

We only need to create the index once and MySQL will subsequently index new data
as rows are added to the products table.

Even with relevance scores added, boolean searches are very limited in their
usefulness. They often give good results when searching a single, short field. But
imagine the results of the boolean operation for fields with very large amounts of
text, such as a product description or blog post body. Boolean search tends to return
many false positives for text-rich data.

MySQL also supports natural language searching on columns with full-text indexes.
The syntax is very similar to boolean searching, but is not builtin to Django's ORM
syntax. But we can perform a natural language search by slightly modifying our
manage method from above:

def search(self, query):
 exp = 'MATCH(name) AGAINST(%%s IN NATURAL LANGUAGE MODE)'
 return self.extra(where=[exp], params=[query],
 select={'relevance': exp})

We can translate this to a more complete search manager class by adding a
constructor method that stores a list of fields to include in our full-text search:

class SearchManager(models.Manager):
 def __init__(self, fields):
 models.Manager.__init__(self)
 self.fields = fields

Chapter 6

[99]

 def search(self, query):
 meta = self.model._meta
 db_columns = ['%s.%s' % (meta.db_table,
 meta.get_field(name).column
 for name in self.fields]
 columns = ','.join(db_columns)

 exp = 'MATCH(%s) AGAINST (%%s IN NATURAL LANGUAGE MODE)' % \
 columns
 return self.extra(where=[exp], params=[query],
 select={'relevance': exp})

We can add this search manager to any of our models and specify what model
attribute fields we would like to perform the full-text search over. These fields all
need to have MySQL FULLTEXT indexes created and should generally store text data.

class Product(models.Model):
 ...

 search = SearchManager(['name', 'description'])

MySQL's built-in natural language search is an improvement over our boolean
mode search, but as far as search engine techniques goes, it's still relatively simple.
It doesn't support features such as word stemming or phrase searching. And as
mentioned earlier, full-text indexes in MySQL are only supported for MyISAM
database tables and only work for CHAR, VARCHAR, and TEXT column types.

Another limitation of both the MySQL natural language search and boolean mode
search is that it can only search on one model per search. More sophisticated search
solutions would allow us to search across many different model classes in one query.

In the next sections we will explore some open source search engine solutions and
how to integrate them with Django for more advanced functionality.

Search engines overview
There has been an explosion of search engine technology available in the open source
community in recent years. Many of these have grown out of various academic and
commercial projects and most are extremely high quality. We'll discuss a handful
of these tools in this section and go on to integrate two of them with Django later
in this chapter.

Searching the Product Catalog

[100]

Sphinx
The Sphinx full-text search engine is a free and open source search engine product
that has the added benefit of official, paid-support packages. It is available at
http://www.sphinxsearch.com/. Sphinx is written in C++ and is available for most
UNIX platforms, including Mac OS X. A Windows version is also available, but is
officially not recommended for production use. It is fast and has good relevance.

Sphinx includes a search daemon that can be run as a background process on
any system. Sphinx also includes API libraries for several popular programming
languages, including Python. Sphinx requires you to define your search indexes
using a configuration file. This file is read by the included indexer utility, which
produces the full-text indexes. This indexer must be run on a timely basis to update
the index for your database tables.

For use with Django, Sphinx is a good choice due to David Cramer's excellent
django-sphinx utility. This is a wrapper around the Sphinx API that allows Sphinx-
specified functionality to be attached to Django models. The django-sphinx utility
is available from: http://github.com/dcramer/django-sphinx.

Unlike some of the other Django community projects for search, the django-sphinx
application doesn't do any index definition or other search engine tweaking from
Django itself. The search engine and indexes are configured entirely via the Sphinx
configuration file. This is a matter of preference, as some of the other Django tools
allow you to define indexes directly in Python.

Solr
Solr is a search engine built on top of the Apache Lucene search library and it is
available at http://lucene.apache.org/solr/. Solr is written in Java and includes
many advanced features. It requires a Java Servlet Container within which to run.
This makes it a popular choice for enterprise applications where Java and Servlets
are very common. To run a standalone Solr server, you'll need a container like
Apache's Tomcat or the Jetty application server.

Solr support can be achieved in Django using the Haystack application, which we
will discuss later in this chapter. Additional Solr support is also available from the
django-solr-search project (also called solango). If you are already using Solr as
a search platform internally, these solutions make it easy to attach support to any
Django applications you may build. Django-solr is at: http://code.google.com/p/
django-solr-search/.

Chapter 6

[101]

One nice feature of the Django integration is that you can define the search
parameters for your Django models and have solango generate the necessary Solr
XML schemas automatically. Solango also supports more advanced Solr features
like faceting and highlighting.

Whoosh
Whoosh is a search engine written entirely in Python. As a result it requires no
compilation, making it relatively simple to install and maintain. It's an excellent
solution for Python projects that need to add search functionality and don't already
have a search engine in place. It features "fast indexing and retrieval" but the
performance is likely less than you would see on some of the other search engines
we've discussed, which are written in C++ or Java. Whoosh is available at:
http://whoosh.ca/.

Whoosh is a very compelling tool if you're interested in a pure-Python solution or
don't want to bother with the more complicated setups required with other tools.
It is relatively full-featured, and includes much of the advanced functionality you'll
find in Sphinx, Solr, or Xapian. We will work with Whoosh and Haystack in the
coming pages.

It should be noted that at the time of this writing, Whoosh is probably not a practical
choice for anything but very small-scale or testing situations. Besides potential
performance problems, Whoosh has several technical issues that have rendered
it unusable on many Django projects.

Xapian
The Xapian project is another open source, C++ search engine library. It is available
at http://xapian.org/. It has bindings for many languages, including Python. It
is a very powerful search engine and has an excellent community project for Django
called djapian, available at http://code.google.com/p/djapian/.

The Xapian search engine library is a little different than the other tools we've
covered. Unlike Solr or Sphinx, for example, there is no application to run under
Xapian, it is simply a library. Djapian does a nice job of wrapping this functionality
and storing the generated indexes in our Django database. It even includes Django
management commands to perform index builds and other operations from the
command line.

Searching the Product Catalog

[102]

Haystack
Haystack is an ambitious Django project created by Daniel Lindsley that exposes a
common interface to Django for a variety of pluggable search engine backends. These
include Whoosh, Solr, and Xapian. This is an excellent tool for getting up and running
quickly on any of these search platforms. The advantage of Haystack is that the
interface for index definition and search queries remains the same, regardless of the
engine being used on the backend. It is available at http://haystacksearch.org/.

Haystack also includes a lot of extra functionality, such as a set of predefined
URL patterns, views, and forms. Not to mention niceties like Django management
commands and template tags for "More like this" and term highlighting. Haystack
is very Django-specific, however, and it is not recommended as a general-purpose
search tool or in cases where heavy usage is expected.

Configuring the Sphinx search engine
The Sphinx full-text search engine was created by Andrew Aksyonoff and is
available from http://www.sphinxsearch.com. It is a standalone search engine,
meaning it is built and run as a background application and communication occurs
directly from client applications, like our Django site. Installing on Windows is
simply a matter of downloading and unzipping the pre-compiled binaries from the
Downloads section of the homepage and configuring it as a Windows service. Linux
and Mac OS X users will need to compile from source (see the Installation section of
the Documentation for details).

Sphinx can index data from a variety of sources. In our examples, we will connect
it to our Django database running on MySQL. It also supports the PostgreSQL
database and can even index text files, including HTML and XML documents.
For our purposes we will examine a simple MySQL configuration using our
Django database.

Sphinx includes two important tools: the search daemon (searchd) and an indexing
application (indexer). As Sphinx is a standalone application, the full-text indexes
used in searching must be generated by the indexer tool. The indexes are not stored
as part of your database, but as Sphinx-specific files. The location of these files, as
well as all other indexer parameters, is specified in a configuration file, usually
called sphinx.conf.

The sphinx.conf file is the heart of the search configuration. It generally specifies
two things: sources and indexes. Sources correspond to the database queries we will
build indexes against. Indexes include all the different parameters for indexing our
data, including morphology, stop words, minimum word lengths, and so on. We
will detail these settings shortly.

Chapter 6

[103]

Defining the data source
We begin by defining our data source. Using our Products model from earlier in
the book, we can define a source that includes the name and description fields for
our products. Django automatically generated tables for our models, but we need
to know which tables we want to tell Sphinx to index. The Django convention is to
use application and model names for our tables, but this can be overridden. If you
aren't sure what tables are used in your project you can always verify by running
django-admin.py sql all.

In our case, the Product table should be products_product. The Sphinx configuration
file has a very simple syntax. We start by defining a source and giving it a name. This
name will be used for reference when we define indexes later. Here is a complete
sources section for products_product:

source products_product
{
 type = mysql
 sql_host = localhost
 sql_user = root
 sql_pass = xxxxxx
 sql_db = coleman_book

 sql_query = SELECT id, name, slug, description FROM products_
 product
}

The usual database parameters are included at the top. The important part is the
sql_query statement. This is the query used to retrieve the data we want to index.
It should include all of the fields we plan to search as well as the primary key value.
Sphinx only supports primary keys that are positive integers, which is the default
for Django models.

This source defines the ID, name, slug, and description columns in the products_
product table as the source's data. You can write any SQL here that the database
backend will support. This means we could include a WHERE clause to filter the
source data arbitrarily. The results can also be filtered by application logic, however,
so most of the time it's better to index larger data sets and let our Django application
filter what it needs. For very large sets of data, however, it may be useful to segment
sources this way.

There can be as many source definitions in the sphinx.conf as are needed for a
project. These will generally differ based on the tables and fields that need indexing.
For example, we could define a simpler source that just included the name field for
an index that would exclusively search product names.

Searching the Product Catalog

[104]

When we define indexes, we can index as many different sources as needed and all
of the results will be combined into one large set. This is convenient, but complicated
by the fact that all primary key values must be unique across all sources. If this is
not true, searches will return unexpected results. This makes it difficult to combine
Django models, for instance, because they all typically define a similar set of primary
key values. To keep things simple, in our example usage, we will only index the
single source defined above.

Defining the indexes
Index definitions are very similar to source definitions. We start by naming the index
and then define its source and other properties, as below:

index products_product
{
 source = products_product
 path = /usr/local/sphinx/var/data/products_product
 morphology = stem_en
 stopwords = stopwords-en.txt
 min_word_len = 2
}

The index definition includes the source, defined earlier in the file, as well as a path
to the filesystem location where Sphinx will store this index. Sphinx uses special flat
index files to persist indexes. These are loaded from disk when the search daemon
begins and must be reloaded as new documents appear in the sources and the index
is updated. We will discuss more on updating indexes later in this section.

In addition to these mandatory statements, we have morphology, stop words, and
min_word_len parameters. These affect the construction of the index in complicated
but very useful ways. Unlike a simple MySQL FULLTEXT index, Sphinx supports
these advanced pre-processing functions.

The morphology parameter allows Sphinx to apply "morphology preprocessors".
This is a list of filters that uses natural language knowledge in attempt to generate
more accurate search results. The stem_en preprocessor is a Sphinx built-in that
applies an English language "stemmer." A stemmer normalizes words by indexing
their root, instead of longer variations. For example, the word 'cranberries' would be
indexed as 'cranberry' in an effort to provide accurate search results for either term.
The stemming function is applied to indexed data and search terms.

Chapter 6

[105]

The stopwords parameter specifies a text file that includes a list of "stop words."
These are words that will be ignored by the indexer and usually include very
common words in the indexed language. In our example, we're providing a list
of words in English, such as 'the' or 'and'. The stopwords parameter allows you
to specify multiple files separated by commas.

Finally, the min_word_len parameter instructs Sphinx not to index words shorter
than two characters. This is an optional parameter (as are morphology and
stopwords), but it is useful in tweaking the search results for some data sets.

There are numerous other indexer options, but these are some of the more powerful
ones. The Sphinx documentation provides a complete list with thorough descriptions
of their usages.

Building and testing our index
Now that we've defined our sources and indexes, we can build the first index of
our data. This is accomplished by running the indexer tool included in the Sphinx
package. This will generate the index files and store them in the location specified
in our index section's path statement.

Once indexes have been created, we can test our search results in the command line
using Sphinx's search tool:

$ search cranberry juice

Sphinx 0.9.8.1-release (r1533)

Copyright © 2001-2008, Andrew Aksyonoff

displaying matches:

1. document=9628, weight=2

id=9628

name=CranStore Cranberry Juice

slug=cranstore-cranberry-juice

description=A refreshing Cranberry cocktail

...

words:

1. cranberry: 3 documents, 11 hits

2. 'juice: 43 documents, 114 hits

Searching the Product Catalog

[106]

This is a simple way to test your Sphinx indexes and to debug search results. It can
be especially useful when trying to understand how Sphinx is using preprocessing
filters, such as word stemming, to alter your search results. This command line utility
is flexible and includes several flags for added power. For example, if you have
multiple indexes, you can specify which index to run a test search against with
the -i or --index parameter:

$ search—index products_product cranberry juice

When the configuration is to your liking, you can run the Sphinx search engine
background process by issuing the searchd command. Under a Windows
environment, this will usually happen automatically when you install Sphinx as a
service. Searchd can be added to your system's initialize scripts to automatically
execute when the system starts.

Searching Sphinx from Python
The Sphinx application includes a Python API interface that allows you to perform
searches and return results in Python programs. All of the API commands are
defined in the Sphinx documentation, but their specific usage within Python
can vary.

We will take a quick tour of the Sphinx Python API and then discuss how it can be
integrated into our Django models. First, a simple Python snippet that generates
the interface to a Sphinx server running on our local machine:

SERVER = 'localhost'
PORT = 5555
client = sphinxapi.SphinxClient()
client.setServer(SERVER, PORT)

Now we have a client object that exposes the API listed in the Sphinx documentation.
We can perform simple operations, like queries, using this client. To replicate the
command line we used in the previous section, we could issue the following
Python command:

results = client.Query('cranberry juice')

If we need to specify the index or indexes to use, we can pass them as a string
containing the index names separated by commas as shown:

results = client.Query('cranberry juice', 'products_product, products_
 other')

Chapter 6

[107]

The results variable can be accessed like a dictionary to retrieve information about
the search results:

total_hits = results['total']
matches = results['matches']

We can now access the columns for each of our results in the matches variable
to load the primary key values:

keys = [r['attrs']['id'] for r in matches]

We could go on from here by using these primary key values to find a QuerySet
in our Django model for this table. But this is quickly getting complicated and the
performance of doing it this way is not good. Fortunately, the Django community
includes an application for Sphinx that wraps all of this functionality into a simple
tool. It is called django-sphinx and was written by David Cramer.

Simplifying searching with django-sphinx
You can download the django-sphinx application from its repository on
GitHub by visiting the following URL and clicking on the Download button:
http://github.com/dcramer/django-sphinx/.

It is also available through the easy_install tool by issuing the following command:

$ sudo easy_install django-sphinx

Once installed, you can add the django-sphinx layer to any model and take
advantage of a very simple interface to search and retrieve Django model objects
from your database tables. The only requirement is to create the source and indexes
exactly as we did earlier and specify which index django-sphinx should search
when you attach it to your models.

For example, to use django-sphinx on our Product model from chapter 2, we would
change the model definition to include the SphinxSearch manager.

from djangosphinx.models import SphinxSearch

class Product(models.Model):
 category = models.ForeignKey('CatalogCategory',
 related_name='products')
 name = models.CharField(max_length=300)
 slug = models.SlugField(max_length=150)
 description = models.TextField()

Searching the Product Catalog

[108]

 photo = models.ImageField(upload_to='product_photo', blank=True)
 manufacturer = models.CharField(max_length=300, blank=True)
 price_in_dollars = models.DecimalField(max_digits=6, decimal_
 places=2)
 price_in_euros = models.DecimalField(max_digits=6, decimal_
 places=2)
 price_in_pounds = models.DecimalField(max_digits=6, decimal_
 places=2)
 search = SphinxSearch('products_product')

The index we want to use is specified as the first parameter when we attach the
manager object to our model. Multiple indexes are supported with the index
keyword argument:

SphinxSearch(index='products_product products_other')

Our Product model now has a custom manager that we can use to query the Sphinx
search engine and get back Django model objects for the corresponding results. This
is done using the query method on the SphinxSearch manager:

products = Product.search.query("cranberry juice")

We can filter the products QuerySet just like we would anywhere else in Django:

expensive_matches = products.filter(price_in_dollars__gte=100)

The django-sphinx layer also injects the Sphinx result weights, allowing you to order
the search results by their relevance weight:

products = Product.search.query('cranberry juice').order_by('@weight')

In the SphinxSearch manager definition on our Product model, django-sphinx will
allow you to further define weights on your indexed fields. This way we can weigh
the name field, for example, heavier than the slug or description fields.

search = SphinxSearch(index='products_product',
 weights={
 'name': 100,
 'slug': 50,
 'description: 80})

One last excellent feature of django-sphinx is the ability to generate the Sphinx
configuration files automatically. The resulting sphinx.conf will likely require hand
tuning, but it can help get you up and running quickly. To use this feature, add the
SphinxManager to your models, as described above, and then use django-sphinx's
generate_config_for_model helper method:

generate_config_for_model(Product)

Chapter 6

[109]

The Whoosh search engine
Whoosh is a search engine written entirely in Python. It's slightly easier to install
and run than the Sphinx search engine and some would argue it generally feels
"more pythonic". To install Whoosh you can simply easy_install Whoosh or visit
http://whoosh.ca to get the latest development version.

The fact that Whoosh is pure Python is very convenient for developers who are not
interested in or lack knowledge of Java or compiling UNIX software. It can get you
up and running quickly and it supports integration with Django, as we'll see shortly.

Just like in Sphinx, Whoosh needs to define and build a set of indexes on our data.
The Whoosh documentation is very extensive (another advantage of a pure Python
tool) and explains all the indexing options in great detail. We will present a quick
tutorial here, before continuing on to using Whoosh with Django.

In Sphinx we defined our indexes using the index section of our sphinx.conf. In
Whoosh, they use a Schema object, which is defined purely in Python (of course).
The schema performs the same role as the index section: it defines the fields and
additional options for the index we will build around our data. Unlike Sphinx,
Whoosh requires the schema to include "type" information for each field we want
to index. This type information affects how Whoosh indexes our data.

The Sphinx approach to indexing was to treat each field in our source definition
as text whose contents would be chunked and preprocessed. Whoosh supports
this as well, but it also provides alternative methods of handling fields. This is the
idea behind field types. The TEXT type is used for fields of text, like Sphinx, but the
KEYWORD and ID field types are treated differently.

Fields with the KEYWORD type are treated as lists of keywords or terms, separated by
commas or spaces. This would be useful for indexing lists of tags. The ID type is used
on fields that store single term values. The documentation suggests using this type
for things like URLs and e-mail addresses.

For our Product model, the field types for the name and description would be TEXT.
The slug field is probably best treated as TEXT, but could be considered as ID field
(if you wanted to search based on slug). The corresponding Whoosh schema
definition would like this:

from whoosh.fields import Schema, TEXT
from whoosh.analysis import StemmingAnalyzer

schema = Schema(name=TEXT, slug=TEXT, description=TEXT)

Searching the Product Catalog

[110]

The Whoosh search engine stores indexes on the disk in files specified when you
create an index. This is similar to the path statement in the index section of our
Sphinx configuration. Remember, this is a pure Python implementation, so instead
of using an indexer tool or other utility to generate our indexes, we have to write a
Python script.

To do this we need a Whoosh index object, which defines the location of the index
files as well as the schema to be used for indexing. Whoosh includes a convenient
function we can use to create this object, called create_index_in.

from whoosh.index import create_index_in

index = create_index_in('indexes', schema)

This will create our index files in a directory called indexes and use the schema
object we defined earlier. Likewise, when we're ready to load indexes we've
previously created, Whoosh includes a convenient function for that too:

index = open_dir('indexes')

To actually index data, we have to obtain a Whoosh IndexWriter object and pass it
our field data. The following code snippet will index all of our Product objects:

writer = index.writer()

for product in Product.objects.all():
 writer.add_document(name=product.name,
 description=product.description)
writer.commit()

This indexes all of our Product objects as documents in the index defined earlier.
The last line calls the commit() method of the IndexWriter object, which writes
the full index to the disk in the location we specified with create_index_in.

If this feels like a very manual process, similar to the exploration of the Sphinx
Python API from earlier, it's because it is. We're almost finished, however. Now that
we've created an index for all of our Product objects, we can perform a search query
by creating a Whoosh Searcher object from our index:

searcher = index.searcher()

And then, we search our index by calling the find method:

results = searcher.find("name", u"cranberry sauce")

Chapter 6

[111]

Notice how this method requires us to specify the search field in addition to the
search term. The results are returned as a dictionary object whose keys are the field
names and corresponding values. The Whoosh API includes additional objects
and methods for searches and queries, including a special query language. But the
Whoosh engine alone doesn't help us add search to our Django models directly. For
that we can use Haystack.

Haystack search for Django
Haystack is a general purpose search application for Django. It supports multiple
search engine backends with a standardized integration. To install Haystack, use the
download link from http://github.com/toastdriven/django-haystack and run
setup.py to install it.

Haystack currently supports three search engine backends: Solr, Whoosh,
and Xapian. These backends are specified to Haystack with the Django setting
HAYSTACK_SEARCH_ENGINE. We will be using Haystack with the Whoosh search
engine, so our settings file will need to include the following:

HAYSTACK_SEARCH_ENGINE='whoosh'
HAYSTACK_WHOOSH_PATH='/path/to/indexes'
HAYSTACK_SITECONF='project.search_sites'

As we discussed in the previous section, Whoosh stores indexes in files on the
filesystem. When used with Haystack the location of these indexes is defined by
the HAYSTACK_WHOOSH_PATH setting. Now that we've configured our search engine
backend, we can move on to configuring the rest of Haystack.

Haystack uses a common Django design known as the registration pattern. This
is the same approach as with Django's built-in admin application. It involves using
a register method to attach functionality to your models. This allows code to be
reused through subclassing and simplifies configuration. For more information,
examine the ModelAdmin class in the django.contrib.admin module and the
admin site documentation.

When you add haystack to your project setting's INSTALLED_APPS, it will trigger a
search for a search_indexes.py file in each of your app modules. This file defines
the indexes on your models.

In addition, Haystack needs a global configuration file, specified by the Django
setting HAYSTACK_SITECONF. Typically this site conf file will be very simple:

import haystack

haystack.autodiscover()

Searching the Product Catalog

[112]

Haystack requires us to specify our indexes, just as in Sphinx and Whoosh. Haystack
uses a more Django-like syntax, however, and it will automatically translate and
create our index definitions to the format appropriate for our chosen search engine
backend. Just as our Django models are defined by subclassing django.db.models.
Model, our indexes are defined by subclassing haystack.indexes.SearchIndex.
These subclasses then specify the fields we want to index along with their type.

To index our Product model using Haystack, we would write the following
SearchIndex subclass in our app's search_indexes.py:

from haystack import indexes
from haystack import site
from coleman.products.models import Product

class ProductIndex(index.SearchIndex):
 text = indexes.CharField(document=True, use_template=True)
 name = indexes.CharField(model_attr='name')
 slug = indexes.CharField(model_attr='slug')
 description = indexes.CharField(model_attr='description')

site.register(Product, ProductIndex)

Haystack's approach to search differs significantly from what we've seen before.
The indexes we define will be fed into our search engine, but queries and results
are all handled by the Haystack application logic, which translates everything
automatically. Every Haystack SearchIndex requires one field to be marked
document=True. This field should be the same name across all your indexes
(for different models). It will be treated as the primary field for searching.

In our product index, this field is called text. It has an additional special option:
use_template=True. This is a way of indexing the output of a simple template as a
model's data, rather than just using a model attribute. The remaining fields will have
the attribute specified by the model_attr keyword argument looked up and used as
index data. This can be a normal object attribute, a callable, and can even go through
relationships using the double-under syntax (category__name__id).

This index definition may seem awkward at first due to the extra field and
document=True, but it is required in part to standardize an interface with multiple
backends. Because the text field will be present in all indexes, our search engine
knows for certain it can index this field for all our data. It's a little complex, but if
you're interested in learning more the Haystack documentation is very complete.

Chapter 6

[113]

One last thing about our index definition: the use_template=True argument. This
argument lets us define a template for the data to be indexed in the text field. The
template must be named according to our model and the indexed field, so in the
ProductIndex example we would create a product_text.txt template that
looks like this:

{{ object.name }}
{{ object.manufacturer }}
{{ object.description }}

This gives us additional flexibility in defining the data we want indexed. Think
of this template as allowing you to construct a more formal "document" out of
your Django models. Haystack will render this template for all Product objects it
processes and pass the resulting string to the search engine to use as the indexed
data. Standard template filters are available here and we can also call methods on
our object to include their results in our index.

Haystack searches
Haystack includes a default URLs file that defines a stock set of views. You can get
search up and running on your Django site simply by adding the Haystack URLs
to your root URLConf:

(r'^search/', include('haystack.urls')),

Haystack also needs us to define a search template, called search/search.html by
default. This template will receive a paginator object that contains the list of search
results. Unlike django-sphinx, which provides a QuerySet of model objects, our
Haystack search results will be instances of the Haystack SearchResult class. This
class includes access to the model through an object attribute, but it should be noted
that this will cause a database connection and affect performance.

