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Preface

These are a set of class notes for a gas dynamics/viscous flow course taught to juniors in
Aerospace Engineering at the University of Notre Dame during the mid 1990s. The course
builds upon foundations laid in an earlier course where the emphasis was on subsonic ideal
flows. Consequently, it is expected that the student has some familiarity with many concepts
such as material derivatives, control volume analysis, derivation of governing equations,
etc. Additionally, first courses in thermodynamics and differential equations are probably
necessary. Even a casual reader will find gaps, errors, and inconsistencies. The author
welcomes comments and corrections. It is also noted that these notes have been influenced
by a variety of standard references, which are sporadically and incompletely noted in the
text. Some of the key references which were important in the development of these notes
are the texts of Shapiro, Liepmann and Roshko, Anderson, Courant and Friedrichs, Hughes
and Brighton, White, Sonntag and Van Wylen, and Zucrow and Hoffman.

At this stage, if anyone outside Notre Dame finds these useful, they are free to make
copies. Full information on the course is found at http://www.nd.edu/∼powers/ame.30332.

Joseph M. Powers
powers@nd.edu

http://www.nd.edu/∼powers

Notre Dame, Indiana; USA
CC© BY:© $\© =© 17 February 2015

The content of this book is licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0.
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Chapter 1

Introduction

Suggested Reading:

Anderson, Chapter 1: pp. 1-31

1.1 Definitions

The topic of this course is the aerodynamics of compressible and viscous flow.

Where does aerodynamics rest in the taxonomy of mechanics?

Aerodynamics–a branch of dynamics that deals with the motion of air and other
gaseous fluids and with the forces acting on bodies in motion relative to such fluids (e.g.
airplanes)

We can say that aerodynamics is a subset of (⊂)

• fluid dynamics since air is but one type of fluid, ⊂

• fluid mechanics since dynamics is part of mechanics, ⊂

• mechanics since fluid mechanics is one class of mechanics.

Mechanics–a branch of physical science that deals with forces and the motion of bodies
traditionally broken into:

• kinematics–study of motion without regard to causality

• dynamics (kinetics)–study of forces which give rise to motion

Examples of other subsets of mechanics:

9



10 CHAPTER 1. INTRODUCTION

• solid mechanics

• quantum mechanics

• celestial mechanics

• relativistic mechanics

• quantum-electrodynamics (QED)

• magneto-hydrodynamics (MHD)

Recall the definition of a fluid:

Fluid–a material which moves when a shear force is applied.

Recall that solids can, after a small displacement, relax to an equilibrium configuration
when a shear force is applied.

Recall also that both liquids and gases are fluids

The motion of both liquids and gases can be affected by compressibility and shear forces.
While shear forces are important for both types of fluids, the influence of compressibility in
gases is generally more significant.

The thrust of this class will be to understand how to model the effects of compressibility
and shear forces and how this impacts the design of aerospace vehicles.

1.2 Motivating examples

The following two examples serve to illustrate why knowledge of compressibility and shear
effects is critical.

1.2.1 Re-entry flows

A range of phenomena are present in the re-entry of a vehicle into the atmosphere. This is
an example of an external flow. See Figure 1.1.

1.2.1.1 Bow shock wave

• suddenly raises density, temperature and pressure of shocked air; consider normal shock
in ideal air

– ρo = 1.16 kg/m3 → ρs = 6.64 kg/m3 (over five times as dense!!)

– To = 300 K → Ts = 6, 100 K (hot as the sun’s surface !!)

CC BY-NC-ND. 17 February 2015, J. M. Powers.
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1.2. MOTIVATING EXAMPLES 11

Ambient Air 

 

Normal Shock Wave 

Oblique 
Shock 
Wave 

rarefaction 
waves 

viscous  
and thermal 
boundary 
layers 

far-field 
acoustic 
wave 

Figure 1.1: Fluid mechanics phenomena in re-entry

– Po = 1.0 atm → Ps = 116.5 atm (tremendous force change!!)

– sudden transfer of energy from kinetic (ordered) to thermal (random)

• introduces inviscid entropy/vorticity layer into post-shocked flow

• normal shock standing off leading edge

• conical oblique shock away from leading edge

• acoustic wave in far field

1.2.1.2 Rarefaction (expansion) wave

• lowers density, temperature, and pressure of air continuously and significantly

• interactions with bow shock weaken bow shock

1.2.1.3 Momentum boundary layer

• occurs in thin layer near surface where velocity relaxes from freestream to zero to
satisfy the no-slip condition

• necessary to predict viscous drag forces on body

CC BY-NC-ND. 17 February 2015, J. M. Powers.
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12 CHAPTER 1. INTRODUCTION

1.2.1.4 Thermal boundary layer

• as fluid decelerates in momentum boundary layer kinetic energy is converted to thermal
energy

• temperature rises can be significant (> 1, 000 K)

1.2.1.5 Vibrational relaxation effects

• energy partitioned into vibrational modes in addition to translational

• lowers temperature that would otherwise be realized

• important for air above 800 K

• unimportant for monatomic gases

1.2.1.6 Dissociation effects

• effect which happens when multi-atomic molecules split into constituent atoms

• O2 totally dissociated into O near 4, 000 K

• N2 totally dissociated into N near 9, 000 K

• For T > 9, 000 K, ionized plasmas begin to form

Vibrational relaxation, dissociation, and ionization can be accounted for to some extent by
introducing a temperature-dependent specific heat cv(T )

1.2.2 Rocket nozzle flows

The same essential ingredients are present in flows through rocket nozzles. This is an example
of an internal flow, see Figure 1.2

burning solid rocket fuel 

burning solid rocket fuel 

viscous and thermal 
boundary layers 

possible 
normal  
shock 

Figure 1.2: Fluid mechanics phenomena in rocket nozzles

Some features:
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1.2. MOTIVATING EXAMPLES 13

• well-modelled as one-dimensional flow

• large thrust relies on subsonic to supersonic transition in a converging-diverging nozzle

• away from design conditions normal shocks can exist in nozzle

• viscous and thermal boundary layers must be accounted for in design

1.2.3 Jet engine inlets

The same applies for the internal flow inside a jet engine, see Figure 1.3

inlet 

compressor 
combustor exhaust turbine 

oblique 
shock 

viscous 
and thermal 
boundary layers 

Figure 1.3: Fluid mechanics phenomena in jet engine inlet
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Chapter 2

Governing equations

Suggested Reading:

Hughes and Brighton, Chapter 3: pp. 44-64

Liepmann and Roshko, Chapter 7: pp. 178-190, Chapter 13: pp. 305-313, 332-338

Anderson, Chapter 2: pp. 32-44; Chapter 6: pp. 186-205

The equations which govern a wide variety of these flows are the compressible Navier-
Stokes equations. In general they are quite complicated and require numerical solution. We
will only consider small subsets of these equations in practice, but it is instructive to see
them in full glory at the outset.

2.1 Mathematical preliminaries

A few concepts which may be new or need re-emphasis are introduced here.