In addition, the SearchResult object has all of the fields included in the
SearchIndex we previously defined. In order to save on database hits, we can also
store data in the index that is available as part of our SearchResult objects. This
means we can store a model attribute, for example, directly in our SearchIndex and
not need to access the object attribute in SearchResults (causing a database hit).

To do this we can specify the stored=True argument, which is the default for all
SearchIndex field attributes. In our ProductIndex example, when we process the
SearchResult list we can access the slug data via result.slug or result.object.
slug, but the latter will incur a performance penalty.

Searching the Product Catalog

[114]

Now that our indexes have been defined and we've added a search view, we need to
actually generate the index files. To simplify this task, Haystack provides a Django
management command, which we can pass to the django-admin.py or manage.
py utilities. This command is called rebuild_index and it will cause Haystack to
process the models in our database and create indexes for those that define one.

The rebuild command will completely recreate our indexes (by clearing them and
updating against all model data). An alternative is the update_index management
command, which will only update, but not clear, our indexes. The update command
can take an age parameter, which will only update model objects from a certain time
period. For example, running ./manage.py update_index --age=24 will refresh
the index for model objects update in the last 24 hours. To use this, we need to add
a get_updated_field method to our SearchIndex definition that returns a model
field to use for checking age. Often this can be a pub_date DateTime field on our
model, as in the following:

class ProductIndex(indexes.SearchIndex):
 ...

def get_update_field(self):
return 'pub_date'

You will need to schedule a periodic call to the update_index command to ensure
that new data is indexed and will appear in search results. This is necessary for any
search engine indexer. In the case of Haystack, we can use our server's cron daemon
to schedule a nightly run of update_index with this example crontab line:

0 2 * * * django-admin.py update_index—age=24

It is not necessary to schedule the index update this way, especially if your data does
not change frequently (for example, your e-commerce site doesn't add new products
on a daily basis). In these cases you can do periodic, manual index updates.

However, there are other reasons you may wish to update an index besides
capturing new data. If you store field information for your models in the
SearchField objects using stored=True, you will need to reindex to refresh this
stored data. Search results may use this stored data to avoid a database lookup
on actual models, so reindexing ensures any changes (to price, for example) are
reflected in search results on a regular basis.

Chapter 6

[115]

Haystack for real-time search
One of the unique features of Haystack is that it can be used to build a real-time
search engine for your data. In the typical approach to search, including the
Haystack usage described above, indexes are built at some regular interval. Any new
data added to the site will not be indexed until the next run of the update_index
command, either manually or via a scheduled cron job. However, Haystack offers
an alternative to this approach, which is the RealTimeSearchIndex.

Using the RealTimeSearchIndex is simple: instead of writing your indexes as
subclasses of SearchIndex, you simply subclass index.RealTimeSearchIndex
instead. Using this real-time class attaches signal handlers to your model's post_save
and post_delete signals.

These signal handlers cause Haystack to immediately update your indexes whenever
a model object is saved or deleted. This means your indexes are updated in real
time and search results will reflect any changes instantly. This functionality could
be useful in e-commerce applications by allowing staff to search over product sales
data in real time or for cases where the price of a good or service changes many times
throughout the day.

Real-time search of this nature causes significant load on your server resources if you
have many object updates and deletions. Before deploying this solution, you should
make sure your search engine and database server can handle the increased load that
frequent indexing will create.

Haystack is extremely powerful considering how unassuming it appears at first
glance. It can be used to produce very sophisticated search strategies across even
the largest of Django sites. It also follows many of the Django conventions that have
evolved over the past couple of releases and is a great project to reference as an
example reusable application. Because it supports multiple search engine backends it
has the performance and flexibility to fit many development needs. For these reasons
and more, it is a highly recommended tool.

Xapian/Djapian
The Djapian project is a search layer for Django that specifically supports the
Xapian open source search engine. It was created in Russia by Alex Koshelev and
is currently under continued development. Xapian is a search engine library, not
specifically a search engine application. Djapian wraps this library and applies this
library and attaches the full-text search functionality to a Django model. This follows
the pattern we've seen in the previous examples of a Django layer on top of a search
engine application or library.

Searching the Product Catalog

[116]

You can get the Djapian library from Google Code at the following URL:
http://code.google.com/p/djapian/.

Once installed, we can begin using Djapian in any Django project by adding it to our
settings.py file in the INSTALLED_APPS setting and creating a DJAPIAN_DATABASE_
PATH setting to a directory for our search indexes.

As before, indexes must be created in Djapian. As it is wrapping the Xapian library,
our indexes are defined in Python, unlike Sphinx where indexes and sources are
defined in external configuration files. This index definition is very Django-like,
similar to the indexes we built for Haystack. They start by subclassing a base
indexer class and then define specific fields for the object we're indexing.

The new index is associated with a model class by adding it to the index space. Djapian
uses an index space object, which is just a wrapper around the file system storage
routines needed to save index information to disk. The location on the file system
where the index space lives is defined in the DJAPIAN_DATABASE_PATH setting.

An indexer for our Product model in Djapian would look like this:

from djapian import space, Indexer
from coleman.products.models import Product

class ProductIndexer(Indexer):
fields = ['name', 'description'], tags = [('price_in_dollars', 'price_
in_dollars')]
space.add_index(Product, ProductIndexer, attach_as='indexer')

Once we've defined an index, we can use Djapian's management command to
process our Product models and build the indexes. We do this by issuing the index
command to django-admin.py or manage.py. To build the initial index, we must
pass the --refresh argument:

$ django-admin.py index—rebuild

Later calls to index will update the indexes and don't require the rebuild flag,
unless we want to delete our indexes and build from scratch.

A really convenient feature of Djapian is the ability to test search results in a
special index shell. You can access this feature by passing the indexshell
management command:

$ django-admin.py indexshell

>>> use 0.1.0

>>> query "cranberry sauce"

[<Hit: model=products.Product pk=200, percent=100, rank=0,
weight=0.4444>]

Chapter 6

[117]

This allows us to test the quality of the search results from our indexes in a quick
and effective way, without writing any views or other Django code. This can be
very useful for testing purposes and to evaluate the indexes you've created.

Searching indexes
When we write Indexer objects and add them to our space object, they are also
attached as an attribute to our model class. This happened when we included the
attach_as='indexer' keyword argument to the add_index method above. This
attribute is what we will use to work with the search engine from Django code.

To perform a search query over our Product models, for example, we obtain the
indexer for the model and call the search method:

product_indexer = Product.indexer results = product_indexer.
search('cranberry sauce').prefetch()

This searches our product indexes for 'cranberry sauce' and stores the results in
results. The results variable will be a Djapian ResultSet object, which is similar
to Django's built-in QuerySet objects. It doesn't support the full set of methods that
QuerySet does, but you can loop over the items returned, count() its length, slice it,
and order the results with the order_by() method, among other operations. It's also
compatible with Django's built-in Paginator class.

Advanced Xapian features
Djapian takes advantage of some of the advanced Xapian features in easy and
convenient ways. For example, we can use the Xapian spell checker simply by
chaining a method call to the end of our search operation:

results = product_indexer.search("cranberri sauce").spell_correction()

This will instruct Xapian to try and correct out spelling errors in the query string.
To find out what Xapian decided to use, call get_corrected_query_string on
the results object:

>>> results.get_corrected_query_string()
cranberry sauce

Searching the Product Catalog

[118]

Xapian also supports word stemming, as we discussed in the section on Sphinx. This
normalizes word variations to a single form in attempt to improve search results.
Activating the Xapian stemming function using Djapian is extremely easy, just
add a DJAPIAN_STEMMING_LANG setting to your project settings file and set it to
the language of your choice. For English, use:

DJAPIAN_STEMMING_LANG = "en"

As you can see, Djapian does an excellent job of integrating with the Xapian open
source search engine library. It offers yet another powerful tool for adding search
to any Django project.

We should also note that the Xapian search engine can also be used with Haystack
and all of the discussion of Haystack in previous sections applies, whether the
backend uses Whoosh or Xapian. Xapian's advantage over Whoosh is primarily that
it's written in C++ instead of Python. This means, generally, that it should be some
degree faster. This sort of metric, however, is dependent on a lot of factors and should
not discourage you from working with Whoosh or other Python search engines.

Summary
Throughout this chapter we have explored the landscape of search engine options
for our Django projects. On some level, the diversity is really astounding considering
Django's relatively short existence. This is an area where the Django and Python
community really shines and is a testament to both the popularity of the framework
and the quality of its design. To review, this chapter covered:

Creating a simple, homegrown search engine using MySQL indexes
The Sphinx search engine and its use with django-sphinx
A tour of the pure-Python search engine, Whoosh
Demonstration of the powerful Haystack Django application
Quick examples of using Xapian and Djapian

We also covered some continuing Django development themes such as pluggable
backends and the registration pattern. The community projects presented in this
chapter are significant for their designs in addition to their usefulness as tools.
Anyone interested in improving their Python and Django development skills
could benefit greatly by studying the code presented in these projects.

•

•

•

•

•

Data and Report Generation
The needs of every e-commerce application can vary widely when it comes to
reports, metrics, and data exports. Some businesses will want to capture detailed
profiles of their customers and what they are purchasing in order to optimize
promotions and marketing activities for their particular needs. Others will be
interested in making data available internally, to provide the boss updates on
how many jars of cranberry preserves sold in December last year versus this year.

In this chapter, we will discuss a toolbox of Python libraries and Django applications
to assist with whatever reporting needs that may arise. These topics include:

Serializing and exposing data
Tracking and improving search engine rank using sitemaps
Generating charts and graph-based reports
Exporting information via RSS and Atom feeds
Salesforce integration

We will be using a variety of tools, many builtin to Django. As in other chapters,
however, we will discuss some third-party libraries. These are all relatively stable
and mature, but as with all open source technology, new versions could change
their usage at any time.

Exposing data and APIs
One of the biggest elements of the web applications developed in the last decade
has been the adoption of so-called Web 2.0 features. These come in a variety of
flavors, but one thing that has been persistent amongst them all is a data-centric view
of the world. Modern web applications work with data, usually stored in a database,
in ways that are more modular and flexible than ever before. As a result, many
web-based companies are choosing to share parts of their data with the world in
hopes of generating "buzz", or so that interested developers might create a clever
"mash-up" (a combination of third-party application software with data exposed
via an API or other source).

•
•
•
•
•

Data and Report Generation

[120]

These mash-ups take a variety of forms. Some simply allow external data to be
integrated or imported into a desktop or web-based application. For example,
loading Amazon's vast product catalog into a niche website on movie reviews.
Others actually deploy software written in web-based languages into their own
application. This software is usually provided by the service that is exposing their
data in the form of a code library or web-accessible API.

Larger web services that want to provide users with programmatic access to their data
will produce code libraries written in one or more of the popular web-development
languages. Increasingly, this includes Python, though not always, and typically also
includes PHP, Java, or Perl. Often when an official data library exists in another
language, an enterprising developer has ported the code to Python.

Increasingly, however, full-on code libraries are eschewed in favor of open,
standards-based, web-accessible APIs. These came into existence on the Web in the
form of remote procedure call tools. These mapped functions in a local application
written in a programming language that supports XML-RPC to functions on a server
that exposed a specific, well-documented interface. XML and network transport
protocols were used "under the hood" to make the connection and "call" the function.

Other similar technologies also achieved a lot of use. For example, many web-
services provide Simple Object Access Protocol (SOAP) interface, which is the
successor to XML-RPC and built on a very similar foundation. Other standards,
sometimes with proprietary implementations, also exist, but many new web-services
are now building APIs using REST-style architecture.

REST stands for Representational State Transfer and is a lightweight and
open technique for transmitting data across the Web in both server-to-server and
client-to-server situations. It has become extremely popular in the Web 2.0 and
open source world due to its ease of use and its reliance on standard web protocols
such as HTTP, though it is not limited to any one particular protocol.

A full discussion of REST web services is beyond the scope of this book. Despite their
simplicity, there can arise many complicated technical details. Our implementation
in this chapter will focus on a very straightforward, yet powerful design.

REST focuses on defining our data as a resource that when used with HTTP can map
to a URL. Access to data in this scheme is simply a matter of specifying a URL and,
if supported, any look-up, filter, or other operational parameters. A fully featured
REST web service that uses the HTTP protocol will attempt to define as many
operations as possible using the basic HTTP access methods. These include the usual
GET and POST methods, but also PUT and DELETE, which can be used for replacement,
updating, or deletion of resources.

Chapter 7

[121]

There is no standard implementation of a REST-based web service and as such
the design and use can vary widely from application to application. Still, REST
is lightweight enough and relies on a well known set of basic architectures that a
developer can learn a new REST-based web service in a very short period of time.
This gives it a degree of advantage over competing SOAP or XML-RPC web services.
Of course, there are many people who would dispute this claim. For our purposes,
however, REST will work very well and we will begin by implementing a
REST-based view of our data using Django.

Writing our own REST service in Django would be very straightforward, partly
because URL mapping schemes are very easy to design in the urls.py file. A
very quick and dirty data API could be created using the following super-simple
URL patterns:

(r'^api/(?P<obj_model>\w*)/$', 'project.views.api')
(r'^api/(?P<obj_model>\w*)/(?P<id>\d*)/$', 'project.views.api')

And this view:

from django.core import serializers

def api(request, obj_model, obj_id=None):
 model = get_model(obj_model.split("."))
 if model is None:
 raise Http404
 if obj_id is not None:
 results = model.objects.get(id=obj_id)
 else:
 results = model.objects.all()
 json_data = serializers.serialize('json', results)
 return HttpResponse(json_data, mimetype='application/json'))

This approach as it is written above is not recommended, but it shows an example
of one of the simplest possible data APIs. The API view returns the full set of model
objects requested in JSON form. JSON is a simple, lightweight data format that
resembles JavaScript syntax. It is quickly becoming the preferred method of data
transfer for web applications.

To request a list of all products, for example, we only need to access the following
URL path on our site: /api/products.Product/. This uses Django's app.model
syntax to refer to the model we want to retrieve. The view uses get_model to obtain
a reference to the Product model and then we can work with it as needed. A specific
model can be retrieved by including an object ID in the URL path: /api/products.
Product/123/ would retrieve the Product whose ID is 123.

Data and Report Generation

[122]

After obtaining the results data, it must be encoded to JSON format. Django
provides serializers for several data formats, including JSON. These are all located
in the django.code.serializers module. In our case, we simply pass the results
QuerySet to the serialize function, which returns our JSON data. We can limit the
fields to be serialized by including a field's keyword argument in the call to serialize:

json_data = serializers.serialize('json', results,
fields=('name','price'))

We can also use the built-in serializers to generate XML. We could modify the above
view to include a format flag to allow the generation of JSON or XML:

def api(request, obj_model, obj_id=None, format='json'):
 model = get_model(*obj_model.split())
 If model is None:
 raise Http404
 if obj_id is not None:
 results = model.objects.get(id=obj_id)
 else:
 results = model.objects.all()
 serialized_data = serializers.serialize(format, results)
 return HttpResponse(serialized_data,
 mimetype='application/' + format)

Format could be passed directly on the URL or better yet, we could define two
distinct URL patterns and use Django's keyword dictionary:

(r'^api/(?P<obj_model>\w*)/$', 'project.views.api'),
(r'^api/(?P<obj_model>\w*)/xml/$', 'project.views.api',
{'format': 'xml'}),
(r'^api/(?P<obj_model>\w*)/yaml/$', 'project.views.api',
{'format': 'yaml'}),
(r'^api/(?P<obj_model>\w*)/python/$', 'project.views.api',
{'format': 'python'}),

By default our serializer will generate JSON data, but we've got to provide
alternative API URLs that support XML, YAML, and Python formats. These are the
four built-in formats supported by Django's serializers module. Note that Django's
support for YAML as a serialization format requires installation of the third-party
PyYAML module.

Building our own API is in some ways both easy and difficult. Clearly we have a
good start with the above code, but there are many problems. For example, this
is exposing all of our Django model information to the world, including our User
objects. This is why we do not recommend this approach. The views could be
password protected or require a login (which would make programmatic access
from code more difficult) or we could look for another solution.

Chapter 7

[123]

Django-piston: A mini-framework for
data APIs
One excellent Django community project that has emerged recently is called
django-piston. Piston allows Django developers to quickly and easily build data
APIs for their web applications using a REST-style interface. It supports all the
serialization formats mentioned above and includes sophisticated authentication
tools such as OAuth as well as HTTP Basic.

The official repository for django-piston is hosted on bitbucket at the following URL:
http://bitbucket.org/jespern/django-piston/wiki/Home.

Complete documentation on the installation and usage of Piston are available on the
bitbucket site and in the readme file.

Piston supports the full set of HTTP methods: GET, POST, PUT, and DELETE. GET is
used for the retrieval of objects, POST is used for creation, PUT is used for updating,
and DELETE is used for deletion. Any subset of these operations can be defined on
a model-by-model basis. Piston does this by using class-based "handlers" that behave
somewhat like class-based generic views.

To define a handler on our Product model, we would write something like this:

from piston.handler import BaseHandler
from coleman.products import Product

class ProductHandler(BaseHandler):
 allowed_methods = ('GET',)
 model = Product

 def read(self, request, post_slug):
 ...

The ProductHandler defines one operation, the GET, on our Product model. To
define the behavior when a GET request is made to a Product object, we write a
read method. Method names for other HTTP operations include: create for POST,
update for PUT, and delete for DELETE. Each of these methods can be defined on our
ProductHandler and added to the allowed_methods class variable and Piston will
instantly enable them in our web-based API.

Data and Report Generation

[124]

To utilize our ProductHandler, we must create the appropriate URL scheme in our
urls.py file:

from piston.resource import Resource
from coleman.api.handlers import ProductHandler

product_resource = Resource(ProductHandler)
(r'^product/(?P<slug>[^/]+)/', product_resource)

Our Product objects and their data are now accessible using the URL above and the
Product slug field, as in: /api/product/cranberry-sauce/.

Piston allows us to restrict the returned data by including fields and exclude
attributes on our handler class:

class ProductHandler(BaseHandler):
 fields = ('name', 'slug', 'description')
 exclude = ('id', 'photo')
 ...

Piston also makes it very easy to request our data in a different format. Simply pass
the format as a GET parameter to any Piston-enabled URL and set the value to any
of the formats Piston supports. For example, to get our Cranberry Sauce product
information in YAML format use: /api/product/cranberry-sauce/?format=yaml.

Adding authentication to our handlers is also very simple. Django-piston includes
three kinds of authentication handlers in the current release: HTTP BASIC, OAuth,
and Django. The Django authentication handler is a simple wrapper around the
usual Django auth module. This means users will need cookies enabled and will be
required to log in to the site using their Django account before this auth handler will
grant API access.

The other two handlers are more suitable for programmatic access from a script or
off-site. HTTP BASIC uses the standard, web-server based authentication. In a typical
Apache configuration, this involves defining user and password combinations in
an htpasswd file using the htpasswd command line utility. See the web server's
documentation for more details. It's also possible to configure Apache authentication
against Django's auth module to support HTTP BASIC auth against the Django
database. This involves adding the django.contrib.auth.handlers.modpython
handler to the Apache configuration. See the Django manual for additional details.

Chapter 7

[125]

To attach BASIC authentication to the handler for our Product model, we will
include it in our urls.py file as part of the Resource object definition:

from piston.authentication import HttpBasicAuthentication

basic_auth = HttpBasicAuthentication(realm='Products API') product_
resource = Resource(handler=ProductHandler, auth=basic_auth)

Our Product URLs will now be available only to clients who have passed HTTP
BASIC authentication with a user name and password.

As we've seen, Piston makes building a REST-based API for our Django projects
extremely easy. It also uses some Django design principles we've seen earlier. For
example, the authentication tools are designed to be pluggable. We can examine the
HttpBasicAuthentication class in piston.authentication as a template to write
our own. A custom authentication class can be plugged in to the Resource definition
with just a small change to the code. Despite being easily customizable, Piston's default
setup includes enough built-in functionality for the majority of data API needs.

Django's syndication framework
In cases where a full-fledged data API would be overkill, but exporting some data
in a standard format is required, Django's syndication tools may be the perfect fit.
Having been originally designed for newspaper websites, Django includes robust
support for exporting information in syndication formats. This is usually done
using the popular RSS or Atom feed formats.

Syndication feeds allow us to render our data in a standard format that can
be consumed by human-controlled reader software, such as Google Reader or
NetNewsWire, and also by machines running software tools.

Feeds began as a way of consuming content from multiple sources in a single
location using reader software. Today, however, lots of variations on this theme
exist. For example, Twitter is itself one big feed generating application (one can
even consume Twitter content in RSS/Atom format).

It's often not necessary to have a reason to syndicate our data, as it is increasingly
considered a courtesy that enables others to consume our information in their own
way. In an e-commerce situation, we could export a collection of weekly or daily
promotional sales as RSS or Atom feeds, to which our customers could subscribe
and then read at their convenience in their preferred feed reader.

Data and Report Generation

[126]

Feeds could also be parsed by "affiliate" sites or even by physical devices. Imagine
a retail store that posted their weekly specials in RSS format then connected this
feed to an LED sign or LCD TV that can consume RSS information. The sign could
be posted in the store window and would be constantly refreshing that store's
advertised sales.

Django's syndication framework includes lots of flexibility in the way it generates
feeds. In the simplest form, we just need to write a class specific to the model whose
information we want to export. This class defines an items method, which is used to
retrieve the contents of the feed in an appropriate order. A simple Django template
is used to define the content of the feed.

Let's start by building a feed class for our Product model:

from django.contrib.syndication.feeds import Feed
from coleman.products.models import Product

class AllProducts(Feed):
 title = 'CranStore.com's Product Catalog'
 link = '/feed/'
 description = 'An updating feed of Products available on our site'

 def items(self):
 return Product.objects.all()

This is the simplest example of generating a feed in Django. We can enhance this in
many ways, all of which are described in the Django documentation. The syndication
framework is very similar to django-piston in that after defining a feed, we must
update our urls.py file to include it on our site:

from coleman.feeds import AllProducts

feeds = {'products': AllProducts}

urlpatterns = patterns(
(r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',
 {'feed_dict': feeds}))

Our Product models are now exporting to an RSS feed at the URL /feeds/
products/. Notice how the framework uses the feed dictionary's keys as the final
portion of the URL. We can create as many feeds as we wish and only need to update
the feed dictionary. The URL pattern will be reused by the syndication framework.

In Django, the template system can be used in various ways. When dealing with
syndicated feeds, templates are used to control the output to the feed. Regardless of
format, the template is translated appropriately and the same templates can be used
for any feed the framework will produce (versions of RSS and Atom).

Chapter 7

[127]

Django does not require us to create a feed template. In cases where no template exists,
it will default to the string representation of the model (the __unicode__ or __str__
methods). In most cases, though, we will want to create appropriate templates.

The feed templates live in a feeds directory beneath our site's templates location.
Recall the feed dictionary we used earlier; the keys to this dictionary not only
affect the URL where the feed lives, but also what templates are rendered. In our
previous example, the feed dictionary contained a key called products for our
AllProducts feed.

Django will attempt to load two templates for this feed, both based off the dictionary
key: feeds/products_title.html and feeds/products_description.html. Note
that despite ending in .html extensions, these templates are not required to contain
HTML and are never complete HTML documents with head and body tags, only
fragments. The title template will be rendered for the feed's title element and the
description will be rendered in the body.

These templates will have access to two variables, obj and site, which correspond
to the object we're rendering the feed template against and the site where it lives.
We access these values using normal Django template double-brace syntax.

Our feed templates can contain HTML, but the results may vary depending on what
application is used to consume our feeds. Some have a limited amount of HTML
knowledge and most will ignore any attempt to format our output using CSS or
other design tools. Using basic HTML tags is recommended for best results.

An example of a feed title template for our AllProducts feed would be:

{{ obj.name }}

And the corresponding description template could look like this:

<h1>{{ obj.name }} - {{ obj.get_price }}</h1>
<p>{{ obj.description }}</p>

In our case obj will be an instance of our Product model, so we can use it just as we
would in any other Django template.

Django sitemaps
Traditionally, very large sites have provided a directory of the information they've
made available using a navigational device known as a sitemap. The intent was
originally to help users find information they were looking for with the least amount
of effort. Turns out, however, there were better solutions to this problem, namely
search engines.

Data and Report Generation

[128]

Why dig through a long list of irrelevant information when you can simply type in
some keywords and get a much more accurate list of potential matches? Sitemaps
made a lot of sense before search engine technology was available on a wide scale,
but as we discussed in Chapter 6, Searching the Product Catalog, adding search to our
applications is now super easy. Even sites that don't offer a search engine can be
searched using Google.

So why does Django include a module for automatic sitemap generation? These
sitemaps are a little different from the traditional sitemaps, which were usually
designed in HTML for human consumption. The sitemaps produced by Django
are XML files that are designed to inform machines about the layout and content
of your site.

When we say machines, we're really talking about search engines and, more
precisely, Google. Google uses sitemaps to build its index of your site. This is
very important for achieving a high position in Google's search results.