2.1.1 Vectors and tensors

One way to think of vectors and tensors is as follows:

• first order tensor: vector, associates a scalar with any direction in space, column
matrix

• second order tensor: tensor-associates a vector with any direction in space, two-
dimensional matrix

• third order tensor-associates a second order tensor with any direction in space, three-
dimensional matrix

• fourth order tensor-...

15



16 CHAPTER 2. GOVERNING EQUATIONS

Here a vector, denoted by boldface, denotes a quantity which can be decomposed as a
sum of scalars multiplying orthogonal basis vectors, i.e.:

v = ui+ vj+ wk (2.1)

2.1.2 Gradient, divergence, and material derivatives

The “del” operator, ∇, is as follows:

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(2.2)

Recall the definition of the material derivative also known as the substantial or total

derivative:

d

dt
≡ ∂

∂t
+ v · ∇ (2.3)

where

Example 2.1
Does v · ∇ = ∇ · v = ∇v?

v · ∇ = u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.4)

∇ · v =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
(2.5)

∇v =





∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z



 (2.6)

So, no.

Here the quantity ∇v is an example of a second order tensor. Also

v · ∇ ≡ v div (2.7)

∇ · v ≡ div v (2.8)

∇v ≡ grad v (2.9)

∇φ ≡ grad φ (2.10)
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2.1. MATHEMATICAL PRELIMINARIES 17

2.1.3 Conservative and non-conservative forms

If hi is a column vector of N variables, e.g. hi = [h1, h2, h3, ...hN ]
T , and fi(hi) gi(hi) are a

column vectors of N functions of the variables hi, and all variables are functions of x and
t, hi = hi(x, t), fi(hi(x, t)), gi(hi(x, t)) then a system of partial differential equations is in
conservative form iff the system can be written as follows:

∂

∂t
hi +

∂

∂x
(fi(hi)) = gi(hi) (2.11)

A system not in this form is in non-conservative form

2.1.3.1 Conservative form

Advantages

• naturally arises from control volume derivation of governing equations

• clearly exposes groups of terms which are conserved

• easily integrated in certain special cases

• most natural form for deriving normal shock jump equations

• the method of choice for numerical simulations

Disadvantages

• lengthy

• not commonly used

• difficult to see how individual variables change

2.1.3.2 Non-conservative form

Advantages

• compact

• commonly used

• can see how individual variables change

Disadvantages

• often difficult to use to get solutions to problems

CC BY-NC-ND. 17 February 2015, J. M. Powers.
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• gives rise to artificial instabilities if used in numerical simulation

Example 2.2
Kinematic wave equation

The kinematic wave equation in non-conservative form is

∂u

∂t
+ u

∂u

∂x
= 0 (2.12)

This equation has the same mathematical form as inviscid equations of gas dynamics which give rise to
discontinuous shock waves. Thus understanding the solution of this simple equation is very useful
in understanding equations with more physical significance.

Since u∂u
∂x = ∂

∂x

(

u2

2

)

the kinematic wave equation in conservative form is as follows:

∂u

∂t
+

∂

∂x

(

u2

2

)

= 0 (2.13)

Here hi = u, fi =
u2

2 , gi = 0.

Consider the special case of a steady state ∂
∂t ≡ 0. Then the conservative form of the equation can

be integrated!

d

dx

(

u2

2

)

= 0 (2.14)

u2

2
=

u2
o

2
(2.15)

u = ±uo (2.16)

Now u = uo satisfies the equation and so does u = −uo. These are both smooth solutions. In
addition, combinations also satisfy, e.g. u = uo, x < 0;u = −uo, x ≥ 0. This is a discontinuous solution.
Also note the solution is not unique. This is a consequence of the u∂u

∂x non-linearity. This is an example
of a type of shock wave. Which solution is achieved generally depends on terms we have neglected,
especially unsteady terms.

Example 2.3
Burger’s equation

Burger’s equation in non-conservative form is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(2.17)
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This equation has the same mathematical form as viscous equations of gas dynamics which give rise
to spatially smeared shock waves.

Place this in conservative form:

∂u

∂t
+ u

∂u

∂x
− ν

∂

∂x

∂u

∂x
= 0 (2.18)

∂u

∂t
+

∂

∂x

(

u2

2

)

− ∂

∂x

(

ν
∂u

∂x

)

= 0 (2.19)

∂u

∂t
+

∂

∂x

(

u2

2
− ν

∂u

∂x

)

= 0 (2.20)

Here, this equation is not strictly in conservative form as it still involves derivatives inside the ∂
∂x

operator.

Consider the special case of a steady state ∂
∂t ≡ 0. Then the conservative form of the equation can

be integrated!

d

dx

(

u2

2
− ν

du

dx

)

= 0 (2.21)

Let u → uo as x → −∞ (consequently ∂u
∂x → 0 as x → −∞) and u(0) = 0 so

u2

2
− ν

du

dx
=

u2
o

2
(2.22)

ν
du

dx
=

1

2

(

u2 − u2
o

)

(2.23)

du

u2 − u2
o

=
dx

2ν
(2.24)

∫

du

u2
o − u2

= −
∫

dx

2ν
(2.25)

1

uo
tanh−1 u

uo
= − x

2ν
+ C (2.26)

u(x) = uo tanh
(

−uo

2ν
x+ Cuo

)

(2.27)

u(0) = 0 = uo tanh (Cuo) C = 0 (2.28)

u(x) = uo tanh
(

−uo

2ν
x
)

(2.29)

lim
x→−∞

u(x) = uo (2.30)

lim
x→∞

u(x) = −uo (2.31)

Note

• same behavior in far field as kinematic wave equation

• continuous adjustment from uo to −uo in a zone of thickness 2ν
uo

• zone thickness → 0 as ν → 0

• inviscid shock is limiting case of viscously resolved shock

Figure 2.1 gives a plot of the solution to both the kinematic wave equation and Burger’s equation.
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x 

u 

uo 

-uo 

Kinematic Wave Equation Solution 
      Discontinuous Shock Wave 

x 

u 

Burger’s Equation Solution 
     Smeared Shock Wave 

-uo 

uo 

Shock Thickness ~ 2 ν / uo 

Figure 2.1: Solutions to the kinematic wave equation and Burger’s equation

2.2 Summary of full set of compressible viscous equa-

tions

A complete set of equations is given below. These are the compressible Navier-Stokes equa-

tions for an isotropic Newtonian fluid with variable properties

dρ

dt
+ ρ∇ · v = 0 [1] (2.32)

ρ
dv

dt
= −∇P +∇ · τ + ρg [3] (2.33)

ρ
de

dt
= −∇ · q− P∇ · v + τ :∇v [1] (2.34)

τ = µ
(

∇v +∇vT
)

+ λ (∇ · v) I [6] (2.35)

q = −k∇T [3] (2.36)

µ = µ (ρ, T ) [1] (2.37)

λ = λ (ρ, T ) [1] (2.38)

k = k (ρ, T ) [1] (2.39)

P = P (ρ, T ) [1] (2.40)

e = e (ρ, T ) [1] (2.41)

The numbers in brackets indicate the number of equations. Here the unknowns are

• ρ–density kg/m3 (scalar-1 variable)

• v–velocity m/s (vector- 3 variables)

• P–pressure N/m2 (scalar- 1 variable)

• e–internal energy J/kg (scalar- 1 variable)
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• T–temperature K (scalar - 1 variable)

• τ–viscous stress N/m2 (symmetric tensor - 6 variables)

• q–heat flux vector–W/m2 (vector - 3 variables)

• µ–first coefficient of viscosity Ns/m2 (scalar - 1 variable)

• λ–second coefficient of viscosity Ns/m2 (scalar - 1 variable)

• k–thermal conductivity W/(m2K) (scalar - 1 variable)

Here g is the constant gravitational acceleration and I is the identity matrix. Total–19
variables

Points of the exercise

• 19 equations; 19 unknowns

• conservation axioms–postulates (first three equations)

• constitutive relations–material dependent (remaining equations)

• review of vector notation and operations

Exercise: Determine the three Cartesian components of ∇· τ for a) a compressible
Newtonian fluid, and b) an incompressible Newtonian fluid, in which ∇ · v = 0.

This system of equations must be consistent with the second law of thermodynamics.
Defining the entropy s by the Gibbs relation:

Tds = de+ Pd

(

1

ρ

)

(2.42)

T
ds

dt
=

de

dt
+ P

d

dt

(

1

ρ

)

(2.43)

the second law states:

ρ
ds

dt
≥ −∇ ·

(q

T

)

(2.44)

In practice, this places some simple restrictions on the constitutive relations. It will be
sometimes useful to write this in terms of the specific volume, v ≡ 1/ρ. This can be
confused with the y component of velocity but should be clear in context.

2.3 Conservation axioms

Conservation principles are axioms of mechanics and represent statements that cannot be
proved. In that they provide predictions which are consistent with empirical observations,
they are useful.
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2.3.1 Conservation of mass

This principle states that in a material volume (a volume which always encompasses the
same fluid particles), the mass is constant.

2.3.1.1 Nonconservative form

dρ

dt
+ ρ∇ · v = 0 (2.45)

This can be expanded using the definition of the material derivative to form

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂x
+ ρ

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

= 0 (2.46)

2.3.1.2 Conservative form

Using the product rule gives

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (2.47)

The equation essentially says that the net accumulation of mass within a control volume is
attributable to the net flux of mass in and out of the control volume. In Gibbs notation this
is

∂ρ

∂t
+∇ · (ρv) = 0 (2.48)

2.3.1.3 Incompressible form

Iff the fluid is defined to be incompressible, dρ/dt ≡ 0, the consequence is

∇ · v = 0, or (2.49)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.50)

As this course is mainly concerned with compressible flow, this will not be often used.

2.3.2 Conservation of linear momenta

This is really Newton’s Second Law of Motion ma =
∑

F

2.3.2.1 Nonconservative form

ρ
dv

dt
= −∇P +∇ · τ + ρg (2.51)

• ρ: mass/volume
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• dv
dt
: acceleration

• −∇P,∇ · τ : surface forces/volume

• ρg: body force/volume

Example 2.4
Expand the term ∇ · τ

∇ · τ =
( ∂

∂x
∂
∂y

∂
∂z

)





τxx τxy τxz
τyx τyy τyz
τzx τzy τzz



 =







∂
∂xτxx + ∂

∂y τyx + ∂
∂z τzx

∂
∂xτxy +

∂
∂y τyy +

∂
∂z τzy

∂
∂xτxz +

∂
∂y τyz +

∂
∂z τzz







T

(2.52)

This is a vector equation as there are three components of momenta. Let’s consider the
x momentum equation for example.

ρ
du

dt
= −∂P

∂x
+

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρgx (2.53)

Now expand the material derivative:

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= −∂P

∂x
+

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρgx (2.54)

Equivalent equations exist for y and z linear momentum:

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z
= −∂P

∂y
+

∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρgy (2.55)

ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z
= −∂P

∂z
+

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρgz (2.56)

2.3.2.2 Conservative form

Multiply the mass conservation principle by u so that it has the same units as the momentum
equation and add to the x momentum equation:

u
∂ρ

∂t
+ u

∂(ρu)

∂x
+ u

∂(ρv)

∂y
+ u

∂(ρw)

∂z
= 0 (2.57)

+ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= −∂P

∂x
+

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρgx (2.58)
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Using the product rule, this yields:

∂ (ρu)

∂t
+

∂ (ρuu)

∂x
+

∂ (ρvu)

∂y
+

∂ (ρwu)

∂z
= −∂P

∂x
+

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρgx (2.59)

The extension to y and z momenta is straightforward:

∂ (ρv)

∂t
+

∂ (ρuv)

∂x
+

∂ (ρvv)

∂y
+

∂ (ρwv)

∂z
= −∂P

∂y
+

∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρgy (2.60)

∂ (ρw)

∂t
+

∂ (ρuw)

∂x
+

∂ (ρvw)

∂y
+

∂ (ρww)

∂z
= −∂P

∂z
+

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρgz (2.61)

In vector form this is written as follows:

∂ (ρv)

∂t
+∇ · (ρvv) = −∇P +∇ · τ + ρg (2.62)

As with the mass equation, the time derivative can be interpreted as the accumulation of
linear momenta within a control volume and the divergence term can be interpreted as
the flux of linear momenta into the control volume. The accumulation and flux terms are
balanced by forces, both surface and body.

2.3.3 Conservation of energy

This principle really is the first law of thermodynamics, which states the change in internal
energy of a body is equal to the heat added to the body minus the work done by the body;

Ê2 − Ê1 = Q12 −W12 (2.63)

The Ê here includes both internal energy and kinetic energy and is written for an extensive
system:

Ê = ρV

(

e+
1

2
v · v

)

(2.64)

2.3.3.1 Nonconservative form

The equation we started with (which is in non-conservative form)

ρ
de

dt
= −∇ · q− P∇ · v + τ :∇v (2.65)

is simply a careful expression of the simple idea de = dq − dw with attention paid to sign
conventions, etc.