Django's sitemap module is in django.constrib.sitemaps. To get started, we
need to add this to our INSTALLED_APPS setting and create a URL in our root
URL configuration. The URL requires us to pass in a dictionary that resembles the
feed dictionary we discussed in the previous section. It takes a string and maps it
to a Sitemap class for a specific section of our site. For example, we may have a
Products sitemap that lists all of our product pages as well as other sitemaps that list
manufacturers, special deals, blog posts from our corporate blog, or any other piece
of content we've put on the Web.

A sitemap class for our Products would look something like this:

from django.contrib.sitemaps import Sitemap
from coleman.products.models import Product

class ProductSitemap(Sitemap):
 def items(self):
 return Product.objects.all()

We could filter our Product module instead of calling all and limit it by some
useful metric. Say, for example, we had a discontinued field but the Product object
remained in our database. We may not want Google to index discontinued products
so we could return Product.objects.filter(discontinued=False) in the
sitemap items method.

The items returned for the sitemap will be assumed to have a get_absolute_url
method. This method will be used by the Django sitemap framework to construct
the URLs for all of our objects in the sitemap. It is important to make sure your
get_absolute_url methods are correct and functional for any object you want
indexed in a sitemap.

Chapter 7

[129]

Once we've generated a sitemap for our site, we want to make sure to tell
Google about it. The way to do this is register for a Google Webmaster account at
http://google.com/webmaster. In addition to submitting our sitemap, Google's
Webmaster Tools let us see all kinds of interesting metrics about our site and how
Google evaluates it. This includes what keywords we score highly on and where
any incoming links originate. It also lets us track how changes to our site affect
our position in the Google index.

If you're building an e-commerce site with lots of content, a very large product
catalog, for example, it is highly recommended that you generate a sitemap
and submit it to Google. Several books have been written about "Search Engine
Optimization" that include lots of search engine magic. Building a sitemap is
among the best and most realistic tactics for improving your search result position.

ReportLab: Generating PDF reports
from Python
The Python community offers dozens of libraries designed to generate graphics,
reports, PDF files, images, and charts. It can be somewhat overwhelming choosing
which tool is appropriate for the job. In this section, we will experiment with the
ReportLab toolkit, which is a Python module that allows us to create PDF files.
ReportLab can be integrated with Django to generate dynamic PDFs on-the-fly for
the data stored in our Django models.

ReportLab is an open source project available at http://www.reportlab.org. It
is a very mature tool and includes binaries for several platforms as well as source
code. It also contains extension code written in C, so it's relatively fast. It is possible
for ReportLab to insert PNG and GIF image files into PDF output, but in order to do
so we must have the Python Imaging Library (PIL) installed. We will not require
this functionality in this book, but if you need it for a future project, see the PIL
documentation for setup instructions.

The starting point in the ReportLab API is drawing to canvas objects. Canvas objects
are exactly what they sound like: blank slates that are accessible using various
drawing commands that paint graphics, images, and words. This is sometimes
referred to as a low-level drawing interface because generating output is often
tedious. If we were creating anything beyond basic reporting output, we would
likely want to build our own framework or set of routines on top of these low-level
drawing functions.

Data and Report Generation

[130]

Drawing to a canvas object is a lot like working with the old LOGO programming
language. It has a cursor that we can move around and draw points from one
position to another. Mostly, these drawing functions work with two-dimensional
(x, y) coordinates to specify starting and ending positions.

This two-dimensional coordinate system in ReportLab is different from the typical
system used in many graphics applications. It is the standard Cartesian plane, whose
origin (x and y coordinates both equal to 0) begins in the lower-left hand corner
instead of the typical upper-right hand corner. This coordinate system is used in
most mathematics courses, but computer graphics tools, including HTML and
CSS layouts, typically use a different coordinate system, where the origin is in
the upper-left.

ReportLab's low-level interface also includes functions to render text to a canvas.
This includes support for different fonts and colors. The text routines we will see,
however, may surprise you with their relative crudeness. For example, word-
wrapping and other typesetting operations are not automatically implemented.
ReportLab includes a more advanced set of routines called PLATYPUS, which can
handle page layout and typography. Most low-level drawing tools do not include
this functionality by default (hence the name "low-level").

Chapter 7

[131]

This low-level drawing interface is called pdfgen and is located in the reportlab.
pdfgen module. The ReportLab User's Guide includes extensive information about
its use and a separate API reference is also available.

The ReportLab canvas object is designed to work directly on files. We can create a
new canvas from an existing open file object or by simply passing in a file name.
The canvas constructor takes as its first argument the filename or an open file object.
For example:

from reportlab.pdfgen import canvas

c = canvas.Canvas("myreport.pdf")

Once we obtained a canvas object, we can access the drawing routines as methods
on the instance. To draw some text, we can call the drawString method:

c.drawString(250, 250, "Ecommerce in Django")

This command moves the cursor to coordinates (250, 250) and draws the string
"Ecommerce in Django". In addition to drawing strings, the canvas object includes
methods to create rectangles, lines, circles, and other shapes.

Because PDF was originally designed for printed output, consideration needs to
be made for page size. Page size refers to the size of the PDF document if it were
to be output to paper. By default, ReportLab uses the A4 standard, but it supports
most popular page sizes, including letter, the typical size used in the US. Various
page sizes are defined in reportlab.lib.pagesizes. To change this setting for our
canvas object, we pass in the pagesize keyword argument to the canvas constructor.

from reportlab.lib.pagesizes import letter

c = canvas.Canvas('myreport.pdf', pagesize=letter)

Because the units passed to our drawing functions, like rect, will vary according to
what page size we're using, we can use ReportLab's units module to precisely control
the output of our drawing methods. Units are stored in reportlab.lib.units. We
can use the inch unit to draw shapes of a specific size:

from reportlab.lib.units import inch

c.rect(1*inch, 1*inch, 0.5*inch, 1*inch)

Data and Report Generation

[132]

The above code fragment draws a rectangle, starting one inch from the bottom and
one inch from the left of the page, with sides that are length 0.5 inches and one inch,
as shown in the following screenshot:

Not particularly impressive is it? As you can see, using the low-level library routines
require a lot of work to generate very little results. Using these routines directly is
tedious. They are certainly useful and required for some tasks. They can also act as
building blocks for your own, more sophisticated routines.

Building our own library of routines would still be a lot of work. Fortunately
ReportLab includes a built-in high-level interface for creating sophisticated report
documents quickly. These routines are called PLATYPUS; we mentioned them
earlier when talking about typesetting text, but they can do much more.

PLATYPUS is an acronym for "Page Layout and Typography Using Scripts". The
PLATYPUS code is located in the reportlab.platypus module. It allows us to
create some very sophisticated documents suitable for reporting systems in an
e-commerce application.

Chapter 7

[133]

Using PLATYPUS means we don't have to worry about things such as page margins,
font sizes, and word-wrapping. The bulk of this heavy lifting is taken care of by the
high-level routines. We can, if we wish, access the low-level canvas routines. Instead
we can build a document from a template object, defining and adding the elements
(such as paragraphs, tables, spacers, and images) to the document container.

The following example generates a PDF report listing all the products in our
Product inventory:

from reportlab.platypus.doctemplate import SimpleDocTemplate
from reportlab.platypus import Paragraph, Spacer
from reportlab.lib import sytles

doc = SimpleDocTemplate("products.pdf")
Catalog = []
header = Paragraph("Product Inventory", styles['Heading1'])
Catalog.append(header)
style = styles['Normal']
for product in Product.objects.all():
 for product in Product.objects.all():
 p = Paragraph("%s" % product.name, style)
 Catalog.append(p)
 s = Spacer(1, 0.25*inch)
 Catalog.append(s)
doc.build(Catalog)

Data and Report Generation

[134]

The previous code generates a PDF file called products.pdf that contains a
header and a list of our product inventory. The output is displayed in the
accompanying screenshot.

The document template used above, SimpleDocTemplate, is a class derived from
ReportLab's BaseDocTemplate class. It provides for management of the page,
the PDF metadata such as document title and author, and can even be used for
PDF encryption. By inheriting from BaseDocTemplate, we could create our own
document templates that correspond to specific reports or types of report we
might generate on a regular basis (a product deals flyer, for example).

In addition to the paragraph and spacer elements we saw in the previous example,
documents also support very sophisticated table definitions. We can render the same
product inventory in a table format using ReportLab's Table class. Tables can be
styled in myriad ways, including setting background and line colors around specific
cells, rows or columns, drawing boxes around subsets of cells, and adding images
to specific cells. A very simple demonstration is as follows:

doc = SimpleDocTemplate("products.pdf")
Catalog = []
header = Paragraph("Product Inventory", styles['Heading1'])
Catalog.append(header)
style = styles['Normal']
headings = ('Product Name', 'Product Description')
allproducts = [(p.name, p.description) for p in Product.objects.all()]
t = Table([headings] + allproducts)
t.setStyle(TableStyle(
 [('GRID', (0,0), (1,-1), 2, colors.black),
 ('LINEBELOW', (0,0), (-1,0), 2, colors.red),
 ('BACKGROUND', (0, 0), (-1, 0), colors.pink)]))
Catalog.append(t) doc.build(Catalog)

This code defines a two-column table with headings Product Name and Product
Description, and then renders the product inventory into each row in the table.
We set some style rules for the Table element, including a black grid throughout
the table, a red line beneath the headers, and a light pink background on the header
row. The PDF output looks like this:

Chapter 7

[135]

Notice how the padding and centering of the table is handled automatically by
the ReportLab package. Now we're getting more sophisticated, but there is a lot
more to the ReportLab library. We will end our tour by looking at ReportLab's
chart functions.

Creating charts in ReportLab is straightforward, but very powerful. One aspect of the
charting module worth mentioning is that it does not have to be output to PDF files,
but is general purpose enough to render to other formats. PostScript and bitmap
output is available, as well as support for the SVG XML format is now supported
by most browsers.

To create charts we need to use ReportLab's Drawing object. This is what ReportLab
calls a "Flowable". We've already seen several examples of flowable objects:
Paragraph, Spacer, and Table. Flowables can be added to a document template as
we've already seen. In addition to the Drawing object, ReportLab provides several
classes that represent different kinds of charts: line charts, bar charts, pie charts, and
so on. We instantiate an object from one of these classes and manipulate it by adding
our data, our axis labels, and so on. Once our chart object is set up, we can add it to
our Drawing flowable and then add the Drawing to our document template.

Data and Report Generation

[136]

The following example renders a simple line chart with fictitious sales data for our
CranStore.com website. It shows sales of cranberry sauce through the months of
October, November, and December. The code is as follows:

from reportlab.graphics.charts.linecharts import HorizontalLineChart
from reportlab.graphics.shapes import Drawing
sales = [(23, 74, 93)]
months = ['Oct', 'Nov', 'Dec']

doc = SimpleDocTemplate("products.pdf")
Catalog = []
style = styles['Normal']
p = Paragraph("Cranberry Sauce Sales", styles['Heading1']) Catalog.
append(p)
d = Drawing(100, 100)
cht = HorizontalLineChart()
cht.data = sales
cht.categoryAxis.categoryNames = months
d.add(cht)
Catalog.append(d)
doc.build(Catalog)

The output in PDF format appears as follows:

Chapter 7

[137]

Notice that our sales data is a list of tuples. This list could contain more than one
element. If it did, then our horizontal line chart would contain two lines: one for each
data series defined in the sales list. Most of ReportLab's line chart classes allow for
this type of data definition.

Generating a pie chart is equally as simple. We can even add a fancy pop-out on a
specific pie slice:

doc = SimpleDocTemplate("products.pdf")
Catalog = []
style = styles['Normal']
p = Paragraph("Cranberry Sauce Sales", styles['Heading1']) Catalog.
append(p)
d = Drawing(100, 125)
cht = Pie()
cht.data = sales[0]
cht.labels = months
cht.slices[0].popout = 10
d.add(cht)
Catalog.append(d)
doc.build(Catalog)

When rendered the pie chart appears as follows:

Data and Report Generation

[138]

As you can see, ReportLab allows us to quickly generate interesting report output in
PDF and other formats. As it is a Python library, we can easily integrate it with our
existing Django code. But what if we want to publish our report information to the
Web? The next section will explain how to write Django views that generate custom,
dynamic PDF output.

Creating PDF views
When working with ReportLab, we briefly mentioned that we can create canvas
or document templates using either a file name or an open Python file, or file-like,
object. In our previous examples, we created a new file using a file name passed as
a string to our ReportLab constructors. If we wanted, we could have opened a file
manually and used it as a constructor argument:

f = open('products.pdf')
doc = SimpleDocTemplate(f)

This is important because when working with Django views, we want to be able to
return this PDF file after generating it from our database information. One idea is
to generate the file on disk and redirect the user's browser to the newly create PDF.
But this is a lot of extra effort and will require maintenance of the disk to prevent
old report requests from using up our server's storage space.

A much better alternative is to use ReportLab's support for file-like objects with
our Django response object. Django views always return an instance of the
HttpResponse class. It turns out that this response object is itself a file-like object;
it supports a write method and can therefore be used with our ReportLab routines.
This works like so: our view code constructs a response object and passes it to our
report generation code. When our report is created, control returns to our view,
which returns our response object that now contains the report.

Here is an example Django view that generates a pie chart using the routine listed
in the previous section. The pie chart code has been moved to a make_pie_chart
function, which takes and returns a file object:

def piechart_view(request):
 response = HttpResponse(mimetype='application/pdf')
doc = SimpleDocTemplate(response)
Catalog = []
style = styles['Normal']
p = Paragraph("Cranberry Sauce Sales", styles['Heading1'])
Catalog.append(p)
d = Drawing(100, 125)
cht = Pie()

Chapter 7

[139]

cht.data = sales[0]
cht.labels = months
cht.slices[0].popout = 10
d.add(cht)
Catalog.append(d)
doc.build(Catalog)
return response

The key to these specialized views is setting the appropriate mimetype on the
HttpResponse object. Browsers will interpret the mimetype and launch the
appropriate in-browser handler for the file returned by the view. You can specify
other mimetypes in this way, as well. If we were using ReportLab to generate
a PNG file instead of PDF, we would use this:

response = HttpResponse(mimetype='image/png')

This is an extremely powerful feature of Django and allows us to write views that
generate reports based on parameters defined in URL patterns or using GET and
POST values. You could even manipulate the report's display by processing GET
parameters and adjusting the resulting report (for example, breaking out the
smallest element of the pie chart if a certain GET flag is included).

If we wanted to use a toolkit besides ReportLab, the implementation pattern would
be exactly the same. Anything that can work with Python file-like objects can be
used in a view, as we've done previously. We can generate any type of file, even
spreadsheet data in a comma-separated value format, as long as we provide the
appropriate mimetype.

Salesforce.com integration
We will end this chapter with a quick overview of Salesforce integration. Salesforce is
a cloud-based data management tool that allows organizations to store and manage
their data in a collaborative way. Information about important contacts, related
organizations, and any other custom piece of data that a team may need to share
can be stored in Salesforce.

One advantage of using Salesforce to manage your data is that it includes many
built-in reporting mechanisms. These are especially useful in medium-sized
organizations that have enough people to make sharing data difficult, but do not
have the time or resources to build a custom internal solution, like those we've
seen earlier.

Data and Report Generation

[140]

The difficulty with Salesforce, however, is that data must be entered. If you're
collecting information via a Django application, it is stored in a local database. You
could expose this data as we did in the beginning of this chapter using an API, but
once exposed you still need tools to manipulate it.

Taking the Salesforce approach, we can push our Django database information into a
Salesforce account, which can include custom objects that represent a subset of data
we've collected in Django. These objects are defined via the Salesforce website, but
typically resemble a table definition you would make in any SQL database.

Salesforce is accessible via a SOAP API and several Python wrapper libraries
exist. One such library is salesforce-beatbox, which is available at:
http://code.google.com/p/salesforce-beatbox/.

The beatbox application lets you receive and send information to your Salesforce
instance. It requires very little in the way of Python code to get up and running.
You will need to generate a security token from your Salesforce preferences page,
but after you obtain this you can connect to the Salesforce API like so:

import beatbox

USER = 'sf_user@email.com'
PASSWD = 'xxxxx'
SECURITY_TOKEN = 'gds#mklz!'

svc = beatbox.PythonClient() tokenpass = '%s%s' % (PASSWD, SECURITY_
 TOKEN) svc.login(USER, tokenpass)

The svc object should now successfully be connected to Salesforce and we can begin
querying our objects using the Salesforce query language, which they call SOQL:

result = svc.query("SELECT id,name FROM Merchandise__c")

The result variable contains a list of dictionary objects. Each dictionary has the keys
specified in the SELECT statement and the corresponding values in the Salesforce
table. Any custom object created in Salesforce will include a __c suffix when
referenced in a query. We've created a Merchandise object in Salesforce, which
we query above using the merchandise__c table.

Creating objects in Salesforce is equally as simple. To do so we need to construct a
dictionary that includes the values for the object we want to create. A particularly
important key that is required in all cases is type. The type key specifies what kind
of Salesforce object we are creating. For example, the following dictionary sets up
the new Merchandise object that we will create in Salesforce:

merch_data = {'name': 'Cranberry Sauce',
 'price_in_dollars__c': '1.50',
 'type': 'Merchandise__c'}

Chapter 7

[141]

Once we've created our data, we can send it to Salesforce using our svc object:

svc.create(data)

Updating Salesforce information is equally as straightforward. The only difference is
that our data dictionary must include an id key whose value is the Salesforce unique
ID number. This is in addition to a type key, which is also required for updates, as
well as the fields which we want to update and their new values. It is not required
that every field has a key in the update dictionary, only those we want to change.
For example:

updated_data = {'id': '02111AC2DB987', 'type': 'Merchandise__c',
 'price_in_dollars__c': '1.75'}
svc.update(updated_data)

Create and update calls to the Salesforce API can also perform bulk updates using
their bulk API. This happens automatically when using beatbox when you construct
your new or updated data as a list, instead of a single dictionary. Bulk updates
are limited to 200 items per call, so some logic is required to slice your data lists to
conform to this limit. It is also a requirement that all of the data you are sending
to the Salesforce bulk API is of the same type.

Salesforce Object Query Language
When querying our Salesforce instance using the query API function above, we used
a subset of SQL that Salesforce calls SOQL. SOQL is much simpler than most SQL
implementations, but allows us to filter and slice our Salesforce data. Once we've
issued a query to the Salesforce API, we can use Python to manipulate the returned
data if we need further filtering.

SOQL exists exclusively for querying Salesforce. As a result, almost all SOQL
commands resemble the SELECT statement in standard SQL implementations. But
unlike most SQL systems, SOQL has limited the features of the SELECT statement.
You cannot perform arbitrary joins, for example. Here is an example SOQL query:

SELECT Name, Description
FROM Merchandise__c
WHERE Name LIKE 'Cranberry'

Data and Report Generation

[142]

In cases where we have relationships defined on our Salesforce objects, SOQL allows
us to perform queries on these relationships using a special dot-syntax. Imagine the
Merchandise object queried in the previous SOQL statement included a relationship
to a Manufacturer object. To SELECT based on the related Manufacturer's field
information would look like this:

SELECT Name, Description, Manufacturer.Address
FROM Merchandise__c
WHERE Manufacturer.Name == 'CranCo'

This SOQL query would return the name and description of all Merchandise
in Salesforce that was manufactured by "CranCo". It would also include the
manufacturer's address field in the resulting data. When using the Python
beatbox module, these results are again returned as a list of dictionaries.

The Salesforce API is relatively small. We've seen two of the most important
functions in these examples: query and create. There are additional functions
for deleting, updating, and even defining new object types. The beatbox module
supports almost all of the functions in the API, but not every one. For example, it
does not currently support the undelete function. This compatibility information
is documented in the beatbox README.txt.

With data in Salesforce, it suddenly becomes accessible to entire teams without any
additional development work. This can be very useful in small organizations whose
access to developers is limited. Non-technical staff can use Salesforce to run reports
and pull information in an intuitive, web-based application. Often this data would
be locked-up inside our web application, accessible just to those who can perform
a Django ORM call or write a SQL query.

Practical use-cases
The techniques and examples in this chapter have been varied, but all center on
the primary theme of data integration. As e-commerce applications become more
sophisticated and web-based businesses grow more competitive, the advanced
functionality we've covered here becomes increasingly important. Django's rapid
development nature and excellent community makes implementation of these tools
faster and easier than ever before.

Building a RESTful data API is important for transmitting data between different
systems and machines. This data could be shared across the Web or across an
internal corporate network. It could support applications built in another department
or in an affiliate-marketing style. A data API unlocks our information for whomever
we wish to share it with.

Chapter 7

[143]

Feeds allow a similar kind of data transmission, though on a somewhat higher level
than a data API. It can let human users, in addition to machines, parse our data and
is an increasingly popular delivery mechanism for consuming content.

Generating visual reports is a still higher-level form of communicating our
data, specifically geared for human use. The tools we've discussed could allow
an e-commerce platform to automatically send sales reports to interested members
of an organization or to produce other metrics suitable for printing and
hard-copy distribution.

Finally, integration with a web-based service like Salesforce.com demonstrates how
our e-commerce applications can transmit, receive, and interact with other related
applications. Increasingly, web-based third-party services are a cost-effective method
of analyzing, managing, and working with large volumes of information. Integrating
our application demonstrates Django's flexibility in this area.

Summary
In this chapter we've covered several different facets of manipulating data from our
Django application. This included:

Machine-accessible API functions
Human and machine-readable feed exports
Visual display output to PDF
Transmission to and from a web-based service

We've seen that it is very easy to work with data from our Django application,
convert it to new formats, transmit it across the wire, and display it in powerful
ways. As Django is written in Python the ecosystem of tools becomes very liberating
here. In addition to ReportLab, there are a dozen other graphical report and charting
tools available in Python. We could have written an entire chapter on any one of
them. This continues to demonstrate the advantages of Django as a web-framework.

•

•

•

•

Creating Rich, Interactive UIs
JavaScript is a browser-based programming language that allows front-end
developers to build everything from simple enhancements to full-blown
applications. In this chapter, we will explore the use of JavaScript to enhance
web applications and integrate them with Django. These enhancements include:

Writing effective, clean JavaScript
Serializing Django models into JSON
Utilizing JavaScript framework utilities
Progressive enhancement
Building an AJAX rating tool

The history of JavaScript implementations has been bumpy and inconsistent. We will
spend the first part of this chapter reviewing some JavaScript basics and highlighting
some of the language's peculiarities. Despite these problems, JavaScript is an
exciting, powerful programming language that has grown from providing simple
HTML enhancements to powering large, browser-based UIs.

JavaScript: A quick overview
The foundation of JavaScript includes features and philosophies from a variety
of programming paradigms. It has a syntax that resembles C, advanced features
derived from functional programming, and it's own, extremely powerful
event-driven programming interface.

There are many web developers programming in JavaScript, but unfortunately
there are a lot of bad habits around and language ignorance exists. Developers are
often required to write JavaScript without adequate training or resources. This is
further exacerbated by the practice of snippet programming, which is very prevalent
amongst some web developers.

•

•

•

•

•

Creating Rich, Interactive UIs

[146]

Understanding event-driven programming and the close relationship between
JavaScript events and the browser are key to developing in the language. An
event-driven language focuses on handler functions that execute only when the
environment enters a certain state (called an event). Browsers fire events for almost
everything that happens: when the mouse moves, when a link is clicked, or when
a form is submitted.

We program in JavaScript by writing handler functions and attaching them to
events. These are called listeners and there can be many listeners operating on the
same event types. An important source of frustration for most developers is the
inconsistency of event handling between browsers. This is the source of JavaScript's
somewhat unfair reputation as a bug-prone language. Because the specific event API
was not standardized early in web browser development, some browsers exhibit
vastly different behaviors (or no behavior at all) for the same state or event.

As in many other web technologies, early Internet Explorer versions implemented
drastically different versions than their competitors. These problems, which
originated almost a decade ago, persist to this day because of the number of
users who are still using old versions of this browser.

Fortunately there are numerous solutions that now exist to handle these
cross-browser problems. The best is to employ a JavaScript framework. These
frameworks have been designed to handle all of the special-case situations that are
browser dependent, without the developer needing to think, or even know, about
them. At the time of this writing, the most popular frameworks include jQuery YUI,
Dojo, and dozens of others.

In Django 1.2, jQuery is included with the framework as part of the media files in the
automatic admin module, django.contrib.admin. This gives jQuery a somewhat
special status as far as JavaScript frameworks and Django are concerned. In the
future it will likely be used to provide enhanced UI functionality in the built-in
admin interface. Despite this blessing by the Django team, developers remain free
to use whatever JavaScript framework they want in their own applications.

By using a framework, developers can write better, faster, more compatible JavaScript,
and focus on the specific tasks at hand, not squashing browser-based bugs.

In addition to event-driven programming, JavaScript has a few other odd features
that cause problems for many developers. One is the lack of modules, namespaces,
and other methods of organizing code. All functions and objects defined in
a JavaScript file enter the browser's global namespace. This can cause major
headaches and extremely difficult debugging scenarios.

Chapter 8

[147]

This lack of modularity has many workarounds. Some frameworks, like YUI,
provide a single global object to which developers can attach their own objects and
functions. Other times, developers will wrap their JavaScript files in an anonymous
function that will prevent exposing local variables to the global namespace. This
looks like the following snippet:

(function() {
// Javascript code

}());

The other major practical consideration most developers encounter is the division
of code amongst files. Using a typical development approach, it would be easy to
segment your JavaScript application into a half-dozen or more .js files. This is
good practice in any language, including JavaScript, but when it comes time for
deployment a major problem looms.