• ρde
dt
: change in internal energy /volume

• −∇ · q: net heat transfer into fluid/volume

• P∇ · v: net work done by fluid due to pressure force/volume (force × deformation)

• −τ : ∇v: net work done by fluid due to viscous force/volume (force × deformation)
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2.3.3.2 Mechanical energy

Taking the dot product of the velocity v with the linear momentum principle yields the
mechanical energy equation (here expressed in conservative form):

∂

∂t

(

1

2
ρ (v · v)

)

+∇ ·
(

1

2
ρv (v · v)

)

= −v · ∇P + v · (∇ · τ ) + ρv · g (2.66)

This can be interpreted as saying the kinetic energy (or mechanical energy) changes due to

• motion in the direction of a force imbalance

– −v · ∇P

– v · (∇ · τ )

• motion in the direction of a body force

Exercise: Add the product of the mass equation and u2/2 to the product of u and the one
dimensional linear momentum equation:

u

(

ρ
∂u

∂t
+ ρu

∂u

∂x

)

= u

(

−∂P

∂x
+

∂τxx
∂x

+ ρgx

)

(2.67)

to form the conservative form of the one-dimensional mechanical energy equation:

∂

∂t

(

1

2
ρu2

)

+
∂

∂x

(

1

2
ρu3

)

= −u
∂P

∂x
+ u

∂τxx
∂x

+ ρugx (2.68)

2.3.3.3 Conservative form

When we multiply the mass equation by e, we get

e
∂ρ

∂t
+ e

∂(ρu)

∂x
+ e

∂(ρv)

∂y
+ e

∂(ρw)

∂z
= 0 (2.69)

Adding this to the nonconservative energy equation gives

∂

∂t
(ρe) +∇ · (ρve) = −∇ · q− P∇ · v + τ :∇v (2.70)

Adding to this the mechanical energy equation gives the conservative form of the energy
equation:

∂

∂t

(

ρ

(

e +
1

2
v · v

))

+∇·
(

ρv

(

e+
1

2
v · v

))

= −∇·q−∇·(Pv)+∇·(τ · v)+ρv·g (2.71)

which is often written as

∂

∂t

(

ρ

(

e +
1

2
v · v

))

+∇ ·
(

ρv

(

e+
1

2
v · v +

P

ρ

))

= −∇ · q+∇ · (τ · v) + ρv · g (2.72)
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2.3.3.4 Energy equation in terms of entropy

Recall the Gibbs relation which defines entropy s:

T
ds

dt
=

de

dt
+ P

d

dt

(

1

ρ

)

=
de

dt
− P

ρ2
dρ

dt
(2.73)

so

ρ
de

dt
= ρT

ds

dt
+

P

ρ

dρ

dt
(2.74)

also from the conservation of mass

∇ · v = −1

ρ

dρ

dt
(2.75)

Substitute into nonconservative energy equation:

ρT
ds

dt
+

P

ρ

dρ

dt
= −∇ · q +

P

ρ

dρ

dt
+ τ : ∇v (2.76)

Solve for entropy change:

ρ
ds

dt
= − 1

T
∇ · q+

1

T
τ : ∇v (2.77)

Two effects change entropy:

• heat transfer

• viscous work

Note the work of the pressure force does not change entropy; it is reversible work.

If there are no viscous and heat transfer effects, there is no mechanism for entropy change;
ds/dt = 0; the flow is isentropic.

2.3.4 Entropy inequality

The first law can be used to reduce the second law to a very simple form. Starting with

∇ ·
(q

T

)

=
1

T
∇ · q− q

T 2
· ∇T (2.78)

so

− 1

T
∇ · q = −∇ ·

(q

T

)

− q

T 2
· ∇T (2.79)

Substitute into the first law:

ρ
ds

dt
= −∇ ·

(q

T

)

− q

T 2
· ∇T +

1

T
τ : ∇v (2.80)
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Recall the second law of thermodynamics:

ρ
ds

dt
≥ −∇ ·

(q

T

)

(2.81)

Substituting the first law into the second law thus yields:

− q

T 2
· ∇T +

1

T
τ : ∇v ≥ 0 (2.82)

Our constitutive theory for q and τ must be constructed to be constructed so as not to
violate the second law.
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Exercise: Beginning with the unsteady, two-dimensional, compressible Navier-Stokes
equations with no body force in conservative form (below), show all steps necessary to
reduce these to the following non-conservative form.

Conservative form

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0

∂

∂t
(ρu) +

∂

∂x
(ρuu+ P − τxx) +

∂

∂y
(ρuv − τyx) = 0

∂

∂t
(ρv) +

∂

∂x
(ρvu− τxy) +

∂

∂y
(ρvv + P − τyy) = 0

∂

∂t

(

ρ

(

e+
1

2

(

u2 + v2
)

))

+
∂

∂x

(

ρu

(

e+
1

2

(

u2 + v2
)

+
P

ρ

)

− (uτxx + vτxy) + qx

)

+
∂

∂y

(

ρv

(

e+
1

2

(

u2 + v2
)

+
P

ρ

)

− (uτyx + vτyy) + qy

)

= 0

Non-conservative form

(

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y

)

+ ρ

(

∂u

∂x
+

∂v

∂y

)

= 0

ρ

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −∂P

∂x
+

∂τxx
∂x

+
∂τyx
∂y

ρ

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= −∂P

∂y
+

∂τxy
∂x

+
∂τyy
∂y

ρ

(

∂e

∂t
+ u

∂e

∂x
+ v

∂e

∂y

)

= −
(

∂qx
∂x

+
∂qy
∂y

)

−P

(

∂u

∂x
+

∂v

∂y

)

+τxx
∂u

∂x
+ τxy

∂v

∂x
+ τyx

∂u

∂y
+ τyy

∂v

∂y
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2.4 Constitutive relations

These are determined from experiments and provide sometimes good and sometimes crude
models for microstructurally based phenomena.

2.4.1 Stress-strain rate relationship for Newtonian fluids

Perform the experiment described in Figure 2.2.

 
Force = F 
Velocity = U 

h 

Figure 2.2: Schematic of experiment to determine stress-strain-rate relationship

The following results are obtained, Figure 2.3:

U 

F 

U 

F 
h1 

h2 

h3 

h4 

h4 > h3 > h2 > h1 

A1 

A2 

A3 

A4 

A4 > A3 > A2 > A1 

Figure 2.3: Force (N) vs. velocity (m/s)

Note for constant plate velocity U

• small gap width h gives large force F

• large cross-sectional area A gives large force F

When scaled by h and A, for a single fluid, the curve collapses to a single curve, Figure
2.4:

The viscosity is defined as the ratio of the applied stress τyx = F/A to the strain rate
∂u
∂y
.
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F/A 

U/h 

 µ 

1 

Figure 2.4: Stress (N/m2) vs. strain rate (1/s)

µ ≡ τyx
∂u
∂y

(2.83)

Here the first subscript indicates the face on which the force is acting, here the y face.
The second subscript indicates the direction in which the force takes, here the x direction.
In general viscous stress is a tensor quantity. In full detail it is as follows:

τ = µ





∂u
∂x

+ ∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂x

+ ∂u
∂y

∂v
∂y

+ ∂v
∂y

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z

∂w
∂y

+ ∂v
∂z

∂w
∂z

+ ∂w
∂z





+λ





∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

0 0

0 ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

0

0 0 ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z



 (2.84)

This is simply an expanded form of that written originally:

τ = µ
(

∇v +∇vT
)

+ λ (∇ · v) I (2.85)

Here λ is the second coefficient of viscosity. It is irrelevant in incompressible flows and
notoriously difficult to measure in compressible flows. It has been the source of controversy
for over 150 years. Commonly, and only for convenience, people take Stokes’ Assumption:

λ ≡ −2

3
µ (2.86)

It can be shown that this results in the mean mechanical stress being equivalent to the
thermodynamic pressure.
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It can also be shown that the second law is satisfied if

µ ≥ 0 and λ ≥ −2

3
µ (2.87)

Example 2.5
Couette Flow

Use the linear momentum principle and the constitutive theory to show the velocity profile between
two plates is linear. The lower plate at y = 0 is stationary; the upper plate at y = h is moving at
velocity U . Assume v = u(y)i+ 0j+ 0k. Assume there is no imposed pressure gradient or body force.
Assume constant viscosity µ. Since u = u(y), v = 0, w = 0, there is no fluid acceleration.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= 0 + 0 + 0 + 0 = 0 (2.88)

Since no pressure gradient or body force the linear momentum principle is simply

0 =
∂τyx
∂y

(2.89)

With the Newtonian fluid

0 =
∂

∂y

(

µ
∂u

∂y

)

(2.90)

With constant µ and u = u(y) we have:

µ
d2u

dx2
= 0 (2.91)

Integrating we find
u = Ay +B (2.92)

Use the boundary conditions at y = 0 and y = h to give A and B:

A = 0, B =
U

h
(2.93)

so

u(y) =
U

h
y (2.94)

Example 2.6
Poiseuille Flow

Consider flow between a slot separated by two plates, the lower at y = 0, the upper at y = h, both
plates stationary. The flow is driven by a pressure difference. At x = 0, P = Po; at x = L, P = P1.
The fluid has constant viscosity µ. Assuming the flow is steady, there is no body force, pressure varies
only with x, and that the velocity is only in the x direction and only a function of y; i.e. v = u(y) i,
find the velocity profile u(y) parameterized by Po, P1, h, and µ.
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As before there is no acceleration and the x momentum equation reduces to:

0 = −∂P

∂x
+ µ

∂2u

∂y2
(2.95)

First let’s find the pressure field; take ∂/∂x:

0 = −∂2P

∂x2
+ µ

∂

∂x

(

∂2u

∂y2

)

(2.96)

changing order of differentiation: 0 = −∂2P

∂x2
+ µ

∂2

∂y2

(

∂u

∂x

)

(2.97)

0 = −∂2P

∂x2
= −d2P

dx2
(2.98)

dP

dx
= A (2.99)

P = Ax+B (2.100)

apply boundary conditions : P (0) = Po P (L) = P1 (2.101)

P (x) = Po + (P1 − Po)
x

L
(2.102)

so
dP

dx
=

(P1 − Po)

L
(2.103)

substitute into momentum: 0 = − (P1 − Po)

L
+ µ

d2u

dy2
(2.104)

d2u

dy2
=

(P1 − Po)

µL
(2.105)

du

dy
=

(P1 − Po)

µL
y + C1 (2.106)

u(y) =
(P1 − Po)

2µL
y2 + C1y + C2 (2.107)

boundary conditions: u(0) = 0 = C2 (2.108)

u(h) = 0 =
(P1 − Po)

2µL
h2 + C1h+ 0 (2.109)

C1 = − (P1 − Po)

2µL
h (2.110)

u(y) =
(P1 − Po)

2µL

(

y2 − yh
)

(2.111)

wall shear:
du

dy
=

(P1 − Po)

2µL
(2y − h) (2.112)

τwall = µ
du

dy

∣

∣

∣

∣

y=0

= −h
(P1 − Po)

2L
(2.113)

Exercise: Consider flow between a slot separated by two plates, the lower at y = 0, the
upper at y = h, with the bottom plate stationary and the upper plate moving at velocity
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U . The flow is driven by a pressure difference and the motion of the upper plate. At x = 0,
P = Po; at x = L, P = P1. The fluid has constant viscosity µ. Assuming the flow is
steady, there is no body force, pressure varies only with x, and that the velocity is only in
the x direction and only a function of y; i.e. v = u(y)i, a) find the velocity profile u(y)
parameterized by Po, P1, h, U and µ; b) Find U such that there is no net mass flux between
the plates.

2.4.2 Fourier’s law for heat conduction

It is observed in experiment that heat moves from regions of high temperature to low tem-
perature Perform the experiment described in Figure 2.5.

T To  

L 

x 

A q 

T > To  

Figure 2.5: Schematic of experiment to determine thermal conductivity

The following results are obtained, Figure 2.6:

Q 

T 

Q 

T 

Q 

T 

t1 

t2 

t3 

A1 

A2 

A3 

L1 

L2 

L1 

t3 > t2 > t1 A3 > A2 > A1 L3 > L2 > L1 

Figure 2.6: Heat transferred (J) vs. temperature (K)

Note for constant temperature of the high temperature reservoir T

• large time of heat transfer t gives large heat transfer Q

• large cross-sectional area A gives large heat transfer Q

• small length L gives large heat transfer Q

When scaled by L, t, and A, for a single fluid, the curve collapses to a single curve, Figure
2.7:
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Q/(A t) 

T/L 

k 

1 

Figure 2.7: heat flux vs. temperature gradient

The thermal conductivity is defined as the ratio of the flux of heat transfer qx ∼ Q/(At)
to the temperature gradient −∂T

∂x
∼ T/L.

k ≡ qx

−∂T
∂x

(2.114)

so

qx = −k
∂T

∂x
(2.115)

or in vector notation:

q = −k∇T (2.116)

Note with this form, the contribution from heat transfer to the entropy production is
guaranteed positive if k ≥ 0.

k
∇T · ∇T

T 2
+

1

T
τ : ∇v ≥ 0 (2.117)

2.4.3 Variable first coefficient of viscosity, µ

In general the first coefficient of viscosity µ is a thermodynamic property which is a strong
function of temperature and a weak function of pressure.

2.4.3.1 Typical values of µ for air and water

• air at 300 K, 1 atm : 18.46× 10−6 (Ns)/m2

• air at 400 K, 1 atm : 23.01× 10−6 (Ns)/m2

• liquid water at 300 K, 1 atm : 855× 10−6 (Ns)/m2
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• liquid water at 400 K, 1 atm : 217× 10−6 (Ns)/m2

Note

• viscosity of air an order of magnitude less than water

• ∂µ
∂T

> 0 for air, and gases in general

• ∂µ
∂T

< 0 for water, and liquids in general

2.4.3.2 Common models for µ

• constant property: µ = µo

• kinetic theory estimate for high temperature gas: µ (T ) = µo

√

T
To

• empirical data

2.4.4 Variable second coefficient of viscosity, λ

Very little data for any material exists for the second coefficient of viscosity. It only plays a
role in compressible viscous flows, which are typically very high speed. Some estimates:

• Stokes’ hypothesis: λ = −2
3
µ, may be correct for monatomic gases

• may be inferred from attenuation rates of sound waves

• perhaps may be inferred from shock wave thicknesses

2.4.5 Variable thermal conductivity, k

In general thermal conductivity k is a thermodynamic property which is a strong function
of temperature and a weak function of pressure.

2.4.5.1 Typical values of k for air and water

• air at 300 K, 1 atm : 26.3× 10−3 W/(mK)

• air at 400 K, 1 atm : 33.8× 10−3 W/(mK)

• liquid water at 300 K, 1 atm : 613× 10−3 W/(mK)

• liquid water at 400 K, 1 atm : 688× 10−3 W/(mK) (the liquid here is supersaturated)

Note

• conductivity of air is one order of magnitude less than water

• ∂k
∂T

> 0 for air, and gases in general

• ∂k
∂T

> 0 for water in this range, generalization difficult
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2.4.5.2 Common models for k

• constant property: k = ko

• kinetic theory estimate for high temperature gas: k (T ) = ko

√

T
To

• empirical data

Exercise: Consider one-dimensional steady heat conduction in a fluid at rest. At x =
0 m at constant heat flux is applied qx = 10 W/m2. At x = 1 m, the temperature is held
constant at 300 K. Find T (y), T (0) and qx(1) for

• liquid water with k = 613× 10−3 W/(mK)

• air with k = 26.3× 10−3 W/(mK)

• air with k =
(

26.3× 10−3
√

T
300

)

W/(mK)

2.4.6 Thermal equation of state

2.4.6.1 Description

• determined in static experiments

• gives P as a function of ρ and T

2.4.6.2 Typical models

• ideal gas: P = ρRT

• first virial: P = ρRT (1 + b1ρ)

• general virial: P = ρRT (1 + b1ρ+ b2ρ
2 + ...)

• van der Waals: P = RT (1/ρ− b)−1 − aρ2

2.4.7 Caloric equation of state

2.4.7.1 Description

• determined in experiments

• gives e as function of ρ and T in general

• arbitrary constant appears

• must also be thermodynamically consistent via relation to be discussed later:
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de = cv (T ) dT −
(

1

ρ2

)

(

T
∂P

∂T

∣

∣

∣

∣

ρ

− P

)

dρ (2.118)

With knowledge of cv(T ) and P (ρ, T ), the above can be integrated to find e.

2.4.7.2 Typical models

• consistent with ideal gas:

– constant specific heat: e(T ) = cvo (T − To) + eo

– temperature dependent specific heat: e(T ) =
∫ T

To
cv(T̂ )dT̂ + eo

• consistent with first virial: e(T ) =
∫ T

To
cv(T̂ )dT̂ + eo

• consistent with van der Waals: e(ρ, T ) =
∫ T

To
cv(T̂ )dT̂ +−a (ρ− ρo) + eo

2.5 Special cases of governing equations

The governing equations are often expressed in more simple forms in common limits. Some
are listed here.

2.5.1 One-dimensional equations

Most of the mystery of vector notation is removed in the one-dimensional limit where v =
w = 0, ∂

∂y
= ∂

∂z
= 0; additionally we adopt Stokes assumption λ = −(2/3)µ:

(

∂ρ

∂t
+ u

∂ρ

∂x

)

+ ρ
∂u

∂x
= 0 (2.119)

ρ

(

∂u

∂t
+ u

∂u

∂x

)

= −∂P

∂x
+

∂

∂x

(

4

3
µ
∂u

∂x

)

+ ρgx (2.120)

ρ

(

∂e

∂t
+ u

∂e

∂x

)

=
∂

∂x

(

k
∂T

∂x

)

− P
∂u

∂x
+

4

3
µ

(

∂u

∂x

)2

(2.121)

µ = µ (ρ, T ) (2.122)

k = k (ρ, T ) (2.123)

P = P (ρ, T ) (2.124)

e = e (ρ, T ) (2.125)

note: 7 equations, 7 unknowns: (ρ, u, P, e, T, µ, k)

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


38 CHAPTER 2. GOVERNING EQUATIONS

2.5.2 Euler equations

When viscous stresses and heat conduction neglected, the Euler equations are obtained.

dρ

dt
+ ρ∇ · v = 0 (2.126)

ρ
dv

dt
= −∇P (2.127)

de

dt
= −P

d

dt

(

1

ρ

)

(2.128)

e = e (P, ρ) (2.129)

Note:

• 6 equations, 6 unknowns (ρ, u, v, w, P, e)

• body force neglected-usually unimportant in this limit

• easy to show this is isentropic flow; energy change is all due to reversible Pdv work

Exercise: Write the one-dimensional Euler equations in a) non-conservative form, b)
conservative form. Show all steps which lead from one form to the other.

2.5.3 Incompressible Navier-Stokes equations

If we take, ρ, k, µ, cp to be constant for an ideal gas and neglect viscous dissipation which is
usually small in such cases:

∇ · v = 0 (2.130)

ρ
dv

dt
= −∇P + µ∇2v (2.131)

ρcp
dT

dt
= k∇2T (2.132)

Note:

• 5 equations, 5 unknowns: (u, v, w, P, T )

• mass and momentum uncoupled from energy

• energy coupled to mass and momentum

• detailed explanation required for use of cp
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Chapter 3

Thermodynamics review

Suggested Reading:

Liepmann and Roshko, Chapter 1: pp. 1-24, 34-38

Shapiro, Chapter 2: pp. 23-44

Anderson, Chapter 1: pp. 12-25

As we have seen from the previous chapter, the subject of thermodynamics is a subset of
the topic of viscous compressible flows. It is almost always necessary to consider the thermo-
dynamics as part of a larger coupled system in design. This is in contrast to incompressible
aerodynamics which can determine forces independent of the thermodynamics.

3.1 Preliminary mathematical concepts

If
z = z(x, y) (3.1)

then

dz =
∂z

∂x

∣

∣

∣

∣

y

dx+
∂z

∂y

∣

∣

∣

∣

x

dy (3.2)

which is of the form
dz = Mdx+Ndy (3.3)

Now

∂M

∂y
=

∂

∂y

∂z

∂x
(3.4)

∂N

∂x
=

∂

∂x

∂z

∂y
(3.5)

thus
∂M

∂y
=

∂N

∂x
(3.6)

so the implication is that if we are given dz,M,N , we can form z only if the above holds.

39
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3.2 Summary of thermodynamic concepts

• property: characterizes the thermodynamics state of the system

– extensive: proportional to system’s mass, upper case variable E, S,H

– intensive: independent of system’s mass, lower case variable e, s, h, (exceptions
T, P )

• equations of state: relate properties

• Any intensive thermodynamic property can be expressed as a function of at most two
other intensive thermodynamic properties (for simple systems)

– P = ρRT : thermal equation of state for ideal gas

– c =
√

γ P
ρ
: sound speed for calorically perfect ideal gas

• first law: dÊ = δQ− δW

• second law: dS ≥ δQ/T

• process: moving from one state to another, in general with accompanying heat transfer
and work

• cycle: process which returns to initial state

• reversible work: w12 =
∫ 2

1
Pdv

• reversible heat transfer: q12 =
∫ 2

1
Tds

Figure 3.1 gives a sketch of an isothermal thermodynamic process going from state 1 to
state 2. The figure shows a variety of planes, P − v, T − s, P − T , and v − T . For ideal
gases, 1) isotherms are hyperbolas in the P −v plane: P = (RT )/v, 2) isochores are straight
lines in the P − T plane: P = (R/v)T , with large v giving a small slope, and 3) isobars
are straight lines in the v − T plane: v = (RT )/P , with large P giving a small slope. The
area under the curve in the P − v plane gives the work. The area under the curve in the
T − s plane gives the heat transfer. The energy change is given by the difference in the heat
transfer and the work. The isochores in the T − s plane are non-trivial. For a calorically
perfect ideal gas, they are given by exponential curves.