JavaScript files must be embedded in the web pages they will be used. The addition
of six .js files to a web page will incur a significant performance hit in the form of
six additional client-server HTTP requests, download times for each file, and the
separate parsing of each by the browser.

Arguably, the biggest issue here is actually the multiple server requests. Many
web applications will not have a need to optimize to this level, but if you do, a
six-fold increase in the number of requests needed for your JavaScript files is
probably unacceptable.

What is needed is a JavaScript build tool. Often these are custom, hand-written
scripts specific to the project at hand, but they almost always seek to do two things:
concatenate and minify.

Concatenating JavaScript files is exactly what it sounds like: taking several files and
stringing them together to form a single, larger file. This single file is then served to
each web page, instead of each individual file. This has the advantage of allowing
developers to segment their code in a manageable way, but avoids the performance
penalties when deploying to the server.

Minification is a process by which the JavaScript is shrunk. Similar to with
compression, when a .js file is minified a variety of tactics are used. Whitespace
is usually removed; long variable and function names are replaced by shortened,
single character names, and so on. The original minification process was developed
by Douglas Crockford and is called jsmin.c. It has since been ported to a variety of
languages and used as the basis for other development tools, like Packer and YUI
Compress.

Creating Rich, Interactive UIs

[148]

Minification occurs in addition to any client-server compression in use with our
web servers. It also has one major disadvantage: minified code is almost unreadable
and effectively impossible to debug. Still, the performance and bandwidth benefits
are worth it and most serious web applications should take advantage of both
concatenation and minification in their build process.

JavaScript Object Notation
Another key component to modern JavaScript development is JSON, which stands
for JavaScript Object Notation. JSON is a data format typically used for transmitting
data over the wire from a web application's back-end to client JavaScript running in
the browser. It has other uses too: it can be used as a general purpose data format,
a configuration file format, and more. Usually, though, it is used in dynamic
web applications.

JSON's use has grown rapidly in some web development communities. It is now
preferred by many developers for data exchange and largely takes the role formerly
occupied by XML in many development shops. XML was a key component in AJAX
programming, which is still the commonly used acronym for these types of dynamic
JavaScript applications. However, many developers have recently begun abandoning
the XML portion of AJAX for JSON due to its lighter weight, direct translation path
into JavaScript objects, and generally simpler implementation requirements.

In fact, JSON is essentially JavaScript's built-in object notation with some additional
rules to ensure it can be properly transmitted between machines. JSON also bears a lot
of resemblance to object syntax in other languages. Specifically, it looks very similar
to a Python dictionary. By sticking to a simple, common syntax, JSON avoids XML's
angled bracket tax that sometimes makes reading and writing XML data more tedious.

Python and Django include special modules for converting Python objects into JSON
strings. We saw how this could be done in our discussion of django-piston and the
API design in Chapter 7, Data and Report Generation.

Event-driven programming
Event-driven programming is a programming technique geared around the idea of
events and listeners. An applications behavior is controlled in a non-linear fashion:
when the user takes action, it results in an event. That event can have one or more
functions listening to it and when it fires, those listeners go in to action.

For example, all <a> tags in modern browsers support a click event. This is fired
when the user clicks a link embedded in the web page. Using JavaScript, developers
can write a listener function that responds whenever a link in an <a> tag is clicked.

Chapter 8

[149]

Usually a browser will follow a link by loading the referenced URL as a fresh page
in the browser. By listening for click events, however, we can prevent this default
behavior or enhance it in some way. This is useful when developing interactive tools
because we can design a user interface using <a> tags that have no href attribute,
listen for clicks on them, and perform updates to the UI as necessary.

Web browsers provide event hooks for almost every-minute detail of user
interaction. We can detect when the user pushes down a keyboard key and when
they release. We can listen for mouse movements as well as mouse button clicks.
Events are fired when the browser window is changed in some way, like being
resized or when the back button is pressed.

By hooking into these events we can build very powerful applications that do almost
anything inside the browser that we could imagine. Event-driven programming is
at the heart of JavaScript. Not all browsers support all events the same way, so it's
recommended that developers working in JavaScript test their code across several
browsers. There are also many references online and in book form. A particularly
useful website is QuirksMode.org.

JavaScript frameworks: YUI
We will briefly introduce two JavaScript frameworks in this chapter. The first is YUI,
which was developed by Yahoo! and is used in web applications throughout the
Yahoo! website. It is a very extensive, very centralized, and professional framework.
Its official homepage is: http://developer.yahoo.com/yui/.

YUI includes more than just JavaScript tools; it also provides a CSS framework that
standardizes font sizes and other settings across all browsers, including a reset.css
that sets the same set of defaults across all browsers. In addition, you currently have
a choice between YUI versions 2 and 3. The two are similar, but version 3 differs
enough from its predecessor that tutorials and other web-based resources are not
completely caught up.

YUI takes a more kitchen sink approach than some libraries. It includes a lot of very
powerful built-in utilities, as opposed to using extension plugins. These utilities
include everything from standardized event listener routines to full UI widgets,
such as auto-complete fields, dialog panels, and data tables. It also includes very
high-quality, extensive documentation.

As mentioned earlier, concatenating and minifying JavaScript is important to
improve script performance and simplify development. YUI includes a configurator
tool that automatically constructs the appropriate .js file for use in our web
application's <link> tag. This tool lets us choose individual components and
rolls them up into a single file, which can be served directly from the YUI site.

Creating Rich, Interactive UIs

[150]

JavaScript frameworks: jQuery
JQuery is another excellent JavaScript framework. It takes a slightly different
approach from YUI in that many of the utilities are provided through plugins, often
developed by community developers. The community around jQuery is very large,
the code is of an extremely high quality, and the documentation is generally very
good. There is also a great deal of print and web-based resources dedicated to
this framework.

The jQuery philosophy is to be efficient and fast, allowing developers to write the
least amount of code necessary. The hallmark of any jQuery script is the $ object.
This is the main interface to jQuery and is used all over the place. Its primary
function is to act as a DOM selector. This means it selects and returns elements from
the HTML document within which our jQuery script executes. To select all anchor
tags, for example, we can use the following syntax:

$("a")

Developers new to jQuery's way of doing things may be surprised at first by how
easy it can be. The best place to begin learning the framework is to work through
the tutorials at http://docs.jquery.com/Tutorials.

Graceful degradation and progressive
enhancement
Graceful degradation and progressive enhancement are two terms used to describe
an effective approach to developing web-based applications using JavaScript. The
goal is to obtain compatibility with the most browser configurations as possible
while providing as much enhanced functionality as we can.

There are a lot of potential risks when developing in JavaScript and the biggest is
that different browsers implement their own version of the JavaScript and DOM
APIs. Recent browsers do a great job of standardizing their implementation to be
as compatible with other browsers as possible. But older browsers differ wildly.

By employing graceful degradation and progressive enhancement techniques,
you can ensure that even when your JavaScript code breaks, the user is still able
to accomplish their task.

The other goal is to work with browsers that do not support JavaScript at all. This
may seem odd at first; after all don't all modern browsers support JavaScript? Unless
the user has disabled support on purpose, they should be able to parse our scripts.

Chapter 8

[151]

While true, this point of view is short-sighted because it excludes the increasing
population of users who are interacting with web applications using devices other
than a computer. This includes mobile devices, everything from iPhones to basic
cell phones, which have very different implementations of JavaScript.

Many other new devices are web enabled and more become so every day. Video
game consoles have web browsers built-in, as do some television sets. With new
kinds of internet appliances, refrigerators with LCD screens, clock-radios, and
mysterious Apple tablets, the list continues to increase.

Designing for such myriad products is only going to get more difficult and JavaScript
really complicates the matter. The best bet to support the widest range of devices is
to employ progressive enhancement. Remember that the applications we build today
could exist for years beyond what we expect; we want to ensure they'll be compatible
as much as possible with whatever comes next.

To build a progressively enhanced version of your application requires a fair amount
of design and planning. But the benefits, especially over the long term, can be
decreased maintenance, better user experience, and higher-quality code.

Creating product ratings
One of the innovations in e-commerce web applications has been the use of
user-generated content in the form of product reviews and ratings. We've seen some
of this in our implementation of customer reviews earlier in the book: users could
write short comments about any product in the product catalog. This is too much
unstructured information, however. Numeric or star ratings are a more structured
alternative that can be provided by users more simply. We can use this as a form
of feedback, too, and generate an average rating for all of our products.

Ratings are intended to be quick, easy feedback for customers who wish to
contribute, but are not interested in writing a full comment. Many ratings examples
exist and it is now a well recognized and even expected idiom for web-based
product catalogs.

Using traditional HTTP POST forms, though, does not provide the user experience we
would like. It is almost a requirement that we use JavaScript for this type of interaction
because users have grown so accustomed to the instant, uninterrupted experience.

In addition to the usability needs of our users, we also need to make sure we capture
the rating information in our Django backend. JavaScript and AJAX techniques
are the only universal mechanisms of providing this functionality across all
browser technologies.

Creating Rich, Interactive UIs

[152]

The ratings tool will divide cleanly into two separate aspects: the Django module
that lives on the backend and the JavaScript that lives in the browser. We will create
our Django module first as a new application in our coleman project, which we will
call ratings.

The ratings app will include an extremely simple model that allows us to associate a
numeric rating submitted by a user with one of any of our products. In the interest of
reuse, we will not construct a ForeignKey directly to our product model, but instead
use Django's contenttypes framework to create a GenericForeignKey. This allows
us to rate objects other than just products. Perhaps later we'd like to allow users to
rate manufacturers or other entities as well.

Our rating model looks like this:

class Rating(models.Model):
 rating = models.IntegerField()
 content_type = models.ForeignKey(ContentType)
 object_id = models.PositiveIntegerField()
 content_object = generic.GenericForeignKey('content_type',
 'object_id')

Next we need to build a view through which our JavaScript code can interact with
Django, submitting a rating from a user that Django will record as a new Rating
object. Django's HttpRequest objects allow us to test whether our view is accessed
via AJAX (that is using XMLHttpRequest) or using a standard HTTP request. This
method is called is_ajax() and is available on any HttpRequest object.

There are some cases where a view would be designed to handle either an
AJAX-style request or an HTTP request. By checking is_ajax, we could branch
and return JSON when AJAX is used or render a standard template in the non-AJAX
case. For our simple rating view, however, we will only handle AJAX calls and
raise a not found message otherwise. The following simple example illustrates
this technique:

def myview(request):
 if request.is_ajax():
 # do something ajax-y
 return HttpResponse(...)
 else:
 raise Http404

Chapter 8

[153]

Design aside: User experience and AJAX
The previous code segment is very simple, but it has an important implication:
we are only handling the AJAX case. That means the interface for ratings in our
application will only work for users who have JavaScript enabled. This could violate
graceful degradation so we must be careful how we implement it in the browser.

This example is intended to illustrate a point about the Web and user experience: it's
often difficult to implement advanced functionality in browsers without JavaScript.
But it is important to provide these users with an excellent browser experience.
Without AJAX, our star-based rating system would require several page loads and
an awkward form. In the early days of the Web, this would be commonplace, but
on modern sites they're rare and confusing.

Distracting the user with two click-throughs and a form to fill out distances us from
the rating tool's original goal: to allow for quick and simple customer feedback.
In e-commerce applications, such distractions could be costly. It's a philosophical
decision, but in many cases it would seem better to drop the functionality altogether
than to wreck the user experience.

An excellent way to design for these user-experience issues is to examine what others
do. Netflix and Amazon produce some of the best AJAX-powered interfaces on the
Web. Simply disabling JavaScript in your browser and using sites such as these can
reveal a whole other world. You'll notice functionality missing that you may be used
and sometimes functionality is replaced with a gracefully degraded interface.

Another factor to consider in all of this is development time. If your non-AJAX
interface adds twice the development cost and actually hurts the user experience,
it is probably a bad business decision. On the other hand, if your functionality is
critical and must support all browsers, but you'd like to offer an enhanced version
to JavaScript-enabled browsers, then the effort may well pay off.

In fact, this is really what graceful degradation in web interface design should be
about and is often called progressive enhancement. First build it without JavaScript or
any expectation that it will ever use AJAX. When it's built and working, layer AJAX
on top, perhaps by adding an autocomplete field instead of a regular text field or
make the form submission asynchronous so that the user's browser does not advance
to a new page. Working backwards like this is a great way to ensure your web
interfaces work well for all users.

Creating Rich, Interactive UIs

[154]

Often you don't care about this or you're building something so complicated that
it cannot be done through any other means. As the population of users without
JavaScript is relatively small, it is becoming increasingly common to ignore them
for complex tools. Be warned, though, that many mobile-enabled browsers have no
JavaScript support and if your application is at all targeted toward mobile users, you
should ensure to accommodate their entire browser.

This is an increasingly difficult issue, because supporting the whole range of
browsers is difficult, costly, and time consuming. When planning a web-based
application, this should be a major consideration. It can be difficult to restrict
development from the cutting edge just to ensure the small percentage of users
without JavaScript can use it. The ramifications of failing to do so will differ across
businesses, though, so the decision should be made specifically for one's own
application in their own industry.

Product rating view
With these design considerations in mind, we can begin to construct our rating
view. Because our aim is to keep the ratings app reusable, our rating view should be
written to support ratings for any Django model type. Our rating model does this by
using django.contrib.contenttypes and GenericForeignKey.

There are a variety of ways to handle this situation, but almost any solution for the
view will also involve the contenttypes framework. We can construct the view in
such a way as to include an object_id and content_type parameter. With these
two parameters we can obtain the ContentType object and do with it whatever we
need. We've seen some of this before and it is a common need in Django applications.

Our ratings app views.py file will appear as follows:

from django.contrib.contenttypes.models import ContentType
from django.core.serializers.json import DjangoJSONEncoder
from django.http import Http404
from django.db.models import get_model
from coleman.ratings.models import Rating

def lookup_object(queryset, object_id=None, slug=None, slug_
field=None):
 if object_id is not None:
 obj = queryset.get(pk=object_id) elif slug and slug_field:
 kwargs = {slug_field: slug}
 obj = queryset.get(**kwargs)
 else:

Chapter 8

[155]

 raise Http404
 return obj

def json_response(response_obj):
 Encoder = DjangoJSONEncoder()
 return HttpResponse(Encoder.encode(response_obj))

def rate_object(request, rating, content_type, object_id):
 if request.is_ajax():
 app_label, model_name = content_type.split('.')
 rating_type = ContentType.objects.get(app_label=app_label,
 model=model_name)
 Model = rating_type.model_class()
 obj = lookup_object(Model.objects.all(), object_id=object_id)
 rating = Rating(content_object=obj, rating=rating)
 rating.save()
 response_dict = {'rating': rating, 'success': True}
 return json_response(response_dict)
 else:
 raise Http404

The important part is the view itself: rate_object. This view implements the
ContentType retrieval we've been talking about and uses it to create a new rating
object. The rating view parameter should be a positive or negative integer value,
though our application logic could use text values that are converted to appropriate
integers if we were interested in writing cleaner URLs.

The json_response helper function takes an object and serializes it to JSON using
the built-in DjangoJSONEncoder. This encoder has support for encoding a few
additional data types such as dates and decimal values. There is room for improving
this function later, by implementing our own custom JSON encoder class, for
example, so it's helpful to breakout this code into a small function.

Finally, the lookup_object helper function is something we've seen in earlier
chapters. Its job is to retrieve a specific object from a QuerySet given an id or slug
value. There are many variations on this function; we could have passed a Model
class instead of QuerySet, for example. But the primary goal of all of them is to
perform generic lookups.

With our view in place, we can now create rating URLs for all of our Django objects.
We can integrate these URLs into a star-rating tool in our templates and ultimately
manage their use using JavaScript.

Creating Rich, Interactive UIs

[156]

Constructing the template
Creating a rating tool in our template has three components: the tool's image content
(stars or dots, and so on), CSS to activate the appropriate rating on hover, and the
JavaScript that handles clicks and submits the rating to our Django view. This section
will focus on the first two tool elements: the image and CSS.

There are a variety of star rating CSS and image examples on the Web. Some are
licensed for reuse in applications, but not all. The technique detailed in this section
is a simplified version of the one demonstrated by Rogie at Komodo Media at the
following URL: http://www.komodomedia.com/blog/2005/08/creating-a-star-
rater-using-css/. Rogie has written about other approaches to this problem,
including some with better cross-browser support. See the tutorials at
komodomedia.com for additional information.

We have created the stars images for this book using a simple graphics editor and
the star character from the Mac OS X webdings font. The star has two states: inactive
and active. Thus we need two images, one for each state. The star images are
shown below:

With our stars created, we can begin developing a set of stylesheet rules that reveals
our creation. The CSS rules need to decorate <a> tags so that we have a hook for
our JavaScript code later. Let's start with the following basic HTML, which we will
enhance as we go:

Rate 1 Star
Rate 2 Stars
Rate 3 Stars
Rate 4 Stars

Chapter 8

[157]

Notice our href attribute is not yet filled in. We will be using Django's {% url %}
template tag to handle this URL, but for clarity it will be omitted until later. The
next step is to add class declarations for each of the four types of rating actions:

Rate 1 Star
Rate 2 Stars
Rate 3 Stars
Rate 4 Stars

Adding CSS classes to our <a> tags gives us a place to begin when styling our star
rating tool. We will also want to wrap the whole set of rating links in a tag and
each individual link in :

<ul class="rating-tool">
 Rate 1 Star
 Rate 2 Stars
 Rate 3 Stars
 Rate 4 Stars

Wrapping the links as an unordered list lets us make sure the links are displayed
horizontally, as a set of side-by-side stars.

Now that we have our HTML ready, we can begin writing CSS rules. The first rule
applies to our class. It will let us define the size of our rating tool and sets the
background to our inactive star image.

.rating-tool {
 list-style-type: none;
 width: 165px;
 height:50px;
 position: relative;
 background: url('/site_media/img/stars.png') top left repeat-x;
}

Because our star image is 40 pixels wide and 50 pixels tall, the size of our rating tool,
which will support four stars, is set to 165 pixels wide.

Next we style the elements so that they align horizontally instead of vertically.
There are several ways of achieving this, but here we will use the float: left rule:

.rating-tool li {
margin:0; padding: 0;
float: left;
}

Creating Rich, Interactive UIs

[158]

With our tags style appropriately, we can start styling the <a> tags themselves.
These tags are the crux of our rating tool. We must ensure several things to make this
work: that the link text is hidden, that each <a> width is set to match the width of an
individual star, and that we position the <a> completely within our rating-tool .
We will also set the z-index rule, which will function as an image mask:

.rating-tool li a {
 display: block;
 width: 50px;
 height: 50px;
 text-indent: -10000px;
 text-decoration: none;
 position: absolute;
 padding:0;
 z-index:5;
}

Each <a> also defines a :hover pseudoclass. When the link is hovered, the
background is changed using a CSS image replacement technique and the z-index
mask is adjusted to show only the portion of stars currently hovering. In other
words, when the user hovers over the second star, they should see both the first
and second stars activate. This is completed with the help of the next set of rules:

.rating-tool li a:hover {
 background: url('/site_media/img/stars.png') left bottom;
 z-index: 1;
 left:0px;
}

Each anchor tag should define a new width for itself specific to which star we're
revealing. The fourth star is going to reveal the entire rating tool by setting a width
of 200 pixels when hovered. These rules work in conjunction with the previous,
more general set of rules.

.rating-tool a.one { left: 0px; }

.rating-tool a.one:hover { width: 50px; }

.rating-tool a.two { left: 50px; }

.rating-tool a.two:hover { width: 100px; }

.rating-tool a.three { left: 100px; }

.rating-tool a.three:hover { width: 150px; }

.rating-tool a.four { left: 150px; }

.rating-tool a.four:hover { width: 200px; }

Chapter 8

[159]

This finishes the CSS rules for our rating tool. You can see the results of this design in
the following screenshots:

Creating Rich, Interactive UIs

[160]

The activation state of the rating tool reveals yellow stars when the mouse hovers
over the rating control, as in the following screenshot:

This is just one of many possible techniques for implementing a rating tool. It works
well because it uses a pure combination of HTML and CSS for the graphics effect.

One last step is required before we can begin work on the JavaScript code that will
power our rating tool. Earlier we mentioned that we purposefully excluded the
href attribute for our <a> tags. We now need to wire these up to our Django view.

To do this we will use Django's built-in {% url %} tag and a named URL pattern.
Our rating view from the previous section lives in coleman.ratings.views. Our
urlpatterns will then look like this:

urlpatterns = patterns(
 '',
 url(
 r'^(?P<content_type>[^/]+)/(?P<object_id>\d+)/(?P<rating>[1-
5])/$',
 'coleman.ratings.views.rate_object',
 name='rate_object'),
)

Chapter 8

[161]

Using the url() function, we can create a named URL pattern, which we've called
rate_object. Using a named URL pattern means we can reference it easily from
templates using {% url %}.

The {% url %} template tag takes a path to a view or the name of a URL pattern.
For example, we could have written:

{% url coleman.ratings.views.rate_object ... %}

But when a view could potentially be used in multiple URL patterns, it's easier to use
a named URL:

{% url rate_object ... %}

Using the {% url %} tag is an important habit because it prevents the hard coding of
absolute URLs into HTML templates. This will save tremendous amounts of time if
we ever decide to change our view or change the layout of URLs on our site. Instead
of manually having to rewrite each href attribute that linked to the changed URL,
Django will do it for us automatically.

The {% url %} tag also takes arguments to be passed on the URL line and
will construct the appropriate URL using these arguments. For example, our
rate_object view takes three arguments: content_type, object_id, and rating.
These correspond directly to our view function arguments. A rating URL may look
like this:

/rating/products.Product/125/4/

This translates to giving a four rating to the Product with the primary key 125. We
could hard-code this in using template variables, but instead we'll use the {% url
%} tag. Assume that the template receives a template variable named object that
contains the Product we will be rating. An equivalent {% url %} tag will look
like this:

{% url rate_object content_type='products.Product' object_id=object.
id rating=4 %}

Notice how we are still able to reference template variables, like object, in the tag.

Now that we have a working {% url %} tag, we can integrate into the HTML for
our rating tool. Each star will correspond to a rating with a matching value from one
to four. The Django template code will look like this:

<ul class="rating-tool">

 <a class="one"
 href="{% url rate_object content_type='products.Product'

Creating Rich, Interactive UIs

[162]

 object_id=object.id rating=1
 %}">Rate 1 Star

 <a class="two"
 href="{% url rate_object content_type='products.Product'
 object_id=object.id rating=2
 %}">Rate 2 Stars

 <a class="three"
 href="{% url rate_object content_type='products.Product'
 object_id=object.id rating=3
 %}">Rate 3 Stars

 <a class="four"
 href="{% url rate_object content_type='products.Product'
 object_id=object.id rating=4
 %}">Rate 4 Stars

Writing the JavaScript
We will build our JavaScript rating tool using YAHOO's YUI JavaScript utilities
discussed earlier in the chapter. These utilities simplify the code considerably and
insure against cross-browser compatibility problems.

In order to take advantage of the YUI library, we have to embed it in our templates
using a <script> like normal JavaScript code. The following <script> will bundle
all of the YUI utilities we'll be working with:

<script type="text/javascript" src="http://yui.yahooapis.com/
combo?2.8.0r4/build/yahoo-dom-event/yahoo-dom-event.js&2.8.0r4/
build/connection/connection_core-min.js&2.8.0r4/build/json/json-
min.js"></script>

That long string of a URL in the src attribute is generated using YUI's excellent
dependency configurator. This will automatically choose the most efficient script
tag to embed in your application based on the YUI modules you are using. You can
access the configurator via: http://developer.yahoo.com/yui/articles/hosting/.

Chapter 8

[163]

Our JavaScript code is divisible into three parts: the main routine, which listens for
the browser's ready event and kicks off our other code, a function to set up our click
listeners, and a handler routine that takes action when a click is detected.

The main routine is very simple and is run as soon as the browser loads our
JavaScript file from the server. This should happen late in the page load process and
we can take an extra step to encourage this by embedding our <script> tag at the
end of our template's <body>.

When the script loads, we will instruct YUI to set up another listener. This time we'll
be listening for a DOMReady event. This is one of the ways YUI helps us: the DOMReady
event is a YUI construct that will fire when our page's DOM has stabilized. This
means the elements have rendered and the HTML has been fully parsed. This is
part of YUI's Event utility package and we use it like this:

YAHOO.util.Event.onDOMReady(init);

The init part is a function we will write called init. When the YUI tool has detected
the DOM is stable, this code will call init and execute its function body. Let's write
the init routine now:

function init(e) {
 var rating_tool = document.getElementById('rating'),
 rating_links = rating_tool.getElementsByTagName('a');

 for (var i=0; i < rating_links.length; i++) {
 YAHOO.util.Event.addListener(rating_links[i], 'click',
handleClick, i+1);
 }
 }

The init function gathers up the <a> elements on our pages that are used for our
rating tool. It does so by finding the tag, to which we've added the ID attribute
rating. It then loads all the <a> elements within the rating tool's tag and begins
to process them.