Figure 3.2 gives a sketch of a thermodynamic cycle. Here we only sketch the P − v and
T − s planes, though others could be included. Since it is a cyclic process, there is no net
energy change for the cycle and the cyclic work equals the cyclic heat transfer. The enclosed
area in the P − v plane, i.e. the net work, equals the enclosed area in the T − s plane, i.e.
the net heat transfer. The sketch has the cycle working in the direction which corresponds
to an engine. A reversal of the direction would correspond to a refrigerator.
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T

P
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v
2

2
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1

2

P

P

1
P

2
P
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1

1
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2
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Figure 3.1: Sketch of isothermal thermodynamic process

Example 3.1
Consider the following isobaric process for air, modelled as a calorically perfect ideal gas, from state

1 to state 2. P1 = 100 kPa, T1 = 300 K, T2 = 400 K.

Since the process is isobaric P = 100 kPa describes a straight line in P − v and P − T planes and
P2 = P1 = 100 kPa. Since ideal gas, v − T plane:

v =

(

R

P

)

T straight lines! (3.7)

v1 = RT1/P1 =
(287 J/kg/K) (300 K)

100, 000 Pa
= 0.861 m3/kg (3.8)

v2 = RT2/P2 =
(287 J/kg/K) (400 K)

100, 000 Pa
= 1.148 m3/kg (3.9)

Since calorically perfect:

de = cvdT (3.10)
∫ e1

e2

de = cv

∫ T1

T2

dT (3.11)

e2 − e1 = cv(T2 − T1) (3.12)

= (716.5 J/kg/K) (400 K − 300 K) (3.13)

= 71, 650 J/kg (3.14)
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v

P

s

T

q         =  wcycle cycle

Figure 3.2: Sketch of thermodynamic cycle

also

Tds = de+ Pdv (3.15)

Tds = cvdT + Pdv (3.16)

from ideal gas : v =
RT

P
: dv =

R

P
dT − RT

P 2
dP (3.17)

Tds = cvdT +RdT − RT

P
dP (3.18)

ds = (cv +R)
dT

T
−R

dP

P
(3.19)

ds = (cv + cp − cv)
dT

T
−R

dP

P
(3.20)

ds = cp
dT

T
−R

dP

P
(3.21)

∫ s2

s1

ds = cp

∫ T2

T1

dT

T
−R

∫ P2

P1

dP

P
(3.22)

s2 − s1 = cp ln

(

T2

T1

)

−R ln

(

P2

P1

)

(3.23)

s− so = cp ln

(

T

To

)

−R ln

(

P

Po

)

(3.24)

since P = constant: (3.25)

s2 − s1 = cp ln

(

T2

T1

)

(3.26)

= (1003.5 J/kg/K) ln

(

400 K

300 K

)

(3.27)

= 288.7 J/kg/K (3.28)

w12 =

∫ v2

v1

Pdv = P

∫ v2

v1

dv (3.29)

= P (v2 − v1) (3.30)
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= (100, 000 Pa)(1.148 m3/kg − 0.861 m3/kg) (3.31)

= 29, 600 J/kg (3.32)

Now

de = δq − δw (3.33)

δq = de+ δw (3.34)

q12 = (e2 − e1) + w12 (3.35)

q12 = 71, 650 J/kg + 29, 600 J/kg (3.36)

q12 = 101, 250 J/kg (3.37)

Now in this process the gas is heated from 300 K to 400 K. We would expect at a minimum that the
surroundings were at 400 K. Let’s check for second law satisfaction.

s2 − s1 ≥ q12
Tsurr

? (3.38)

288.7 J/kg/K ≥ 101, 250 J/kg

400 K
? (3.39)

288.7 J/kg/K ≥ 253.1 J/kg/K yes (3.40)

v

P
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1

T
2

v
2v1

P = P  = 100 kPa 
1 2

12 122 1∫w   =     P dv 
12 1

2

s
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∫q   =       T ds 
12 1

2
e  -  e  = q   - w

v2

v
1

s2
s1

T

T1

2

T

P

T

vv1

v
2

T
2

T
1

P = P  = 100 kPa 
1 2

P = P  = 100 kPa 
1 2

T
1 T

2

v1

v
2

Figure 3.3: Sketch for isobaric example problem
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3.3 Maxwell relations and secondary properties

Recall

de = Tds− Pd

(

1

ρ

)

(3.41)

Since v ≡ 1/ρ we get

de = Tds− Pdv (3.42)

Now we assume e = e(s, v),

de =
∂e

∂s

∣

∣

∣

∣

v

ds+
∂e

∂v

∣

∣

∣

∣

s

dv (3.43)

Thus

T =
∂e

∂s

∣

∣

∣

∣

v

P = − ∂e

∂v

∣

∣

∣

∣

s

(3.44)

and

∂T

∂v

∣

∣

∣

∣

s

=
∂2e

∂v∂s

∂P

∂s

∣

∣

∣

∣

v

= − ∂2e

∂s∂v
(3.45)

Thus we get a Maxwell relation:

∂T

∂v

∣

∣

∣

∣

s

= − ∂P

∂s

∣

∣

∣

∣

v

(3.46)

Define the following properties:

• enthalpy: h ≡ e + pv

• Helmholtz free energy: a ≡ e− Ts

• Gibbs free energy: g ≡ h− Ts

Now with these definitions it is easy to form differential relations using the Gibbs relation
as a root.

h = e+ Pv (3.47)

dh = de+ Pdv + vdP (3.48)

de = dh− Pdv − vdP (3.49)

substitute into Gibbs: de = Tds− Pdv (3.50)

dh− Pdv − vdP = Tds− Pdv (3.51)

dh = Tds+ vdP (3.52)
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So s and P are natural variables for h. Through a very similar process we get the following
relationships:

∂h

∂s

∣

∣

∣

∣

P

= T
∂h

∂P

∣

∣

∣

∣

s

= v (3.53)

∂a

∂v

∣

∣

∣

∣

T

= −P
∂a

∂T

∣

∣

∣

∣

v

= −s (3.54)

∂g

∂P

∣

∣

∣

∣

T

= v
∂g

∂T

∣

∣

∣

∣

P

= −s (3.55)