As the code loops through all of our <a> ratings, it attaches to each one an event
listener. These listeners all employ the same function: handleClick. It also includes
the counter variable i, which we use to keep track of which stars were clicked.

At this point code execution stops. Nothing else happens during the page load
process and our user can go about their business. Eventually, they will find a
product they like and attempt to give it a rating. When they click on the <a> tag
corresponding to their star rating, it will activate the handler we set up in the
init function.

Creating Rich, Interactive UIs

[164]

These click handlers are where the magic happens. They need to do several things.
First, they prevent the browser from taking the usual action when you click on an
<a>. This is typically to load the next page, linked to via the href attribute. If we do
not prevent the browser from doing this, we'll transport the user to a possibly broken
URL or otherwise break our JavaScript.

YUI will automatically provide the handleClick function with its first argument.
This is an event object that contains information about what event has fired and
what object it has fired on. It is a very useful object and we will need it shortly.

It is possible to prevent default behaviors using pure JavaScript, but the YUI routines
perform better across all browsers. Events and event handling is one area where
browsers can differ greatly. The YUI Event utility provides a preventDefault
function that we can use to stop the browser from performing its usual action:

YAHOO.util.Event.preventDefault(e);

In the above code, e is the event object YUI has passed to our handler function. This
call to preventDefault on the event object will cease the browser's default behavior
as soon as our handler completes execution.

The next task our handler needs to perform is to submit the rating to our Django
backend. This will finally link the frontend to the backend code we wrote earlier.
We want to submit this information asynchronously. This means the browser will
send off the request to our Django rate_object view and then go about its business,
allowing the user to continue to interact with our application.

When Django has finished processing the request, the browser will be notified
and an event is fired. This event is handled by code we set up at the time of the
asynchronous call. We will use YUI's Connection Manager to perform this
operation, which greatly simplifies this process.

First, we need to define our callback handler. YUI's Connection tool uses a JavaScript
object with success and failure properties. These properties are functions that will
run in the case of a successful response from the server or an unsuccessful one,
respectively. Unsuccessful asynchronous calls are the result of the standard kinds
of HTTP failure conditions: 404 and 500 errors, especially.

The callback handler object will look like this:

callback = {
 success: function(o){
 var result = YAHOO.lang.JSON.parse(o.responseText);
 if (result.success == true) {
 alert("You've rated this object " + result.rating);
 }

Chapter 8

[165]

 },
 failure: function(o){
 alert("Failed to rate object!");
 }
 };

Note that we've taken a very simplified approach here, notifying the user of their
rating via alert(). A production setup would likely want to take additional steps
to update the UI to indicate a rating had been made, possibly by modifying the CSS
rules we detailed earlier.

There are a couple of other things going on as well. First, both the success and
failure functions receive an object o. This object contains information about the
asynchronous call. To access the raw server response in either case, for example,
you can use the o.responseText property.

Our success function employs another YUI tool, the JSON utility. This includes a safe
JSON parser. Our o.responseText will contain JSON data but will contain it as a
raw JavaScript string. One way to convert this JSON to actual JavaScript data objects
is with eval. But eval can be dangerous and YUI's JSON utility provides us with
a safe parse function to evaluate the server's response.

Once evaluated, the result variable contains a standard JavaScript object with
properties translated from the JSON sent back from the server. We can use this
as we would any JavaScript data.

With our callback handler in place, we can return to the Connection Manager
call we began to make a few paragraphs ago. This call needs two other pieces of
information: the HTTP method to use and the URL to send our asynchronous
call. The method is simply the usual HTTP GET or POST. Our Django view has no
particular method requirement so we will use POST.

The URL part is more difficult. Remember when we developed our Django template
we included the rating URL using the {% url %} template tag. We can now extract
that URL and use it with our connection manager function.

To access the appropriate URL, we again use our event object provided by the event
utility. Using the YUI event module's getTarget function, we can obtain the <a> tag
that was clicked. This <a> tag will contain the URL we need in its href attribute:

var target = YAHOO.util.Event.getTarget(e)

We can access the href via the getAttribute DOM method:

var url = target.getAttribute('href')

Creating Rich, Interactive UIs

[166]

We're now ready to send off our asynchronous request, by calling the YUI
Connection Manager's asyncRequest function:

YAHOO.util.Connect.asyncRequest('POST', url, callback)

The complete JavaScript routine for our rating tool appears as follows:

(function(){
 function handleClick(e, count) {
 var target = YAHOO.util.Event.getTarget(e),
 url = target.getAttribute('href'),
 callback = {
 success: function(o){
 var result = YAHOO.lang.JSON.parse(o.responseText);
 if (result.success == true) {
 alert("You've rated this object " + result.rating);
 }
 },
 failure: function(o){
 alert("Failed to rate object!");
 }
 };

 YAHOO.util.Event.preventDefault(e);
 YAHOO.util.Connect.asyncRequest('POST', url, callback);
 };

 function init(e) {
 var rating_tool = document.getElementById('rating'),
 rating_links = rating_tool.getElementsByTagName('a');
 for (var i=0; i < rating_links.length; i++) {
 YAHOO.util.Event.addListener(rating_links[i], 'click',
 handleClick, i+1);
 }
 }
YAHOO.util.Event.onDOMReady(init);
}());

Chapter 8

[167]

Debugging JavaScript
JavaScript is notoriously difficult to debug. In our rating tool example there are many
potential failure points. Primary among them is what happens when Django fails
to return a correct response. We will be notified of this case because of the failure
function in our callback object.

But how do we debug the problem? There is an increasing amount of tools available
to perform debugging of this sort. Two of the simplest and easiest to get installed are
FireBug, for FireFox, and Safari's Web Developer functions, which now come with
Safari 4.4 and Google Chrome.

These tools let you inspect the HTML DOM, see the JavaScript error console, and
see the results of XHR calls, such as those made by asyncRequest. Any error page
that Django generates as a result of an AJAX call will be returned to these web
development debuggers in the resources section and can be inspected to determine
what exception Django has thrown and where it occurred in our view code.

Another common practice is to insert debugging alert() statements at critical
points in the JavaScript code. This is not an elegant method, and one has to be sure
to remove any debugging statements when pushing code to production use, but it is
quick and effective.

If using a JavaScript debugging tool such as Firebug (see above), another popular
debugging technique involves the console global object. This is a global variable
inserted by debugging tools to allow advanced debugging functionality. It can be
used similarly to alert statements by calling console.log() and passing a string to
log as debugging output. There are many additional functions in the console API,
though specific features may or may not be available depending on the browser or
debugging tool in use.

In addition, most JavaScript frameworks include their own set of tools for
debugging applications. See the documentation for your framework of choice
to get more information.

Creating Rich, Interactive UIs

[168]

Summary
This chapter has presented a simple example of using Django with enhanced,
AJAX-based user interfaces in the browser. There is much, much more to this
topic. In fact, entire books exist on this material alone.

We have given quick coverage to several important topics:

Writing Django views for AJAX applications
Building a functional JavaScript interface enhancement
Using the YUI framework for a real-world AJAX tool
Exploring the basic issues involved with JavaScript development

Django makes it very easy to build AJAX functionality into your project. Writing
successful JavaScript is harder, however, and it is highly recommended that those
who are interested in doing more pick up one of many excellent books available on
the language.

•

•

•

•

Selling Digital Goods
Selling digital goods and content presents unique challenges for e-commerce
developers. Though we don't need to worry about calculating shipping and
coordinating physical delivery, we do need to consider new factors, such as securing
download links and quickly verifying payments. This chapter will examine the
following advanced topics:

Using Amazon S3 for secure content-storage and delivery
Adding S3 storage to Django's file and image fields
Creating functions for working with Amazon's Aggregated Payments Service
Examining the use of Digital Delivery with Google Checkout

Different types of digital sales have different requirements. Selling a subscription
service is simpler than selling digital music or video files, for example. We will begin
with a survey of these two kinds of sales and present the technology considerations
for each. We'll then examine the features of Amazon and Google's digital payment
services and develop a rudimentary infrastructure for handling them in Django.

Subscription sales
A subscription-based sale describes a situation where our web application provides
access to a service for a fee on a recurring basis. This could be monthly, but it isn't
always. In the digital world, weekly or even daily subscriptions might make sense.

The issue of payment is complicated in subscription sales by automatic renewals.
Until recently, recurring subscription payments were not well supported in popular
payment processors. This is changing quickly and both Amazon FPS and Google
Checkout now offer built-in support for this type of payment.

•

•

•

•

Selling Digital Goods

[170]

A big advantage of subscription support in a payment service provider is that the
renewal process is handled automatically. The customer is billed and given a receipt,
while our applications are notified of the new order. Using some of the payment
processing techniques discussed earlier in this book, very little human intervention
is needed. The payment processor can also provide reminders, history, and other
information to subscribers about their payments.

Subscription services are useful in a wide variety of applications. The example that
immediately springs to mind is a content site that charges for access to premium
content. But this doesn't necessarily need to be text-based content. For example,
this type of payment is often used for access to web or desktop-based software.
It could also provide access to video or audio content, through a web browser or
desktop application.

Our applications for this type of service would need to keep track of user access level
and subscription status. When their subscription expires, the user's account should
be updated to prevent access. In Django, the built-in permissions system is rather
simple, but could be used to satisfy this need.

More complicated subscription tracking could be handled using a user profile model
or specialized Django application that tracks and manages subscription access.

Digital goods sales
Selling digital goods is trickier than subscription sales. For one, the user normally
downloads a digital asset after making their purchase. This may be a music or
video file, but it could also be a software download, a serial number and/or a
registration key.

Providing downloads complicates the matter in part because of potential for delays
in payment authorization. When selling a physical product, there is usually time
between the purchase request and packaging and shipping. This interval allows
the payment processor to authorize and charge payment.

Most users expect a digital download almost immediately, leaving us little time to
verify whether the user's payment is legitimate. This opens the possibility for fraud
or other failure states. Fortunately, the big payment processing services have taken
many steps to solve these problems with little inconvenience to the customer or our
application's usability.

After purchase, customers are typically given a special URL download link, either in
a response web page or through an e-mail. They can then download their purchase
from this link. This necessitates a storage scheme where only authorized, paying
customers are able to download content.

Chapter 9

[171]

It's also helpful to provide customers with the fastest possible download, not just
for their immediate convenience, but also to provide confidence in the service,
encourage repeat sales, and to cut down on support costs due to failed downloads.
A Content Delivery Network (CDN) is one possible solution to this problem, which
we will discuss later in this chapter.

Finally, there is the issue of securing the download. Often this involves providing
a special, one-time download link to the customer. This link ensures that our digital
good is only available to paying users. We will explore one method of doing this
using Amazon's S3 file storage service and their CloudFront content delivery service.

Content storage and bandwidth
Storage and bandwidth are important concerns when selling digital goods. Digital
content sales tend to involve the transfer of a significant amount of data. Video is
especially data intensive, as even with modern compression codecs, file sizes still
amount to hundreds of megabytes.

Even a moderately popular video download can quickly consume many gigabytes
of bandwidth. Imagine our fictional Cranberry Merchant website decides to sell a
short, 20-minute instructional video on Cranberry farming. The video is compressed
using a high-performance H.264 codec and is sold as a direct download (as opposed
to streaming).

The video quickly becomes a small hit and soon hundreds of amateur Cranberry
farmers are clamoring to learn from it. Over 200 downloads were sold in the first
day it launched. Each 30-minute, high-definition video file weighs in at 800MB.
Video sales consumed 160GB of bandwidth in a single day.

Every web hosting provider offers different bandwidth pricing. Some claim to offer
unlimited or several terabytes of bandwidth on their inexpensive shared hosting
plan. Buyers beware: it's unlikely these services would allow the relatively simple
scenario outlined in the last paragraph without seriously throttling connections or
shutting off the hosting account altogether.

More serious hosting providers typically offer a soft capped bandwidth service
included in the monthly hosting fees. Beyond this cap, the hosting provider usually
charges an overage fee per gigabyte. As of this writing, $0.30 cents per GB is a
common charge in these situations. In other cases no bandwidth is included in
the hosting plan at all and all bandwidth is charged by the gigabyte. These plans
typically hover around the $0.20 cents per GB range.

Selling Digital Goods

[172]

Let's assume our hosting provider offers 50GB per month in bandwidth, then charges
$0.30 cents overage. In a single day our overage usage hit $33.00 and for the rest of
the month we'll be paying for all the bandwidth we use. It should be noted, too, that
service providers offering plans like this may also struggle to keep up and could end
up throttling our customer's download connections if they occur all at once, or take
other steps to reduce the load on their networks.

In the alternative example, where we pay for all the bandwidth, our first day of sales
would rack up $32.00 in bandwidth fees at $0.20 per GB.

Bandwidth costs have implications for how digital goods are priced. Though most
of the time the sale price should easily cover bandwidth charges, it is still very
important to understand the pricing structure for our hosting provider. What if in
addition to for-sale video products, we also offered several free instructional videos
available for download or streaming? The consumption pattern of these videos
will likely differ greatly and must be accounted in our costs. If using the same
hosting system for website materials, including HTML, image files, and the like,
this bandwidth must also be included. Ideally the sale price of our video would
be able to subsidize the bandwidth required for the rest of the site.

As we can see, different situations can result in very complex cost structures.
Some applications choose to offload heavy content files, like video, to a service like
Amazon S3. At the time of writing, S3 charges begin at $0.17 per GB and can go
as low as $0.10 for extremely high volume users. This is among the best available.
Whether this is the most economical approach depends on a lot of factors, but the
difference between $0.10/GB and $0.30/GB overage represents a potential
two-thirds cost savings.

We will explore how to offload digital content files to Amazon S3 using Django,
including securing them as private download links in the next section.

Django and Amazon S3
By default, Django models with FileField use local filesystem storage for uploaded
files. Recent versions, however, have implemented an excellent pluggable storage
system. This means we can substitute our own file storage mechanism for the default
filesystem storage.

Custom storage can be implemented for almost any backend storage system.
Essentially anything Python can connect with and store data on can be used as a
storage backend. For many popular storage services, community plugins already
exist. One outstanding project is David Larlet's django-storages, available at:

http://code.welldev.org/django-storages/.

Chapter 9

[173]

The django-storages application supports lots of popular storage services and even
allows us to store our files in a database. For the purpose of this section, however,
we are interested in its support of Amazon's S3 storage service.

S3 stands for Simple Storage Service. It is a product from Amazon's Web Services
group that includes extremely competitive pricing for storage and bandwidth, a high
availability around the world, and special integration with the Amazon CloudFront
content delivery network. It also supports permissions-based authentication
mechanisms and a service-level agreement that covers very rare downtime.

Amazon S3 can be accessed using either a REST or SOAP API. Wrapper libraries
are available in almost all web-development languages, including Python. The
django-storages app mentioned bundles everything needed to use S3 as a storage
module. For developers interested in more direct access to S3 functionality, there is a
community project called boto, available on Google Code at: http://code.google.
com/p/boto/. In addition to S3, boto supports operations for the other Amazon Web
Services tools.

In part due to the excellent design of the S3 storage backend included with
django-storages, integrating S3 support into our Django models is relatively easy. In
most cases all that are required are a few additions to our Django settings file. These
settings specify the access keys for our Amazon S3 account, provided upon sign up
with the service.

An example settings configuration looks like this:

DEFAULT_FILE_STORAGE = 'backends.s3.S3Storage'
AWS_ACCESS_KEY = 'xxxxxxxxxxxxxx'
AWS_SECRET_KEY = 'xxxxxxxxxxxxxx'
AWS_STORAGE_BUCKET_NAME = 'content4sale'

These settings and the django-storages app are all that we need to convert our
FileField and ImageFields to S3. The AWS_STORAGE_BUCKET_NAME setting specifies
the S3 bucket where our files will live. S3 uses buckets somewhat like file directories
on the hard drive. Buckets only live at one level, though, meaning there are no
subdirectories or subfolders.

Files in a bucket are accessed using a key. This key effectively becomes a file name
and can simulate subfolder hierarchies by including the usual / character as part
of its key. For example, if we wanted to store videos in our bucket under a video
subdirectory, we could set the file key to something like this:

videos/cranberry_farming_intro.mp4

Selling Digital Goods

[174]

Technically this is not a file path, just a key that looks like one. However, web
browsers, humans, and other tools will generally not notice the difference.

File-level authorization and security takes place at the S3 service level and can be
managed with a variety of desktop and web-based tools.

We should also note that if we need to use a combination of S3 and filesystem
storages, we can do so by not setting the DEFAULT_FILE_STORAGE setting and instead
using the storage= keyword argument on the FileField or ImageField where
we'd like to store the results in S3.

Query string request authentication
Amazon's S3 service allows developers to provide access to private files stored in an
S3 bucket using Query String Request Authentication. This results in a URL that
can be accessed by third parties without any passwords or other complications.

These special URLs can include an expiration time expressed in UNIX epoch format.
Any request made after this time will be denied. This limits the potential for multiple
downloads and other abuses. It's not foolproof, but is a quick and easy solution
to the private downloads problem and it could be sophisticated enough for
many applications.

Implementing Query String Request Authentication is a matter of constructing a
standard S3 URL with a set of query string parameters. These parameters include
our AWS access key, the expiration time, and a signature. The signature is the key
component as it allows S3 to verify the validity of the requests made to the URL.

To create the signature parameter of the authenticated URL, we need to first create a
string that describes the request we'll be allowing access and specifies the expiration
time. We then apply the HMAC-SHA1 hashing function to the string, then base64
and URL encode the result.

AWS documentation includes more details on the process, including the specific
format of the string we need to generate. In short, this string will resemble
the following:

GET\n
\n
\n
1264516089\n

/files/movies/cranberry_instructional.mp4

Chapter 9

[175]

Note that the expiration time is required both in our request string and in the final,
authenticated URL.

An example method of generating the URL-encoded signature in Python is
as follows:

import hmac, hashlib
import base64
import urllib
s = """GET\n
\n
\n
1264516089\n
/files/movies/cranberry_instructional.mp4"""
digest = hmac.new(s, digestmod=hashlib.sha1).hexdigest()
digest64 = base64.b64encode(digest)
signature = urllib.quote(digest64)

Now that we have the signature, constructing the authenticated URL is simple. For
this example, our authenticated request URL will look like this:

/files/movies/cranberry_instruction.mp4?AWSAccessKey=0PN32DSASDX33&E
xpires=1264516089&Signature=M2IwNWU4MDYzOGVmOTIzZWNhMTNjZDA5OGJmYmU4
YWQ2N2Q3OTU1Yg%3D%3D

We can provide this URL to the customer after they purchase our instructional video
in an HTML template or e-mail, and they will have temporary access to download
the content in their browser. Currently there is no easy way to determine when a
third party has successfully completed an authenticated download. This could be
managed at the application level, however, by providing the user with a sufficient
amount of time before their URL expires and optionally allowing them to regenerate
an expired request for content they've purchased.

About Amazon AWS services requests
Communication with most Amazon web services can be handled using two different
methods: REST and Query or SOAP. The REST and Query approach has been used
throughout this book. It relies exclusively on standard HTTP functionality to pass
data parameters to AWS functions. This involves constructing and signing a query
string like that used in the previous section.

Selling Digital Goods

[176]

Amazon's AWS documentation guides use the following pseudo grammar to explain
how to construct this string:

StringToSign = HTTPVerb + "\n" +
ValueOfHostHeaderInLowercase + "\n" +
HTTPRequestURI + "\n" +
CanonicalizedQueryString

HTTPVerb is one of the usual HTTP methods like GET and POST. The host header
value is simply the web services hostname we will be submitting requests to (that
is. fps.sandbox.amazonaws.com or fps.amazonaws.com), and the URI is the path
portion of the HTTP request. Often this is just /.

The CanonicalizedQueryString phrase is the set of HTTP parameters, usually a
GET string, sorted, and excluding the signature parameter (which we will add before
making the request). These parameters are passed as normal to the web services URL
when we make the request. A partial query string looks like this:

version=2009-01-09&SignatureMethod=HmacSHA256&callerReferenceSender=jd
l_123123&FundingAmount=25.0&pipelineName=SetupPrepaid

SOAP interfaces use an entirely different approach and have not been implemented
for this book.

Amazon FPS for digital goods
One of the advantages of implementing Amazon Flexible Payments for digital goods
transactions is that the workflow is basically the same for physical or digital goods.
Using the FPS Co-Branded UI, your customers submit their payment to the Amazon
processor and are returned to a URL that was specified when the transaction started.
In the case of physical goods, this is usually a receipt or thank you page. For digital
goods, we would serve up the media download right away. Flexible Payment
Services was discussed in Chapter 4, From Payment to Porch: An Order Pipeline.

Amazon offers another API, however, that may be of interest to digital content
merchants. The FPS Aggregated Payments API is designed to aggregate many small
transactions into a single, combined transaction. This has many advantages, but the
most important is to reduce transaction charges.

An aggregated payment system is designed for applications that sell many different
products to the same customer within a short period of time. FPS Aggregated
Payments allows the developer to control many of these parameters. It also supports
prepaid instruments that work like gift cards or prepaid debit cards and allow the
customer to purchase from our application against an amount they pay up-front.

Chapter 9

[177]

Here are some simple examples of services where this sort of payment processing is
useful: single-song music sales, games with point or item purchases, and Facebook or
other social media applications.

The Aggregated Payments API has many of the features of the standard FPS service,
like refunds and instant payment notification. It also supports using either the
prepaid or postpaid aggregation.

Prepaid payments
The prepaid version of the API follows the same pattern as Amazon FPS. Customers
are initially driven to a Co-branded UI page via a Pay with Amazon link. Here
they submit their payment information, select a prepayment amount, and so
on. Upon completion, the user is returned to our application along with some
information from Amazon. We capture this information and allow the user to
browse and purchase.

When we make a sale, our application must communicate that fact with Amazon
FPS, including the information we captured after the customer's prepayment.
With future sales, we continue the process, updating FPS with the new purchase
information. Customers can check their balance from the Amazon Payments
website and FPS takes care of tracking transactions and balances.

Obtaining a prepaid token
Let's examine this process from the development side. The first step is to generate a
special URL where we will send the customer to authorize payment of the prepaid
amount. This requires the usual FPS steps of generating a query string and signing
it using the HMAC-SHA256 function. The following code constructs this URL:

CBUI_ENDPOINT='https://authorize.payments-sandbox.amazon.com/
cobranded-ui/actions/start'

def sign_aws_request(params, hostheader, url_path='/',
 http_method="GET"):
 import hmac, hashlib
 import base64
 import urllib
 keys = params.keys()
 keys.sort()
 sign_string = '%s\n%s\n%s\n' % (http_method, hostheader, url_path)
 for key in keys:
 sign_string += '%s=%s&' % (urllib.quote(key),

Selling Digital Goods

[178]

 urllib.quote(params[key]).replace('/', '%2F'))
 sign_string = sign_string[:-1]
 digest = hmac.new(settings.AWS_SECRET_KEY,
 sign_string, digestmod=hashlib.sha256).digest().strip()
 return base64.b64encode(digest)

def get_prepaid_token(ref_sender, ref_funding, amount, return_url):
 query_dict = {'callerKey': settings.AWS_ACCESS_KEY,
 'callerReferenceFunding': ref_funding,
 'callerReferenceSender': ref_sender,
 'FundingAmount': str(amount),
 'pipelineName': 'SetupPrepaid',
 'returnURL': return_url,
 'version': '2009-01-09',
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256'}
 signature = sign_aws_request(query_dict,
 'authorize.payments-sandbox.amazon.com',
 url_path='/cobranded-ui/actions/start')
 query_dict.update({'signature': signature})
 cbui_url = CBUI_ENDPOINT + '?' + urllib.urlencode(query_dict)
 return cbui_url

The URL returned from the get_prepaid_token function will be used as the href
attribute in our Pay Now link or button. This function needs four arguments.
The amount and return_url arguments are almost self explanatory. Amount
is the dollar amount we will allow the customer to prepay. The return_url is a
string representation of a URL in our application to return after the customer has
authorized payment. This URL is important because it will receive the response
data from the API request, which our application must process.

The remaining arguments, ref_sender and ref_funding, are somewhat mysterious.
The FPS documentation explains them like this:

callerReferenceSender: This is a unique identifier that you supply
to specify this payment token and the sender in your records
callerReferenceFunding: This is a unique identifier that you supply
to specify this payment token and its funding in your records

These are required arguments and are used to relate the user funding activities in
our application with the transaction in Amazon's FPS. Both should be unique to all
of our prepaid requests. We could achieve this by appending an order ID number
to the Django username, using a hash of order and amount information, or through
many other methods.

•

•

Chapter 9

[179]

Upon successfully generating an authorization URL, we can embed it as a link in
our application's templates. Customers clicking the link to initiate a prepaid
transaction will be directed to Amazon's Co-Branded User Interface (CBUI). This
is an Amazon-hosted page that first prompts the user to log in to their Amazon
Payments account and then presents them with an authorization screen like the
one that follows:

This page simply verifies the customer's payment method, how much they're
prepaying and some other billing details. By clicking the Confirm button, the user
is returned to our application via the return_url parameter discussed previously.
No money has changed hands at this point, to do that our application must fund
the prepaid request.

To better understand what happens next, we'll outline the entire aggregated
payments process for prepaid instruments. We've just seen what obtaining
authorization in step 1 looks like. The remaining steps are as follows:

1. Obtain authorization from customer using CBUI.
2. Our application receives prepaid token at return_url.
3. Prior to use, our application funds the prepaid instrument using the token

from step 2.

Selling Digital Goods

[180]

4. The customer makes a purchase.
5. Our application makes a Pay request to the FPS API.
6. The customer's prepaid balance is reduced by the amount of purchase.

Steps 4 through 6 will repeat until the customer's prepaid balance reaches zero. At
that time, if the customer plans to make more purchases, we will need to authorize
a new prepaid instrument. The full amount the customer has prepaid is deposited
to our application's Amazon Payments account upon funding in step 3. No money
actually exchanges hands at this point; the Pay requests are simply bookkeeping
to manage the status of the customer's prepayment.

We should note, too, that the customer cannot see their prepaid balance from the
Amazon Payments site itself. Only our application can retrieve their current balance,
so this becomes an important piece of functionality. Fortunately, it is relatively easy
to obtain balances for display in our application, as we'll see shortly.

If this sounds complicated, that's because it is. These series of steps are necessary,
however, to secure the transaction to Amazon's standards. Aggregated payments
are very recent innovations and diligence in the security of financial information is
extremely important. Implementing an equivalent system from scratch would be
quite
a task, which is why the Aggregate Payments API is so powerful.

Upon redirection to our return URL, Amazon FPS will include several pieces of
information about the authorization. The most important among these is the funding
token, sent in the HTTP GET parameter called fundingTokenID. This ID will be used
in funding the prepaid instrument.

The response data also includes another important element, the
prepaidInstrumentId. This represents the customer's prepaid instrument. It may
help to think of this as the customer's "gift card" that we will be loading with funds.
This instrument ID is used during funding and later on during Pay requests.

The final important response value is prepaidSenderTokenID. We will need
this to actually use the prepaid balance when the customer makes a purchase
in our application.

Funding the prepaid token
Funding the prepaid request requires us to make an API call back to the FPS service.
We pass in the fundingTokenId sent back from the authorization request, as well as
the prepaidInstrumentId, the amount we will be funding, and a CallerReference
value that uniquely identifies this funding request.

Chapter 9

[181]

To construct the REST request URL for the funding operation, we can use the
following Python code:

def aws_timestamp():
 return strftime("%Y-%m-%dT%H:%M:%S.000Z", gmtime())

def fund_prepaid_token(funding_token_id, prepaid_id, caller_ref,
amount):
 timestamp = aws_timestamp()
 params={'Action': 'FundPrepaid',
 'AWSAccessKeyId': settings.AWS_ACCESS_KEY,
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09',
 'Timestamp': timestamp,
 'FundingAmount': str(amount),
 'PrepaidInstrumentId': prepaid_id,
 'SenderTokenId': funding_token_id,
 'CallerReference': caller_ref}
 signature = sign_aws_request(params, 'fps.sandbox.amazon.com')
 params.update({'signature': signature})
 fps_url = FPS_ENDPOINT + '?' + urllib.urlencode(params)
 return fps_url

We will sign the query parameters just as we did for the Co-branded UI request,
except we will be using a different endpoint and thus different host header. The
sign_aws_request Python function can be used to sign all of our FPS requests:

def sign_aws_request(params, hostheader, url_path='/',
 http_method="GET"):
 import hmac, hashlib
 import base64
 import urllib

 keys = params.keys()
 keys.sort()
 sign_string = '%s\n%s\n%s\n' % (http_method, hostheader, url_path)
 for key in keys:
 sign_string += '%s=%s&' % (urllib.quote(key),
 urllib.
quote(params[key]).replace('/', '%2F'))
 sign_string = sign_string[:-1]

 digest = hmac.new(settings.AWS_SECRET_KEY,
 sign_string, digestmod=hashlib.sha256).digest().
strip()
 return base64.b64encode(digest)

Selling Digital Goods

[182]

Let's examine the fund_prepaid_token function in more depth. The important
request parameters are Action, PrepaidInstrumentId, SenderTokenId, and
CallerReference. The Action parameter is used in all FPS requests to specify what
our request is attempting to do. We can think of it as the function we want to run
against the services API. In this case we're calling FundPrepaid.

PrepaidInstrumentId is a unique identifier for the payment instrument (the
customer's "gift card") that we will be funding. The value for this parameter was
provided in the response from the prepaid token authorization request we made
in the previous section. The response value was sent as the prepaidInstrumentID
parameter (note the lower case). FPS generates this value internally during the initial
authorization request.

SenderTokenId was also sent back to us in the response step of the previous section
as the fundingTokenID parameter. This value is a key to funding the prepaid
instrument and is required in all FundPrepaid requests. This token represents the
balance amount between when the customer authorizes funds and before their
prepaid instrument is funded. Without this value we could not fund the "gift card".

Finally, the last parameter is CallerReference. This is an important value that we
will need to store for future reference. It could be analogous to an order ID or other
unique reference number in our application. When we receive a response to our
funding request, it will include a transaction ID, which we will want to associate
with the corresponding CallerReference value. We will build Django models
to store all of this information later in the chapter.

If for some reason our funding request fails, due to a network outage or other
anomalies, and we do not receive a transaction ID, we can use the CallerReference
value to submit the request again within seven days. This works by submitting the
exact same request, including the other parameters, as we did initially. If the other
parameters differ, FPS will return a duplication error.

Unlike the Co-branded UI request for authorization we issued earlier, no return_url
parameter is needed. This is because our application will be processing the response
without any user involvement and can read the response values directly.

FundPrepaid requests only return two values, the transaction ID and a transaction
status. Status messages are one of five values: Cancelled, Failure, Pending,
Reserved or Success. A Success value means we can allow the customer to proceed
and begin purchasing against their prepaid balance, while we make Pay requests for
each purchase.

Chapter 9

[183]

Prepaid pay requests
Now that we've obtained the customer's permission and their payment method using
the Co-branded UI authorization request, and funded their prepaid instrument, the
next step is to make payments against the prepaid balance at the time of purchase.

When our customer finds a digital good to buy, we want to deduct the purchase
amount from their prepaid instrument. To do this we perform another FPS API call,
this time to the Pay action. We need to include three important parameters in this
call: SenderTokenID, TransactionAmount, and CallerReference.

SenderTokenID is the token we received during the authorization process
where it was returned as the prepaidSenderTokenID parameter in the API
response. This represents the customer's prepaid token.
TransactionAmount is the purchase amount for the good we'll be selling.
If the amount charged exceeds the balance available in the prepaid
instrument, the API request will fail and will include errors data that
describes the failure condition.
CallerReference is a new unique identifier that we will need to store
to track this Pay request. As with other FPS requests, if there is a network
failure we can resend the Pay request using the exact parameters as the
initial attempt for up to seven days.

For successful Pay requests, the response information will include the usual data,
namely TransactionId and TransactionStatus. We can inspect these values to
determine the success or failure of our payment attempt. If successful we can direct
the customer to their purchased content, and their prepaid balance will be reduced
by the amount of the purchase.

We can generate Pay requests for the FPS API using the following Python function:

def make_payment(sender_token_id, transaction_amount, caller_
reference):
 timestamp = aws_timestamp()
 params={'Action': 'Pay',
 'AWSAccessKeyId': settings.AWS_ACCESS_KEY,
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09',
 'Timestamp': timestamp,
 'TransactionAmount': str(transaction_amount),
 'CallerReference': caller_reference,
 'SenderTokenId': sender_token_id}

•

•

•

Selling Digital Goods

[184]

 signature = sign_aws_request(params, 'fps.sandbox.amazon.com')
 params.update({'signature': signature})
 fps_url = FPS_ENDPOINT + '?' + urllib.urlencode(params)
 return fps_url

We will use the URL returned from make_payment to submit our request and await
the API's response.

Checking prepaid balances
The FPS API action to check prepaid balances is called GetPrepaidBalance. It
requires a signal parameter, PrepaidInstrumentId. This value is the unique
identifier for the prepaid instrument and originated as the prepaidInstrumentID
response value during the Co-branded UI authorization step.

This is not the same value used for Pay requests, SenderTokenId, though the
two IDs play similar roles. This one cannot be used for the prepaid balance.

The following Python function will ready a GetPrepaidBalance FPS API call and
return it as a URL where we can submit our request:

def get_prepaid_balance(prepaid_instrument_id):
 timestamp = aws_timestamp()
 params={'Action': 'PrepaidBalance',
 'AWSAccessKeyId': settings.AWS_ACCESS_KEY,
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09',
 'Timestamp': timestamp,
 'PrepaidInstrumentId': prepaid_instrument_id}
 signature = sign_aws_request(params, 'fps.sandbox.amazon.com')
 params.update({'signature': signature})
 fps_url = FPS_ENDPOINT + '?' + urllib.urlencode(params)
 return fps_url

Postpaid payments
The postpaid API works slightly differently than the prepaid equivalent. The overall
process is the same but the API calls and their necessary parameters differ. The
postpaid approach also has different financial implications.

Chapter 9

[185]

As we mentioned in our discussion of the Aggregated Payments API, the goal is to
combine many smaller purchases into one large purchase to reduce transaction fees.
The prepaid approach does this by charging the customer up front. Postpaid works
like a type of credit system, where we initially grant the customer a limited purchase
amount. As they buy from our application, we issue Pay requests that accrue against
the customer's limit.

The customer can purchase as much as they like up to the limit we initially grant.
When they reach the limit they are unable to make additional purchases until their
debt balance is settled. We can also settle debts at an agreed to interval, every day
or week, for example.

When the debt is settled, the balance is transferred from the customer's payment
method, selected during the authorization step, into our Amazon Payments account.
Our application must settle the debt by calling the SettleDebt FPS API function.
We do this whenever we detect that the balance has reached its maximum or is at
the agreed upon interval.

Obtaining a postpaid token
The overall process of using the Postpaid API mirrors the steps we took for the
Prepaid API. To obtain the Postpaid Token we begin by constructing a URL to use
in our Pay Now buttons. This is the Co-branded UI where the customer reviews
the terms of the postpaid transaction, configures, and then authorizes payment.

There are a variety of customizations in this step, including setting usage limits
and expiration dates for the credit we'll be extending to the customer. For our
purposes, we will keep it simple and implement a basic postpaid credit account
that never expires.

We need to supply four parameters to the CBUI authorization system to begin a
postpaid transaction: callerReferenceSender, callerReferenceSettlement,
creditLimit, and globalAmountLimit.

The callerReferenceSender and callerReferenceSettlement parameters are
unique identifiers for this postpaid transaction. The first is intended to associate the
customer and the token, while the second associates the token and its settlement. Our
application should generate unique values for these parameters according to some
consistent method, as discussed in the prepaid section.

The next two parameters control the terms of the credit. We set a maximum credit
amount using the creditLimit parameter. This is equivalent to a credit limit on
a credit card: the customer cannot spend beyond this amount without settling the
transaction. The second value, globalAmountLimit, is the maximum charge the
customer can incur against their credit limit in our purchase.

Selling Digital Goods

[186]

These two parameters give our application flexibility in how we handle credit. For
a service that is processing many small transactions, we may wish to set a relatively
high creditLimit, but restrict the amount of any one-time purchase, so that if the
customer fails to pay, we limit our losses. Other times it may make sense to set these
two values equivalent to each other.

The following Python function generates a Postpaid CBUI URL:

def get_postpaid_token(ref_sender, ref_settlement, credit_limit,
 global_limit, return_url):
 params = {'callerKey': settings.AWS_ACCESS_KEY,
 'callerReferenceSettlement': ref_settlement,
 'callerReferenceSender': ref_sender,
 'creditLimit': str(credit_limit),
 'globalAmountLimit': str(global_limit),
 'returnURL': return_url,
 'pipelineName': 'SetupPostpaid',
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09'}
 signature = sign_aws_request(params,
 'authorize.payments-sandbox.amazon.com',
 url_path='/cobranded-ui/actions/start')
 params.update({'signature': signature})
 cbui_url = CBUI_ENDPOINT + '?' + urllib.urlencode(params)
 return cbui_url

This function uses the same AWS signing code we used for Prepaid API calls.

Our return_url will again capture the response data the FPS API sends
when redirecting the user back to our site. The response values include:
creditInstrumentID, creditSenderTokenID, and settlementTokenID.

The creditInstrumentID acts as a unique identifier for the postpaid instrument.
As with the Prepaid API, this value is not used for making payments against the
instrument, but can be used to obtain information and present it to the customer,
such as debt balances. It can also be used when writing off debt from a customer's
credit balance.

The creditSenderTokenID value is used to make Pay requests against the
credit instrument.

The settlementTokenID value is used during the settlement process as a parameter
to the SettleDebt FPS function.

Again, we will need these values for later operations.

Chapter 9

[187]

Postpaid pay requets
Unlike in the Prepaid API, postpaid instruments do not need to be funded before
they can be used. Instead we can begin issuing Pay requests immediately after
obtaining the Postpaid Token. When the user makes a purchase, our application
can record it and issue the Pay API call. If the Pay fails, the customer may have
reached their credit limit or attempted to purchase something more than their
global limit allows. Our application could check for these conditions and if
necessary begin settlement.

The Pay request is identical to that used in the Prepaid API. We will use the
creditSenderTokenID value returned during the authorization step as the value
for SenderTokenID. This way our make_payment function will also allow us
to make postpaid credit Pay requests:

def make_payment(sender_token_id, transaction_amount, caller_
 reference):
 timestamp = aws_timestamp()
 params={'Action': 'Pay',
 'AWSAccessKeyId': settings.AWS_ACCESS_KEY,
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09',
 'Timestamp': timestamp,
 'TransactionAmount': str(transaction_amount),
 'CallerReference': caller_reference,
 'SenderTokenId': sender_token_id}
 signature = sign_aws_request(params, 'fps.sandbox.amazon.com')
 params.update({'signature': signature})
 fps_url = FPS_ENDPOINT + '?' + urllib.urlencode(params)
 return fps_url

Our application can now connect to the URL returned from this function and in so
doing, submit the Pay request.

Settling debts
As discussed, when the customer reaches their credit limit or at some agreed upon
interval (over night, for example), we must settle the debt. We do this by issuing
a call to the FPS SettleDebt function.

The SettleDebt action takes three parameters: CallerReference,
CreditInstrumentId, and SenderTokenId. These are similar to the
parameters we've already seen.

Selling Digital Goods

[188]

As before, CallerReference is a unique identifier for this settlement transaction
that we will want to store in the database for potential future reference. It can be
any value as long as it is unique.

The CreditInstrumentId was sent back after the Co-branded UI authorization
step. It originated as the creditInstrumentID in that response data. It represents
a unique identifier for our customer's credit instrument.

Lastly is the SenderTokenId. This was also sent back to the authorization step. It
originated in the response data as the settlementTokenID value.

We can generate the SettleDebt API request call using the following
Python function:

def settle_debt(credit_instrument_id, sender_token_id, caller_
reference):
 timestamp = aws_timestamp()
 params={'Action': 'SettleDebt',
 'AWSAccessKeyId': settings.AWS_ACCESS_KEY,
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09',
 'Timestamp': timestamp,
 'CallerReference': caller_reference,
 'CreditInstrumentId': credit_instrument_id,
 'SenderTokenId': sender_token_id}
 signature = sign_aws_request(params, 'fps.sandbox.amazon.com')
 params.update({'signature': signature})
 fps_url = FPS_ENDPOINT + '?' + urllib.urlencode(params)
 return fps_url

Our application can use the URL value returned by this function to submit the
SettleDebt request.

Writing off debt
Sometimes, perhaps due to a download problem or our own sense of generosity,
we may want to relieve a customer of some amount of debt. This is different from
a refund, though it may appear like a refund to the user.

Writing off debt simply reduces the debt balance for a credit instrument. To do
this we use the WriteOffDebt FPS API action. This call requires three parameters:
AdjustmentAmount, CallerReference, and CreditInstrumentId.

AdjustmentAmount represents the amount of debt we intend to write off.
This is a unique parameter in that it cannot simply be expressed as a dollar
amount, but has a special format that includes currency.

•

Chapter 9

[189]

CallerReference is a unique identifier used as a reference in our application
to this WriteOffDebt call.
The CreditInstrumentId, as we have seen, is a unique identifier for the
credit instrument from which we will be writing off debt. This was provided
as a response value during the authorization step where we obtained the
postpaid token.

We can initiate a WriteOffDebt call using the following Python function:

def write_off_debt(adjustment_amount, credit_instrument_id,
 caller_reference,
 currency_code='USD'):
 timestamp = aws_timestamp()
 params={'Action': 'SettleDebt',
 'AWSAccessKeyId': settings.AWS_ACCESS_KEY,
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09',
 'Timestamp': timestamp,
 'CallerReference': caller_reference,
 'CreditInstrumentId': credit_instrument_id,
 'AdjustmentAmount.CurrencyCode': currency_code,
 'AdjustmentAmount.Value': adjustment_amount}
 signature = sign_aws_request(params, 'fps.sandbox.amazon.com')
 params.update({'signature': signature})
 fps_url = FPS_ENDPOINT + '?' + urllib.urlencode(params)
 return fps_url

Notice how we specified both a value and currency code for the AdjustmentAmount
parameter. This is a requirement of the FPS API for the WriteOffDebt call.

As usual the response data includes a TransactionId and status code, similar to the
other FPS API calls that we have seen.

Getting debt balances
Just like balances for prepaid instruments, customers are unable to see their current
debt balance from the Amazon Payments service. We provide this functionality for
them by making a call to the GetDebtBalance API function.

The GetDebtBalance call can also be useful to determine an amount to write off for
an entire debt, if necessary.

•

•

Selling Digital Goods

[190]

GetDebtBalance takes a single parameter, CreditInstrumentId, a unique identifier
for the credit instrument we're inspecting. This value was returned in the response
data after the initial authorization step. We can initiate the GetDebtBalance call with
the following Python function:

def get_debt_balance(credit_instrument_id):
 timestamp = aws_timestamp()
 params={'Action': 'PrepaidBalance',
 'AWSAccessKeyId': settings.AWS_ACCESS_KEY,
 'SignatureVersion': '2',
 'SignatureMethod': 'HmacSHA256',
 'Version': '2009-01-09',
 'Timestamp': timestamp,
 'CreditInstrumentId': credit_instrument_id}
 signature = sign_aws_request(params, 'fps.sandbox.amazon.com')
 params.update({'signature': signature})
 fps_url = FPS_ENDPOINT + '?' + urllib.urlencode(params)
 return fps_url

Django integration
Now we can begin integrating aggregated payments into our Django application.
Because of the numerous variables to keep track of, we will need to retain our
reference values. Since we're building in Django, a Model subclass seems appropriate.

But what values need to be stored? There are a variety of IDs, tokens and the like,
do we need all of them? It turns out that every important value we'll need can
be retrieved, if necessary, using the CallerReference value we include in each
of our requests. In addition, Amazon recommends storing all TransactionID
values returned from FPS service calls and associating them with the correct
CallerReference.

For the most part, the FPS response values we need will be used right away. Our
storing these reference values is mostly a back-up plan in case we run into problems.
It is also a good idea to store the request ID value, which is returned with every
request sent to Amazon web services. This is for troubleshooting purposes, in
case there is a problem and then AWS requires the request ID.

A Django model to persist this information may seem quite simple. But with only
these two reference values, we have no way to relate the FPS transactions back to our
application's order tracking. For this we need a relationship with our Order model.

class TokenReference(models.Model):
 order = models.ForeignKey(Order)
 funding_reference = models.CharField(max_length=128)
 sender_reference = models.CharField(max_length=128)
 transaction_id = models.CharField(max_length=35)

Chapter 9

[191]

This makes sense because we will need to track orders for digital goods just like
traditional sales.

View implementation
Our view code will be responsible for tracking the reference values stored in the
TokenReference model. It is likely that we will want to redirect the user to the CBUI
site ourselves, instead of providing a direct link, so that we can capture the reference
information in our Django model.

To do this, we'll create a cbui_redirect view and wire our Pay Now button links to
use it. It will take a dollar amount, which is the amount the customer will authorize
for prepaid or postpaid credit.

def sender_reference(user):
 return '%s_%s' % (user.username, datetime.now())

def funding_reference(order):
 return '%s' % order.pk

def make_order(user, amount):
 # Create an Order object for this user's aggregated payments
 purchase
 return Order(customer=user, total_price=amount,
 status_code=get_status_code("NEW"))

def cbui_redirect(request, amount=25.00, pay_type='prepaid'):
 order = make_order(request.user, amount)
 caller_sender_reference = sender_reference(request.user)
 caller_funding_reference = funding_reference(order)
 TokenReference.objects.create(order=order,
 sender_reference=caller_sender_reference,
 funding_reference=caller_funding_reference)

 if pay_type is 'prepaid':
 redirect_url = get_prepaid_token(
 caller_sender_reference,
 caller_funding_reference,
 amount,
 reverse('cbui_return'))
 elif pay_type is 'postpaid':
 redirect_url = get_postpaid_token(
 caller_sender_reference,
 caller_funding_reference,

Selling Digital Goods

[192]

 amount,
 reverse('cbui_return'))
 else:
 raise ValueError
return HttpResponseRedirect(redirect_url)

The purpose of this view is to:

1. Create a new Order object for this aggregated payment request.
2. Generate unique reference numbers to identify the request to Amazon.
3. Redirect the user's browser to the Amazon Co-Branded UI page

to finalize authorization.

This view also references a cbui_return view, which would be the view to handle
the user's return from FPS's CBUI. It is likely that some additional order management
is required in both these views. We could possibly stick a copy of the customer's
order in the session object so that subsequent steps can look up the appropriate
TokenReference object by the Order ID.

View implementations for FPS Aggregated Payments are complicated by the
amount of information we need to pass around between our own view code and
FPS API calls. Particularly problematic is the response data we receive in support
of our returnURL value, when we sent the user to the CBUI. This includes the
fundingTokenID and prepaidInstrumentID values.

There are a variety of possibilities: we could create another Django model to store the
token information and relate it back to the user and/or order. This approach would
require the security of our database to be strong, because anyone with access to this
token information and our AWS_SECRET_KEY could potentially cause harm.

Another potential optimization would be to create an aggregated payments version
of our shopping cart. This could include token information assigned to the shopping
cart itself, which would make it easy to manage the customer's balance as they
make purchases.

Amazon's Web Services and Flexible Payment Services in particular are generally
very large, sometimes unwieldy APIs. They also suffer documentation problems,
probably due to their complexity. But the examples we've begun in this chapter
should be enough to get started implementing aggregated payments in your
own applications. For more information, the full FPS Aggregated Payments
documentation is available from: http://aws.amazon.com/documentation/fps/.

Chapter 9

[193]

Google Checkout Digital Delivery
Google Checkout provides another option for digital goods sales using their Digital
Delivery API. It does not include support for aggregated payments, which are often
useful when selling digital goods due to the fee savings from their typical low sales
price. But if you're already working with Google Checkout, as we did earlier in this
book, integration with digital delivery is relatively simple.

Google Checkout's Digital Delivery arguably gives us less control over the delivery
process, but does so at the benefit of simplifying development. Checkout takes care
of just about all aspects of the purchase, from initiating payment to notifying the
buyer with download instructions.

Digital Delivery for Checkout includes three delivery methods:

E-mail
Key/URL
Description based

E-mail is the least recommended and most manual method. The customer will
receive a confirmation page after submitting their payment. This page will let them
know they should receive instructions regarding access to their purchase. We
are responsible for sending these instructions when Checkout notifies us that
a purchase is complete.

The key/URL method is more automatic. When the purchase is completed, the
customer receives a confirmation page that includes the URL or key to access their
content. This could work well for video or music downloads, in which case we
could link the buyer directly to the download. We could even provide the link
to our Amazon S3 storage bucket with Query String Authorization.

Another case where this method might work well is for software purchases. We
could generate a software key for the buyer and this would be presented to them
after they complete payment.

The final method is Description based, which is similar to e-mail, but the
instruction text will be displayed at the end of their purchase, instead of a notice that
instructions will be e-mailed to them. For example, perhaps the buyer is purchasing
an upgrade for a video game character. The descriptive delivery method could be
used to inform them that their character will be enhanced the next time they log in
to the game world.

•

•

•

Selling Digital Goods

[194]

As with the rest of Google Checkout's API, all information is provided in XML
format. When we generate the Checkout XML, we will include special digital
delivery tags in the <item> element that corresponds to the digital purchase. This
is where we include the key or URL information for that delivery method, or the
instruction text for the description method.

An example <item> element for key/URL digital delivery looks like this:

<item>
 ...
 <digital-content>
 <display-disposition>OPTIMISTIC</display-disposition>
 <description> Please go to the Help->About menu in your trial
 version of our software to enter the registration key.
 </description>
 <key>1456-1514-3657-2198</key>
 </digital-content>
 ...
</item>

With the other Checkout services, it allows for easy integration with Django because
we can render this information dynamically using Django's template language. This
also means we could track purchases and keys in a Django model with similar ease.
We discussed the Google Checkout XML format at length in the first three chapters
of this book. For more information on digital delivery, refer to the latest Checkout
XML API documentation.

Summary
This chapter has provided an overview of several advanced use cases for selling on
the Web with Django. These included:

Utilizing Django's storage back end to support content storage on S3
Aggregated payments using Amazon's FPS service
Simple sets of Django and Python functions for working in FPS
Google Checkout's Digital Delivery XML

These services are almost literally expanding and changing on a daily basis. This
reflects the rapid evolution of the Web as an e-commerce platform and budding
attempts to sell digital content and goods. If some of these services feel rough
around the edges, it is likely a reflection of this early phase.

•

•

•

•

Deployment and
Maintenance Strategies

One of the major challenges in modern web development is managing deployment
and maintenance tasks. Python and Django, as well as other frameworks, can
simplify application development, but leave us somewhat on our own when it comes
to deployment. Fortunately an array of tools that are improving all the time can
assist us in this task. In this chapter we will examine some of these tools, including:

The mod_wsgi extension for Apache to load our Python applications
Automated remote deployment using Fabric
Python environment isolation and project building with zc.buildout
Virtual environments to easily develop and deploy multiple projects
Python module distribution using distutils

Knowledge of these tools, at the very least, is important for any Django developer.
If you're interested in boosting your productivity right away, as well as
avoiding potential future headaches, you can do so easily by switching to virtual
environments. In the author's opinion, learning virtualenv is one of the best
investments in process you can make and is one of the most productive
development tools in the Django and Python community.

Note also that many of these tools are changing fast. Fabric, for example, is expected
to release a new 1.0 version sometime soon. We have done our best to cover the
very latest versions of the tools in this chapter and throughout the book, but minor
variations to syntax in new versions are likely unavoidable. In addition, these are
the top tools available today, but developers are constantly creating, improving,
and releasing new tools.

•

•

•

•

•

Deployment and Maintenance Strategies

[196]

Apache and mod_wsgi
There are numerous methods of integrating Django applications with web servers.
Each has specific advantages and disadvantages, and your options are sometimes
limited by your server, hosting provider, and operating system. The new, official
recommendation, at least for Apache servers, is to use mod_wsgi.

WSGI (pronounced wizgy) stands for Web Server Gateway Interface, and it is
designed to be a standard means of connecting Python web applications with the
servers that run them. This means that any WSGI-compliant Python web framework
or application can run on any web server that implements the WSGI standard.
Apache is a very popular open source web server that supports the WSGI standard
through its mod_wsgi extension.

Web server configurations, especially those involving Apache, are a complex
business. Web servers are like snowflakes and no two are ever the same. It's easy
to argue about performance of module X over module Y using framework Z, but in
reality there is a trade-off happening in every configuration. Sometimes you give up
a little memory to gain some speed, and sometimes vice versa.

If you have a choice in the matter, mod_wsgi is generally an all-around solid and
highly recommended deployment option. It may be possible to get improved
performance out of another option, but if your situation warrants something
more sophisticated, you likely don't need us to tell you.

How does WSGI compare to other Django server options, such as mod_python? In
general, mod_wsgi is faster and uses less memory. In the case of it being faster we
simply mean that mod_wsgi's measured request throughput is often greater than
mod_python under comparable load in similar servers. Memory usage is more obvious,
in part because mod_wsgi is written strictly for support of WSGI applications. The
mod_python option is designed not just for running Python-based web applications,
but also to provide Python modules for interacting with the Apache server. As a result,
additional memory is required to accommodate the additional modules. This memory
usage claim holds up even under the simplest load analysis (try setting up two
identical servers, automating a load test and running top).

Chapter 10

[197]

There are two modes of configuration for mod_wsgi, embedded and daemon.
Daemon mode is recommended in almost all cases. The difference is that embedded
mode, like mod_python, runs the Python interpreter and WSGI application within
an Apache process. Daemon mode allows us to run our WSGI applications in a
separate process from Apache requests—a special WSGI-only process. This process
can be threaded and has other special properties, such as running under an arbitrary
user account. Though performance in both configurations can be made comparable,
Apache's default setup makes embedded mode difficult to optimize without a deep
understanding of Apache configuration. As a result, daemon mode is recommended
just because it usually works.

These few paragraphs about performance are at best crude sketches of a topic
that is very complex. For the vast majority of applications, server-level configuration,
beyond the basics we've outlined, is not going to be the source of problems.
Usually, bottlenecks and other performance issues will result from the Django
application itself.

A great deal of additional information on mod_wsgi is available at the project's
homepage on Google Code: http://code.google.com/p/modwsgi/.

A Django WSGI script
Django includes built-in support for WSGI, but in order to deploy our Django
projects under mod_wsgi, we need to write a simple WSGI script. This is just some
Python code that sets up our environment and kicks off Django's WSGI handler.
Here is an example script file, called django.wsgi:

import os
import sys

os.environ['DJANGO_SETTINGS_MODULE'] = 'coleman.settings' sys.path.
append('/home/jesse/src/my-site-packages')
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

Specifying our settings module manually is required in all cases (it's a Django
requirement). We can also modify the value of sys.path, if needed, to include our
Django or other Python packages. The WSGI script will run under mod_wsgi and
will therefore not receive any additions to the $PYTHONPATH environment variable
we might use in our local, command-line development environment.

Deployment and Maintenance Strategies

[198]

An example httpd.conf
Once we've put together our WSGI script, we need to write an Apache configuration
file. The primary Apache directive to know is WSGIScriptAlias. This is similar to
the more common ScriptAlias directive. An example VirtualHost configuration
appears below:

<VirtualHost *:80>
ServerName coleman.localhost
WSGIScriptAlias / /Users/jesse/src/coleman/apache/django.wsgi

<Directory /Users/jesse/src/coleman/apache>
Order deny,allow
Allow from all
</Directory>
Alias /media/ /Users/jesse/src/coleman/media/
<Directory /Users/jesse/src/coleman/media>
Order deny,allow
Allow from all
</Directory>
</VirtualHost>

Configuring daemon mode
By default, this configuration uses mod_wsgi in embedded mode. For development
or testing purposes this may not make much of a difference, but as we mentioned
earlier, it is generally recommended to use daemon mode for any WSGI application,
unless you're willing and able to tune Apache yourself. To enable daemon mode, we
use the WSGIDaemonProcess and WSGIProcessGroup directives:

<VirtualHost *:80>
WSGIDaemonProcess book-site user=jesse threads=25
WSGIProcessGroup book-site
ServerName coleman.localhost
WSGIScriptAlias / /Users/jesse/src/coleman/apache/django.wsgi

<Directory /Users/jesse/src/coleman/apache>
 Order deny,allow
 Allow from all
</Directory>

Alias /media/ /Users/jesse/src/coleman/media/

Chapter 10

[199]

<Directory /Users/jesse/src/coleman/media>
 Order deny,allow
 Allow from all
</Directory>
</VirtualHost>

The addition of these two directives changes things quite significantly. Let's examine
WSGIDaemonProcess first.

The WSGIDaemonProcess directive activates mod_wsgi's daemon mode. The first
parameter, which is required, is a unique name that will be assigned to the WSGI
daemon process. The remaining options are not required, but fine tune mod_wsgi's
mechanisms. The above example uses two options. The first, user, specifies the user
account that our WSGI process will run under. The second, threads, specifies how
many threads to initiate in this process.

WSGIDaemonProcess supports establishing multiple processes as well, using the
processes option. Use of this option in combination with threads will control how
many total request handlers will be available for your WSGI application. The default
number of threads is 15, so using processes=2 would spawn 30 total request
handlers. These options are tunable and depend a lot on your specific application,
server, hardware, and so on.

The WSGIDaemonProcess directive simply creates a WSGI process according to our
desired options. To assign this process to a specific WSGI application, we need to use
WSGIProcessGroup. This directive can occur in our top-level Apache configuration
or within a VirtualHost context. It our example case, the WSGI application defined
for the virtual host will be assigned to the WSGI process named book-site. A WSGI
application can be bound to any WSGI process defined in the server or virtual host.
In addition, multiple applications can be assigned to the same process in this
same manner.

Whole books are dedicated to Apache configuration and the mod_wsgi site alone
includes dozens of wiki pages with details and discussion about the module's use. In
general, most applications will not need much more than a simple, straightforward
configuration. It is important to understand the basics, however, because as your
application grows, it could become important.

Deployment and Maintenance Strategies

[200]

Thread-safety
An issue that arises in our configuration above is thread-safety. Considerable debate
has followed the development of Django in regards to this topic, but as of most
recent releases, the framework is generally considered to be thread-safe. This means
it is reasonable to run Django applications using multi-threaded WSGI processes or
under a multi-threaded web server (for example, Apache's 'worker' MPM).

Undiscovered threading bugs are always possible, albeit unlikely. More important,
however, is to consider the implications of your own application code and how
it works in a multi-threaded environment. Typically this sort of problem can be
introduced when trying to use shared, global variables between threads in your
application code. Particularly important is the fact that Django QuerySet objects
are not thread-safe. They attempt to share a global QuerySet instance in application
code between threads, which will have unpredictable results.

We should also mention that versions of Django prior to 1.0 had known thread-safety
problems. If you're running an earlier Django version, for code compatibility reasons
perhaps, you could potentially encounter threading bugs when running under
Apache's worker MPM, multi-threaded WSGI processes, any Apache server running
on the Windows operating system, or any other multi-threaded environment.

Automating deployment with Fabric
A big win for development team productivity can be automating as much of the
routine tasks as possible. The scope of tasks that could be automated is practically
unlimited; if it happens more than once, you might want to think about it. The
reason for this is simple: deployment tasks are often repetitive and prone to error.
Doing it correctly once, capturing the process and automating it prevents errors,
reduces efforts, and minimizes time spent away from focusing on your application.

Fabric is a very recent tool written in Python that attempts to provide a simple
framework for automating deployment activities. It allows us to automate common
elements of a deployment process, including connecting to and issuing commands
on servers via SSH, uploading and downloading files, and gathering input from
the console when needed. Documentation and more information are available at
http://docs.fabfile.org/.

Chapter 10

[201]

Writing a Fabfile
Creating a set of deployment functions for our application is just a matter of writing
some Python. Often this code will live in a file called fabfile.py somewhere in
our project tree. The contents of this file can be whatever we want; it's just normal
Python, but it will typically import the fabric module to allow us to perform our
deployment work.

What's great about Fabric is that it lets us define all of our operations relative to
an environment. The environment is a global dictionary containing the import
information regarding our deployment situation. This includes things such as host
names, user names, passwords, and so on. Thus we can write a set of deployment
functions for our application and reuse them in a simple way, just by changing our
environment values.

For example, to execute our Fabric script across multiple servers, we can define the
environment's hosts list to include the server hostnames or IP address at the top
of our fabfile.py:

env.hosts = ['ebook.server.com', '172.16.1.10']

With our environment defined, Fabric will automatically run our deployment
functions across both of these servers, including logging in to SSH. In real-world
scenarios, additional information, such as user names, can be included in the
environment. By default, the current user is used as the value for username and
passwords are obtained interactively.

The fabric module is loaded with useful functions. For example, the fabric.
operations module includes:

sudo: Used to run a remote command as the super user
put: Used to upload a file to the remote server
run: Used to run a remove command as the logged-in user
get: Used to download a file from the remote server
local: Used to run a command locally

These are all just Python functions that behave as you would probably expect. Some
examples include:

put('media/js/site_wide.js', '/var/www/media/js/site_wide.js')
put('media/img/*.jpg', '/var/www/media/img/')
sudo('svn update /opt/svn/repos/myrepos')
run('touch django.wsgi')
local('django-admin.py test all')

•

•

•

•

•

Deployment and Maintenance Strategies

[202]

With these basic set of operations, you can begin to compile a set of functions before
the deployment tasks. This might include a test function to run Django unit tests, a
minify function if you're minifying JavaScript, a function to compress and upload
test data or import SQL commands to your database, and almost anything else.

Using the fab tool
Fabric provides a command line tool called fab that allows us to quickly run our
Fabric operations from a shell prompt. The fab tool takes any number of arguments,
each of which corresponds to a function we've written in our fabfile.

The fabfile library is auto discovered when using the fab tool. It will search the
current directory for a fabfile.py or, in newer versions of Fabric, search for
a fabfile/ module. The fabfile/ subdirectory in our project must contain
__init__.py for this auto-discovery to succeed.

The fab command will execute our fabfile operations in the order we provide on
the command line. An example usage follows:

$ fab run_tests prepare_deployment deploy

This will first execute our fabfile's run_tests function, then prepare_deployment,
then deploy. For simplicity we could have wrapped all three functions inside the
deploy operation and the result would be equivalent. But what happens when
say, run_tests fails? Fabric will automatically detect Python exceptions and cease
execution of the current and future operations.

In addition to Python exceptions originating in our functions, Fabric will also halt
when a remote or local shell command does not return cleanly, after a failed file
transfer or broken sudo command, for example. This behavior is configurable, of
course, by changing the environment setting warn_only to True.

Fabric for production deployments
Fabric is a very Pythonic deployment tool. Other excellent tools exist that play a similar
role, such as Ruby's Capistrano (which can be used for deploying anything, not just
Ruby). But many developers still use the manual, SSH-and-type-some-commands
method. This works, but automating these repetitive tasks can turn a half-dozen shell
commands and a lot of thought into a single command that we can run while grabbing
coffee (or automate for a continuous integration strategy).

Chapter 10

[203]

Consider the typical production deployment. For Django applications there can be
several complicating factors. One of the biggest is media. Media is typically served in
a different fashion than the application itself. This might mean media files are served
via a content-delivery network or a separate media server. Either way, changes to
Django media files sometimes necessitate special steps in the deployment process.

Cascading Style Sheets (CSS) are good examples. CSS files frequently contain file
paths to background images and other content, but do not have access to Django's
MEDIA_URL template variable, because they are not rendered by Django. Relative
file paths can solve this problem much of the time, as long as media is served up
identically on production, staging, and development servers.

But when media can't be served identically, perhaps because production servers use
a content-delivery network that we have a limited ability to customize, we face a
deployment headache. A tool like Fabric can solve this problem in concert with an
appropriate search-and-replace type script. It is as simple as writing custom deploy
functions that extract our application code, deploy to the corresponding site, and run
a site-specific media processing script to make any necessary adjustments.

Another example is using Fabric to manage deployments from source code
repositories. The server-centric functions we've written to include special handlers
for media files could also intelligently manage the deployment interaction with a
source code repository. This means we could write Fabric functions to roll out new
code releases and roll back to previous releases automatically. A simplification like
this is ideal because it provides a simple way for anyone (even non-technical staff)
to manage production servers.

One-off and complicated situations like this are often unavoidable. If developers are
burdened by a complicated deployment process, they are almost certainly going to
perform less testing and encounter more problems during roll outs of new code.
This is where a tool like Fabric can become especially powerful.

zc.buildout
In addition to the problem of managing and configuring our applications on remote
servers, which Fabric handles very well, there is another problem inherent in Python
and Django-based development. That is the issue of packages and dependencies.

Consider the scenario where we're running a production version of our e-commerce
store on the same server as our development version. The development site is
where we do testing as we implement new features and fix bugs. Now suppose
our production site is running on Django version 1.0, but we've decided for the
next version we need to upgrade to Django 1.2 because we need some of the new
framework features.

Deployment and Maintenance Strategies

[204]

During the development of the new version of our site, the production instance
must continue running with absolutely no problems. If we've been using the naive
approach of installing Django into our server's system site-packages, we face
a problem. We cannot upgrade to 1.2 at the system level because that will break
the production site. But we need to upgrade in order to test and develop our
new version.

Our first goal is to avoid global, system-level installation of packages as much as
possible. This is relatively easy to do: don't install Python packages globally using
setup.py or easy_install and avoid installations using an operating system's
package manager, such as Debian's apt-get.

The second goal is to find a tool that will simplify the complexity of managing and
running different versions of our packages (in this case Django itself) amongst the
different instances (production and development) of our site. The zc.buildout
tool helps us meet this second goal.

Buildout is just one of several tools for tackling this sort of deployment problem
in Python. It originates as part of the Zope framework, but is flexible enough for
general use on any Python-based project. It has a moderate learning curve, but the
time invested in this deployment process will be made up many times over with
that efficiency it will bring. More information and full documentation is available
at http://buildout.org.

Buildout bootstraps
Though buildout can be installed in the system-level site-packages, it also
provides a bootstrapping script that can be used to set up and configure a project
without the developer needing to install anything beyond a Python interpreter. The
bootstrapping process installs the buildout package itself into the project, which can
then be used to actually create the project build, installing all the relevant Python
packages and providing a special project-specific Python interpreter.

This two-step process is an excellent way to get other developers up and running
on a project. The bootstrapping tool and buildout configuration can be placed in a
version control repository such that all a new developer needs to do is check out the
code, run bootstrap.py to prepare for a buildout, and then run the buildout tool
itself. This also holds true for server deployments, where the buildout can happen
on a fresh server with just these simple commands.

There are other ways to use buildout without bootstrapping. If it is installed in the
system site packages, then bootstrap.py is unnecessary and new developers or
deployment scripts only need to run the buildout tool directly.

Chapter 10

[205]

After running the buildout tool, our project directory will contain a half dozen
or so additional files and directories. This is where buildout does its work. These
subdirectories include: bin, developer-eggs, eggs, and parts. The bin is for
executable files, like the buildout tool itself and the special Python interpreters. The
eggs location is where buildout stores third-party eggs, while developer-eggs
stores the eggs that we're currently developing (our application modules). Parts
functions as a workspace that buildout uses while building things.

Let's take a moment to talk about eggs. Eggs are created by the setuptools module
and are a quasi-standard way of packaging modules into a tidy unit (the standard
way is built-in to Python and called distutils, of which setuptools is an enhanced
version). They are typically used to package up a specific version of a Python module
such that it can be easily shared with other developers.

The .egg format differs from a standard Python module (a simple directory with
__init__.py) in that it includes metadata in addition to code. This is accomplished
through the use of either an EGG-INFO subdirectory at the module level or an
.egg-info directory at the module's parent level. An .egg's metadata typically
describes the package, including the author information, license, a homepage URL,
and, importantly, any dependencies.

Typically when you easy_install something into your system-level Python, you
are downloading the module from the Python Package Index (PyPI, formerly
known as The Cheese Shop). This comes in .egg format and gets placed into your
system's site-packages directory. Since the .egg includes additional information,
like dependencies, easy_install will attempt to install these as well.

In our case, we want to avoid installing things at the system level. So buildout
creates and uses the eggs and developer-eggs directories in our project hierarchy
as a place to easy_install modules. It will also create a Python interpreter that is
aware of these special locations for our project. After the buildout finishes, we will
use this interpreter, not the system Python, to run our application.

buildout.cfg: The buildout section
The buildout tool uses a configuration file to figure out what it needs to do to install
our project and its dependencies. This is a text file called buildout.cfg that uses
a very simple format.

Deployment and Maintenance Strategies

[206]

The first thing we define is a buildout section, which is the only required portion
of buildout.cfg. This section has two goals. First, it defines the parts our project
needs to build in order to function. These are almost equivalent to dependencies our
project needs in order to run. In our case this would be, at the very least, Django.
The second goal is to define the modules we're developing (our web application, for
example, the Coleman project we've built in this book). These will be translated into
developer-eggs.

Before going any farther, we should look at an example [buildout] section from
buildout.cfg:

[buildout]
develop = .
parts = django
eggs = django-coleman

Here you can see the develop and parts definitions. In the example, we only supply
a single value to each configuration option, but in real-world projects these options
can have as many values as needed, each separated by a space character.

The develop option points to .—the current directory. This tells buildout that the
modules we're developing live in the project's root directory and that it will find a
setup.py file there, which it can use to turn our modules into an .egg. In order for
scripts in our buildout installation to access this egg, though, it needs to be added
to the eggs/ directory. We tell buildout to install our egg there with the eggs =
django-coleman option. The name of our egg must match the name we specify in
our setup script. Clearly we have additional work to do for this to work. We must
now write this setup script, and then we will revisit the parts option.

Writing the setup script
The setup.py file is a setup script for our project. It is used to package up the
modules we develop. When using setuptools, this package will be an egg.
There are other cases, such as using pure distutils, where the setup script
doesn't generate an egg. We will discuss the differences between setuptools
and distutils setup scripts later in the chapter, but since zc.buildout uses
setuptools, we will write our setup.py accordingly.

Our setup script can include all kinds of metadata, which setuptools will
automatically roll up into the generated .egg file. For this example, we will keep it
extremely simple, however, and specify only what is needed to get our module built:

from setuptools import setup
setup(
name='django-coleman',

Chapter 10

[207]

version='0.0.1',
package_dir={'': 'coleman'},
)

The name and version arguments are self explanatory, though important because they
affect the ultimate name of the generated .egg file (django-coleman-0.0.1.egg).
The package_dir argument points setuptools to a file-system location relative to
the setup.py file where it will find our Python module. This setup script implies the
following project layout (minus buildout's configuration and working directories):

setup.py
coleman/
coleman/__init__.py
 ...

The setup script will package the contents of the coleman/ subdirectory into our egg.

This more than satisfies the basic requirements for our setup script. When we run
our buildout command, it will be able to use setup.py to turn our project into an
egg, and then store it in eggs/ where our buildout scripts or interpreters can find it.
We have effectively built our project inside a fully isolated Python environment, shut
off from the rest of our system. The final step is to finish up our buildout.cfg by
discussing our project's parts.

buildout.cfg: The parts sections
Parts are buildout's way of defining additional modules or components that our
project needs in order to function. A part can be almost anything, but are often
third-party packages from Python Package Index. We specify our project's parts in
the buildout section of our buildout.cfg file using the parts = option. This is a
list of part names separated by whitespace. Each part will have its own section later
in our buildout.cfg file.

For each part we define, buildout needs to know how to install and/or configure it.
It does this using a mechanism called a recipe. Several recipes come included with
buildout, but we can also write custom ones. Recipes are just normal Python classes
so they can do anything a Python script can do. This includes interacting with the
operating system, local storage, or even compiling C extension modules.

Deployment and Maintenance Strategies

[208]

A recipe is a Python class with three required methods: __init__, install, and
update. These methods must perform a certain set of functions for buildout to
successfully build the part for our project. We will not write a custom recipe here
because most of the time the built-in recipes will work for us. In addition, hundreds of
additional recipes have been contributed by the Python community and are available
for download from PyPI. If none of these fit your own needs, it is easy to create a
custom one and the process is well documented in the buildout documentation.

Among the recipes that come included with buildout or are available in PyPI is
djangorecipe. This is a recipe designed specifically for building out Django projects.
It has a lot of features, including the ability to set up a Django project and point to a
settings file. The end result is a script in our buildout bin/ called Django that wraps
up all of these things and wraps Django's standard manage.py utility.

To help explain this, let's look at an example. Earlier we wrote the buildout section
of our buildout.cfg file, here we will add another section for our Django part:

[buildout]
develop = .
parts = django
eggs = django-coleman

[django]
recipe = djangorecipe
version = 1.0.2
eggs = ${buildout:eggs}

The [django] section corresponds to our django part. We tell buildout to use the
djangorecipe, which it will obtain automatically from PyPI, to build this part. We
also tell the recipe we want Django version 1.0.2, using the version option. Finally,
the eggs option tells buildout we want the same eggs to be available to Django as
those defined in our buildout section.

When we run buildout in the directory with buildout.cfg the output should
resemble the following:

Getting distribution for 'zc.recipe.egg'.
Got zc.recipe.egg 1.2.2.
Getting distribution for 'djangorecipe'.
Got djangorecipe 0.20.
Uninstalling django.
Installing django.

django: Downloading Django from: http://www.djangoproject.com/
download/1.0.2/tarball/
Generated script '/Users/jesse/src/django-coleman/bin/django'.

Chapter 10

[209]

The bin/ directory now contains a django script. This is the wrapper around
the standard manage.py and supports all the commands you might expect:
runserver, syncdb, shell, and so on. Only this script now comes prepared with
our modules and any other eggs we specify available to Django. It also creates a
project/ directory in our buildout location, which contains a stock Django project
configuration, including settings.py file and root urls.py. If we already have
these things created in a Django project, we can include them in the options for
our django part:

[django]
recipe = djangorecipe
version = 1.0.2
eggs = ${buildout:eggs}
project = myproject

If a myproject directory exists and contains our own settings and URLs files, the
djangorecipe will not create new ones.

Now we have an isolated Python environment with four things:

Our django-coleman modules built into an egg and installed in the
eggs/ location
A Django project module with settings and root urls.py
An installation of Django v1.0.2
A django wrapper script in bin/ preconfigured to use our project settings
and the installed version of Django

We're all set to work with this fully configured instance of our Django project.
We can add additional parts to our buildout file as needed and rerun buildout to
download and install any additions. The buildout.cfg file can now be put into
version control and, if we really want to get fancy, we can set up our development
server to automatically run buildout whenever our configuration changes.

One thing is missing, however, and that is a straightforward way to deploy this
isolated version of our project to an actual web server. The djangorecipe can
help here too. We just need to add the following option to our django part in
buildout.cfg:

wsgi = True

•

•

•

•

Deployment and Maintenance Strategies

[210]

With this addition, buildout will create a django.wsgi file in the bin/ directory. This
WSGI script is configured to load our isolated project as a WSGI application and can
be dropped directly into our Apache configuration file if we're using mod_wsgi. For
the curious, this WSGI script looks like this:

#!/usr/bin/python
import sys
sys.path[0:0] = [
'/Users/jesse/src/django-coleman/eggs/django-coleman-0.0.1.egg',
'/Users/jesse/src/django-coleman/eggs/djangorecipe-0.20-py2.6.egg',
'/Users/jesse/src/django-coleman/eggs/zc.recipe.egg-1.2.2-py2.6.egg',
'/Users/jesse/src/django-coleman/parts/django',
'/Users/jesse/src/django-coleman,
]

import djangorecipe.wsgi
application = djangorecipe.wsgi.main('myproject.development',
logfile='')

As an even further level of automation, if we run mod_wsgi in daemon mode,
whenever our buildout script runs and makes changes to our isolated environment,
it will automatically update the WSGI script. This update will update the file's
time stamp, which will act as a notice to Apache's mod_wsgi that the script has
changed and needs to be reloaded. The mod_wsgi module will reload our entire
project without restarting Apache and without requiring us to type any additional
commands. Now that's automation!

Sometimes we need to include additional third-party modules, but don't want them
installed into our project's isolated environment. Maybe we want to try out some
functions in a package we're considering for use. We can do this with buildout as
well by defining a new part, installing an egg to it and having buildout generate
a custom interpreter. Such a parts section would look like this:

[testout]
recipe = zc.recipe.egg
interpreter = testout
eggs = elementtree

If we were to add a parts section like this to our buildout.cfg file, a couple of
things will happen. First, an elementtree egg will be downloaded from PyPI and
setup in our eggs location. Second, a custom Python interpreter will be created in
the bin/ location called bin/testout. When we run this interpreter, we will see a
standard Python shell with only the elementtree egg available from our isolated
environment's eggs. Our Django instance will not include this egg, keeping them
nicely separated. This is especially useful when trying out different versions of
a PyPI package.

Chapter 10

[211]

Adding packages individually in this way is sometimes useful, but often too
complicated. Buildout seems to work best as a tool for deployment onto servers
or for building project packages. It can be used in many ways, but for local
development tasks, it can feel like overkill to make changes to a configuration just
to test out a package. There are better solutions for this use case, one of which we
will discuss in the next section on virtual environments.

Finally, buildout can be used for more than just deployments. If you're aim is to
write reusable modules that you want to contribute to the community, you can use
buildout to automatically run unit tests and then package everything up into an egg.
It can even upload and register your eggs with PyPI. There is much, much more
than buildout can do and an excellent starting point for additional information is
the buildout tutorial at: http://www.buildout.org/docs/tutorial.html.

Virtualenv
In the previous section we saw how zc.buildout could be used to generate an
isolated project environment, including project files and dependencies. Buildout
automated the process using a configuration file and a special filesystem hierarchy. It
is a powerful tool, but may not suit every developer's style. Getting an environment
up and running is a fair amount of work and making changes to try out new things
requires editing the configuration file and rebuilding everything.

Environment isolation is a definite need for any serious Python or Django developer,
though. It becomes very difficult to work in a situation where multiple projects are
overlapping and there are conflicting package needs. Developing enhancements to
our applications while maintaining a working production copy, like upgrading to
a newer version of Django, for example, is impossible without some tool to manage
our packages.

A lot of developers will take the obvious approach of creating special local package
directories in their own workspace and attaching this location to the $PYTHONPATH
environment variable or sys.path, swapping around a .pth file in the system
site-packages location, or managing a collection of symbolic links.

If you've ever tried these approaches you'll probably recognize the difficulties
this creates. First among them is that distributed Python applications that use
setuptools or distutils and a setup.py script require a lot of special attention
to install. Second, tools like easy_install install to the system site-packages
by default. Both of these kill productivity and defeat the purpose of having a
package index.

Deployment and Maintenance Strategies

[212]

Buildout solves this problem, but it's not the only solution. Virtual environments
take a different approach. Instead of writing configuration files and running build
scripts, you can configure a virtual environment, and then use all the standard
Python practices for installing packages and configuring tools. No changes to
$PYTHONPATH or sys.path, no symbolic links, no funny business.

A virtual environment in some ways resembles the isolated environments we saw
with buildout. A virtual environment is isolated from all other virtual environments,
but not from the system environment. This means if we have installed packages to
our system site-packages location, by default they will be available in our virtual
environments as well. Otherwise packages are not available until we install them
to the virtual environment.

There are currently several different virtual environment tools. Among these,
virtualenv has gained a large following and provides an excellent all-around
solution to the virtual environment problem. Virtualenv was written by top Python
developer Ian Bicking and is available from PyPI at http://pypi.python.org/
pypi/virtualenv.

Creating an environment
Once installed, we can use the shell command virtualenv to manipulate
environments. Every developer will have different preferences, but it's likely
that you'll want to store all of your virtual environments in a single location,
perhaps /home/username/virtualenvs.

When we change to our virtualenvs directory, we can issue the virtualenv
command, following by a destination directory. This could be the name of our
project or some other identifier to distinguish the environment we're creating.
Let's create an environment for this book's coleman project:

$ virtualenv coleman

Chapter 10

[213]

The results of this command are shown in the following screenshot:

We've just created a complete virtual environment. If we navigate to our environment
directory, we'll notice three subdirectories: bin, include, and lib. So far this is similar
to what happened when we used buildout to create an environment.

Inside our virtual environment's bin, we see a copy of our Python interpreter.
This interpreter is an actual interpreter binary, copied from our system's Python
installation. This is unlike buildout, which creates wrappers around our system
Python and provides it with an updated set of paths.

Even though the virtualenv interpreter is not editable, it does have knowledge of
the virtual environment. If we were to run it as a Python shell, the path variable will
reflect our virtual environment installation path. In order for this interpreter to be
recognized as the default when we type python into a shell, however, we must first
activate the environment.

Deployment and Maintenance Strategies

[214]

Inside the bin location there is a shell script called activate. In order to activate the
environment we have to run this shell script using the source command. Source is a
built-in bash command that runs a script in our current shell (as opposed to starting
a sub-shell). Running activate with source updates our shell environment and also
adds a useful indicator to our shell prompt to inform us of what virtual environment
we're currently using, as shown below:

The activate command has done two things: updated our shell's $PATH
environment variable to include our virtual environment's bin location and
updated a $VIRTUAL_ENV shell environment variable that points to our virtual
environment directory.

When we ran virtualenv earlier, it actually performed some magic whereby
our virtual environment's interpreter can detect our activated environment
and adjust its path accordingly. The results of these operations are shown in
the following screenshot:

Chapter 10

[215]

Once we have activated an environment, we can deactivate it in a similar way by just
typing deactivate at the shell prompt. Our virtual environment indicator should
disappear from our prompt and we'll be back to using the system Python interpreter.
We can activate other virtual environments by navigating to their location in the
shell and running the new environment's bin/activate.

Working in the environment
Now that we've created a virtual environment for our project and activated it using
the bin/activate script, we can go about our work. Because virtualenv has updated
our shell path, every time we run python, our virtual environment's python will run.

Since we can now use the python command at will, something cool happens: we can
begin installing packages using setup.py or easy_install. As long as our virtual
environment is activated, we can easy_install to our heart's content and it all goes
into our virtual environment.

Deployment and Maintenance Strategies

[216]

In general, it is good practice when using virtual environments to keep the system
site-packages location as light as possible. This prevents confusion and other
potential mishaps. Our easy_installs from an activated virtual environment will
include the system site-packages when looking for dependencies and such, but it
is still recommended that most packages be installed virtually.

This will lead to some duplication if you are working on multiple projects that use
the same set of packages. For these cases you may consider installing the package
system-wide, especially if it's particularly important or difficult to install. The
MySQLdb package and other database interfaces are good examples of candidates
for system-wide installation.

Django would be an example of something not to install system wide, unless you are
absolutely certain you won't be developing two separate projects that are running
against different versions of the framework. Even if you are, still consider keeping
all packages installed virtually. The disk space is there, why not use it?

Another important point to note is that the package manager for your operating
system may, either by default or through a dependency negotiation, have installed
packages to your Python's system site-packages without you necessarily being
aware. It's a good idea to check out what packages and modules are installed in your
system before switching to virtualenv. In fact, you may wish to empty your system
site-packages altogether. You can uninstall any module by deleting its .egg,
directory, and other metadata files.

Virtualenvwrapper
Doug Hellman has released a set of extension scripts for virtualenv called
virtualenvwrapper. These are a set of shell functions that enhance the virtual
environment configuration, primarily by organizing and structuring our environment
locations. It includes pre and post hooks for several operations, including creating an
environment, activating a new environment, and deactivating an environment.

The activation hooks allow for lots of interesting possibilities. For example, you
could attach a post-activate hook that automatically runs a shell script or AppleScript
to launch and configure your text editor whenever you change virtual environments.

The virtualenvwrapper scripts are a highly recommended enhancement to
virtualenv. They are available from: http://www.doughellmann.com/projects/
virtualenvwrapper/.

Chapter 10

[217]

Distutils and module distributions
We've already seen some of what it takes to package an application. Packaging
means combining the source code and other files for one or more Python modules
into a single file that can be distributed to other Python developers. This could
be a ZIP file or a Python egg.

We've already seen some of what setuptools can do. The distutils module is
included with Python and is the official packaging tool that setuptools is built
on. Setuptools is an extension to distutils, not an official part of Python.

One of the biggest differences between distutils and setuptools is that
setuptools generates eggs, while distutils does not. Using distutils,
developers create distributions as opposed to eggs. These distributions can take a
couple of forms, namely source and built. Source distributions are generally just
archived and compressed copies of a module's directories and source code. This
is useful for distributing your modules to other developers.

Built distributions (or binary distributions) compile your modules into an executable
format specific to a destination-build platform. This could be Window (.exe), Red
Hat Linux (.rpm), or a variety of other formats.

Another noteworthy difference between distutils distributions and those created
by setuptools is that distutils is unaware of dependencies and is unable
to download them anyway, even if it knew about them. This feature is likely
responsible for setuptools and easy_install's popularity, despite not being
an official part of Python.

To make use of distutils to distribute our modules, we need to write a setup
script called setup.py, just as we did using setuptools. A lot the setup.py code
is compatible with distutils and setuptools. Here is the simple example setup
script from the distutils documentation:

from distutils.core import setup

setup(name='foo',
 version='1.0',
 py_modules=['foo'],)

This simple setup script includes two keyword arguments of metadata about our
distribution, name and version, and a simple list of individual modules we want
to include in our distribution. In this case, the foo module will be included and
will correspond to a file called foo.py at the same level in the filesystem as our
setup script.

Deployment and Maintenance Strategies

[218]

This works for a single file or a short list of Python modules. But what about the
case of packaging several packages, each with many modules? Distutils handles
this as well:

setup(name='foo',
 version='1.0',
 packages=['foo', 'bar'],
 package_dir={'': 'src},)

Will look for modules in src/foo/ and src/bar/ relative to the setup script location
and include them in the distribution output.

With this setup script in place and pointing to the appropriate modules or packages,
we can run:

$ python setup.py sdist

The sdist command will generate a source distribution for our modules in
a .tar.gz format. To create a built distribution we would use the following
syntax for a Red Hat Linux .RPM file:

$ python setup.py bdist_rpm

Or, to create a Windows-compatible .EXE installation file we would use
the following:

$ python setup.py bdist_windows

Installing distributions
In addition to providing distributions for developers to easily exchange modules
between themselves, the distutils setup script allows users to install modules
as well. This is done by passing the install command to the setup script:

$ python setup.py install

Usually, the process of installing a package like this involves downloading the
.tar.gz source distribution, un-archiving the contents to the filesystem, and
running the setup.py script as above.

Installing a package in this way places the Python modules included in our
distribution into the user's site-packages. If they are running their default system
Python, the package will be installed system-wide. If they are using virtualenv,
for example, and have an active environment, the distribution will be installed
to that environment.

Chapter 10

[219]

Distutils metadata and PyPI
Even though distutils does not provide a mechanism for installing packages
by directly downloading from PyPI, you can still define meta-data inside your
setup.py script and use it to register and upload your distribution with the
Python Package Index.

Uploading the distribution to PyPI also acts as a form of publishing your project.
By providing version, author, and dependency metadata in setup.py, these
requirements will be included on your distributions web page at the package index.

Registering and uploading your distribution with PyPI is done using the register
setup.py command:

$ python setup.py register

Registering your distribution will transmit any metadata defined in setup.py, such
as version and author's e-mail address, and create a project page for it in the index.
This page will list all metadata you supplied in your setup.py. You can update a
distribution's metadata by registering it again, with corrected metadata keyword
arguments in your setup script.

You will be required to have a PyPI account before you can register your
distributions. You can do this directly in the setup.py register command
by choosing the second menu option when prompted.

Once your package is registered, you can upload it using the upload command:

$ python setup.py sdist bdist_wininst upload

This upload command will package and upload a source distribution as well as
a built Windows install distribution. Both will be listed under the appropriate
metadata in the PyPI.

Easy_install
Python packages deployed to PyPI using setuptools have an additional advantage:
super-simple installation using the easy_install tool. This is a utility that with
a single command, will find, download, and install a Python package from the
package index. To install Django, for example, one can attempt it from the command
line like so:

$ easy_install Django

Deployment and Maintenance Strategies

[220]

This will download the latest released version of Django from PyPI and install it into
the current Python environment, whether it is the system environment or a virtual
environment. In this way it works very much like setup.py, with the enhanced
function of automatically locating and downloading the appropriate package.

Pip
Pip is a powerful replacement for the easy_install tool. It is a widely
recommended utility, especially for use in virtual environments, because it offers
many enhancements to the original easy_install tool and some differences in
philosophy too.

First, pip offers the ability to uninstall packages. It also keeps better track of why
a package needs to be installed, what dependency it satisfies, and provides logs of
these details. Likewise, no packages are installed until all of the required packages
have completed downloading. These features allow us to keep cleaner environments
that are easier to manage and maintain.

Second, and most important for use with virtualenv, is that pip will respect virtual
environments. This means packages installed with pip while running virtualenv
will install to the appropriate active environment location.

Pip also allows us to write requirements files. These are files that specify version
requirements for a set of Python packages. This way we can simplify the installation
of complicated sets of version-dependent packages.

Pip is quickly becoming the package installation system of choice in the Python
community. Its use has many advantages over the traditional easy_install
approach and is highly recommended.

Chapter 10

[221]

Summary
In this chapter we have provided a quick overview of various deployment and
maintenance tools. There are literally dozens of additional tools available in
the Django and web development community. Many of these have reached an
exceedingly high level of quality and are used in many top Django and Python
development shops. This includes:

Mod_wsgi to simplify Django deployments and reduce memory overhead
Fabric to automatically perform remote deployment activities over Secure
Shell (SSH)
Buildout and Virtualenv to create isolated project environments
Creating reusable, distributable packages using distutils

Investing in a deployment process is essential for projects of a certain size. Not only
will automation help make the tasks easier, but it makes it repeatable by people
potentially unfamiliar with a deployment situation. Having good tools and good
documentation are the best way to help someone who may be trying to solve
a deployment issue in the middle of the night.

Also remember that there is often no right approach to the problems any of
these tools are trying to solve. In some cases there may be objectively better
approaches—they may require fewer steps or fewer configurations to achieve the
same thing. But even a slightly flawed process is going to be a marked improvement
over nothing at all.

•

•

•

•

Index
Symbols
<merchant-private-data> tag 84
<shopping-cart> element 83
__call__ method 61

A
activate command 214
additional product details

adding 28, 29
allowed_methods class 123
Amazon AWS services requests 175
Amazon Callback view

generating 72, 73
Amazon Checkout class

building 68-71
Amazon Checkout service 93
AmazonCheckoutView class 69
Amazon FPS

Django integration 190
implementation, viewing 191, 192
implementing, for digital goods 176

Amazon FPS, for digital goods
Django integration 190
postpaid payments 184
prepaid payments 177

Amazon S3 173
amount notification 83
API stability policy 18
asyncRequest function 166
auth module 38, 39

B
bandwidth 172
BaseDocTemplate class 134

boto 173

C
callable object 61
callback handler object 164
caller_reference parameter 71, 182
caller_reference variable 71
callerReferenceSender parameter 185
callerReferenceSettlement parameter 185
canvas objects 129
carrier-calculated shipping service

about 90
implementing 90-92

cart_cleartext variable 54
cart class 53
cbui_redirect view 191
CDN 171
checkout process 54, 55
CheckoutView class 62
Co-Branded User Interface (CBUI) 179
connect method 40
console.log() 167
content_type parameter 154
Content Delivery Network. See CDN
content storage 171
convert_shopping_cart method 69, 70
create_reference method 71
creditLimit parameter 185
CSS 203
customer profile

about 44
model, constructing 45-47
views, building 48-51

customer reviews 57

[224]

D
daemon mode

configuring 198, 199
DELETE method 123
description based method, delivery

methods 193
development environment

preparing 16, 18
DHL 89
digital goods sale 170
distributions

installing 218
registering, with PyPI 219
uploading, with PyPI 219

distutils
about 217
advantages 217
metadata, defining 219
using 217

Django
about 7
auth module 38
bandwidth 171
checkout process 54, 55
content storage 171
customer reviews 56, 57
custom storage 172
disadvantages 10
e-commerce platform 8
features 8
model-template-view pattern 11
MySQL simple index searches 97
ORM 9
payment processors 11, 12
PDF reports, generating, from

Python 129-138
PDF views, creating 138
reusable apps 14
search functionality 95, 96
shopping carts 11, 12, 52
simple search strategy 95
use-cases 142
users and profiles 39, 40
web development 8

Django’s syndication framework 125-127

Django-piston
about 123, 124
official repository 123

django-registration
accounts, creating with 41, 42

django-sphinx application
downloading 107, 108
searching, simplifying 107, 108

django-storages application 173
Django 1.2 18
Django applications

aggregated payments, integrating 190
APIs, exposing 119-122
data, exposing 119-122

Django apps
about 13
solving small problems approach 13, 14

Django framework
exploring 12

Django projects
organizing 15, 16

Django sessions 53
Django sitemaps 127, 128
Djangos ORM

about 9
features 9

Django template code 161
Django WSGI script 197
Djapian

about 115
features 115, 116
indexes, searching 117

doGoogleCheckout function 54
DOMReady event 163
drawString method 131

E
e-commerce platform 8
e-commerce site

additional product details, adding 28, 29
payment integration 34-36
product catalog, designing 22, 23
product catalog, viewing 30, 31
product model, creating 24
products, categorizing 25-27
search engine option 95

[225]

security considerations 80
simple product HTML templates, designing

32-34
e-mail, delivery methods 193
easy_install 219
event-driven programming 148
Express Checkout 74
extra_context attribute 66

F
fab command 202
Fabfile

writing 201
fabfile library 202
Fabric

about 200
Fabfile, writing 201
fab tool, using 202
production deployments 202

Fabric, for production deployments
CSS, examples 203
examples 203

fabric module
about 201
functions 201

fab tool
about 202
using 202

FedEx 89
Flexible Payments Service. See FPS
flowables 135
form_class parameter 42
forward() method 54
FPS 68
FPS Aggregated Payments API 176
functions, fabric module

get 201
local 201
put 201
run 201
sudo 201

fund_prepaid_token function 182
fundingTokenID parameter 180, 182
FundPrepaid 182

G
get_order_by_reference method 73
get_prepaid_token function 178
get_profile() method 40
getAttribute DOM method 165
GetDebtBalance 190
GET method 123
GET parameter 180
getTarget function 165
globalAmountLimit parameter 185
Google Checkout

about 77
process, overview 81

Google Checkout APIs
about 81
Notification API 81
Order Processing API 81

Google Checkout class
building 65-68

Google Checkout Digital Delivery
about 193
delivery methods 193
description based method, delivery

methods 193
e-mail, delivery methods 193
key/URL method, delivery methods 193

GoogleCheckoutView 66
graceful degradation 150

H
handleClick function 164
Haystack

about 102, 111
features 111-114

Haystack, for Django
about 111, 112
Haystack searches 113, 114
real-time search 115

href attribute 164
htpasswd command 124
HttpBasicAuthentication class 125
httpd.conf, example 198
HttpRequest object 85

[226]

I
init function 163

J
JavaScript

about 145
event-driven programming 148
graceful degradation 150
jQuery, JavaScript frameworks 150
JSON 148
overview 145-147
progressive enhancement 150
YUI, JavaScript frameworks 149

JavaScript Object Notation. See JSON
jQuery 150
JSON 148
json_response helper function 155

K
key/URL method, delivery methods 193

L
lookup_object helper function 155

M
make_order_from_cart function 64
make_payment function 187
make_pie_chart function 138
mod_python 196
mod_wsgi

about 196
daemon mode, configuring 198, 199
Django WSGI script 197
httpd.conf, example 198
thread-safety 200

model-template-view pattern 11
MyCallable class 61
MySQL simple index searches 97-99

N
new order notification 83
next_item_id property 53

Notification API
about 82
amount notification 83
configuring 83
implementing 82, 83
new order notification, using 83-85
notification, types 83
order state change notification 83
risk information notification 83

O
object_id parameter 154
Order Processing API 87, 88
order processing system 81
orders

status information, adding 77-80
order state change notification 83

P
parseString function 85
payment integration 34-36
payment processor

about 11
building 59, 60
checkout view base class,

implementing 61-63
class-based views 60, 61
order, saving 63, 65

payment services 93
PayPal

about 93
implementing 73, 74

pdfgen 131
PDF reports

generating, from Python 129-138
PDF views

creating 138
Pip

about 220
features 220

PLATYPUS
about 130, 133
using 133

POST method 123
postpaid API

about 184, 185

[227]

debt balances, getting 189
debts, settling 187, 188
debts, writing off 188, 189
pay requets 187
postpaid token, obtaining 185, 186

prepaid API
about 177
pay request 183
prepaid balances, checking 184
prepaid token, funding 180-182
prepaid token, obtaining 177-180

PrepaidInstrumentId parameter 182
preventDefault function 164
product catalog

designing 22-24
viewing 30, 31

production deployments, Django 203
product model

creating 24
product ratings

AJAX-powered interfaces 153
creating 151, 152
JavaScript, debugging 167
JavaScript, writing 162-166
rating view, constructing 154, 155
template, constructing 156-161
user-experience issues 153

products
categorizing 25-27

progressive enhancement 150
PUT method 123
PyPI 219
python-fedex 89
Python Imaging Library (PIL) 129

Q
Query string request authentication

about 174
implementing 174, 175

R
raw_post_data attribute 83
rect 131
ref_funding arguments 178
ref_sender arguments 178

ReportLab
about 129
canvas objects 129
charts, creatin 135
Drawing object 135
flowables 135
low-level interface 130
PLATYPUS 130, 133
two-dimensional coordinate system 130
url 129

reportlab.pdfgen module 131
reportlab.platypus module 132
request parameters

Action 182
CallerReference 182
PrepaidInstrumentId 182
SenderTokenId 182

REST 120, 121
return_response method 65
return_url arguments 178
return_url parameter 179
risk information notification 83
run_tests function 202

S
S3 173
S3 storage backend with django-storages

about 173
Amazon AWS services requests 175
Query string request authentication,

using 174
Salesforce

about 140
advantages 139
limitations 140
objects, creating 140
updating 141

Salesforce API 141
Salesforce integration 139, 140
Salesforce Object Query Language. See

SOQL
save_amazon_transaction method 73
save_order method 64
sdist command 218

[228]

search engine libraries
about 99
Haystack 102
Solr 100
Sphinx 100
Whoosh 101
Xapian 101

Secure Sockets Layer. See SSL
security considerations, e-commerce site 80
SenderTokenId parameter 182
set_expiry() method 52
SettleDebt function 185
setuptools

about 217
advantages 217

shipping
about 89
handling 89

shipping charges
calculating 89-91

shipping service
DHL 89
FedEx 89
United States Postal Service 89
UPS 89

shopping carts 11, 12
simple CRM tool 92, 93
SimpleDocTemplate class 134
Simple Object Access Protocol (SOAP) 89
Simple Object Access Protocol (SOAP)

interface 120
simple product HTML templates

designing 32, 33
simple search strategy 95
Solr

about 100
features 100
integrating with Django 101

SOQL 141
Sphinx

about 100
features 100
integrating with Django 100
searching, from Python 106

Sphinx Python API 106
Sphinx search engine

configuring 102

Sphinx search engine configuration
about 102
data source, defining 103
index, building 105
index, testing 106
indexes, defining 104
sphinx.conf file 102

src attribute 162
SSL 80
status information

adding, to orders 77-80
subscription-based sale 169, 170

T
Table class 134
template_name parameter 42
thread-safety 200
TransactionAmount parameter 183

U
United States Postal Service 89
UPS 89
user-experience issues 153
user model

extending, django-profiles used 43
users and profiles 39, 40

V
virtualenv 17

about 211
environment, creating 212-214
environment, working in 215
virtualenvwrapper 216

virtualenv command 212
virtualenvwrapper 216

W
Web 2.0 features 119
Web Server Gateway Interface. See WSGI
Web Server Gateway Interface (WSGI)

script 16
Web Service Definition Language (WSDL)

89

[229]

Whoosh
about 101, 109
features 109, 110
installing 109

WSGI 196

X
Xapian

about 101, 117
features 117

XML-RPC 120

Y
YUI 149

Z
zc.buildout

about 203
bootstrapping 204
buildout section, buildout.cfg 205
parts sections, buildout.cfg 207-210
setup script, writing 206, 207