∂T

∂P

∣

∣

∣

∣

s

=
∂v

∂s

∣

∣

∣

∣

P

∂P

∂T

∣

∣

∣

∣

v

=
∂s

∂v

∣

∣

∣

∣

T

∂v

∂T

∣

∣

∣

∣

P

= − ∂s

∂P

∣

∣

∣

∣

T

(3.56)

The following thermodynamic properties are also useful and have formal definitions:

• specific heat at constant volume: cv ≡ ∂e
∂T

∣

∣

v

• specific heat at constant pressure: cp ≡ ∂h
∂T

∣

∣

P

• ratio of specific heats: γ ≡ cp/cv

• sound speed: c ≡
√

∂P
∂ρ

∣

∣

∣

s

• adiabatic compressibility: βs ≡ − 1
v

∂v
∂P

∣

∣

s

• adiabatic bulk modulus: Bs ≡ −v ∂P
∂v

∣

∣

s

Generic problem: given P = P (T, v), find other properties

3.3.1 Internal energy from thermal equation of state

Find the internal energy e(T, v) for a general material.

e = e(T, v) (3.57)

de =
∂e

∂T

∣

∣

∣

∣

v

dT +
∂e

∂v

∣

∣

∣

∣

T

dv (3.58)

de = cvdT +
∂e

∂v

∣

∣

∣

∣

T

dv (3.59)

Now from Gibbs,

de = Tds− Pdv (3.60)

de

dv
= T

ds

dv
− P (3.61)

∂e

∂v

∣

∣

∣

∣

T

= T
∂s

∂v

∣

∣

∣

∣

T

− P (3.62)
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Substitute from Maxwell relation,

∂e

∂v

∣

∣

∣

∣

T

= T
∂P

∂T

∣

∣

∣

∣

v

− P (3.63)

so

de = cvdT +

(

T
∂P

∂T

∣

∣

∣

∣

v

− P

)

dv (3.64)

∫ e

eo

dê =

∫ T

To

cv(T̂ )dT̂ +

∫ v

vo

(

T̂
∂P̂

∂T̂

∣

∣

∣

∣

∣

v̂

− P̂

)

dv̂ (3.65)

e(T, v) = eo +

∫ T

To

cv(T̂ )dT̂ +

∫ v

vo

(

T̂
∂P̂

∂T̂

∣

∣

∣

∣

∣

v̂

− P̂

)

dv̂ (3.66)

Example 3.2
Ideal gas

Find a general expression for e(T, v) if

P (T, v) =
RT

v
(3.67)

Proceed as follows:

∂P

∂T

∣

∣

∣

∣

v

= R/v (3.68)

T
∂P

∂T

∣

∣

∣

∣

v

− P =
RT

v
− P (3.69)

=
RT

v
− RT

v
= 0 (3.70)

Thus e is

e(T ) = eo +

∫ T

To

cv(T̂ )dT̂ (3.71)

We also find

h = e+ Pv = eo +

∫ T

To

cv(T̂ )dT̂ + Pv (3.72)

h(T, v) = eo +

∫ T

To

cv(T̂ )dT̂ +RT (3.73)

cp(T, v) =≡ ∂h

∂T

∣

∣

∣

∣

P

= cv(T ) +R = cp(T ) (3.74)

R = cp(T )− cv(T ) (3.75)

Iff cv is a constant then

e(T ) = eo + cv(T − To) (3.76)

h(T ) = (eo + Povo) + cp(T − To) (3.77)

R = cp − cv (3.78)
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Example 3.3
van der Waals gas

Find a general expression for e(T, v) if

P (T, v) =
RT

v − b
− a

v2
(3.79)

Proceed as before:

∂P

∂T

∣

∣

∣

∣

v

=
R

v − b
(3.80)

T
∂P

∂T

∣

∣

∣

∣

v

− P =
RT

v − b
− P (3.81)

=
RT

v − b
−
(

RT

v − b
− a

v2

)

=
a

v2
(3.82)

Thus e is

e(T, v) = eo +

∫ T

To

cv(T̂ )dT̂ +

∫ v

vo

a

v̂2
dv̂ (3.83)

= eo +

∫ T

To

cv(T̂ )dT̂ + a

(

1

vo
− 1

v

)

(3.84)

We also find

h = e+ Pv = eo +

∫ T

To

cv(T̂ )dT̂ + a

(

1

vo
− 1

v

)

+ Pv (3.85)

h(T, v) = eo +

∫ T

To

cv(T̂ )dT̂ + a

(

1

vo
− 1

v

)

+
RTv

v − b
− a

v
(3.86)

(3.87)

3.3.2 Sound speed from thermal equation of state

Find the sound speed c(T, v) for a general material.

c =

√

∂P

∂ρ

∣

∣

∣

∣

s

(3.88)

c2 =
∂P

∂ρ

∣

∣

∣

∣

s

(3.89)
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Use Gibbs relation

Tds = de+ Pdv (3.90)

(3.91)

Substitute earlier relation for de

Tds =

[

cvdT +

(

T
∂P

∂T

∣

∣

∣

∣

v

− P

)

dv

]

+ Pdv (3.92)

Tds = cvdT + T
∂P

∂T

∣

∣

∣

∣

v

dv (3.93)

Tds = cvdT − T

ρ2
∂P

∂T

∣

∣

∣

∣

ρ

dρ (3.94)

Since P = P (T, v), P = P (T, ρ)

dP =
∂P

∂T

∣

∣

∣

∣

ρ

dT +
∂P

∂ρ

∣

∣

∣

∣

T

dρ (3.95)

dT =
dP − ∂P

∂ρ

∣

∣

∣

T
dρ

∂P
∂T

∣

∣

ρ

(3.96)

Thus substituting for dT

Tds = cv





dP − ∂P
∂ρ

∣

∣

∣

T
dρ

∂P
∂T

∣

∣

ρ



− T

ρ2
∂P

∂T

∣

∣

∣

∣

ρ

dρ (3.97)

so grouping terms in dP and dρ we get

Tds =

(

cv
∂P
∂T

∣

∣

ρ

)

dP −



cv

∂P
∂ρ

∣

∣

∣

T
∂P
∂T

∣

∣

ρ

+
T

ρ2
∂P

∂T

∣

∣

∣

∣

ρ



 dρ (3.98)

SO if ds ≡ 0 we obtain

∂P

∂ρ

∣

∣

∣

∣

s

=
1

cv

∂P

∂T

∣

∣

∣

∣

ρ



cv

∂P
∂ρ

∣

∣

∣

T
∂P
∂T

∣

∣

ρ

+
T

ρ2
∂P

∂T

∣

∣

∣

∣

ρ



 (3.99)

=
∂P

∂ρ

∣

∣

∣

∣

T

+
T

cvρ2

(

∂P

∂T

∣

∣

∣

∣

ρ

)2

(3.100)

So

c(T, ρ) =

√

√

√

√

∂P

∂ρ

∣

∣

∣

∣

T

+
T

cvρ2

(

∂P

∂T

∣

∣

∣

∣

ρ

)2

(3.101)
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Exercises: Liepmann and Roshko, 1.3 and 1.4, p. 383.

Example 3.4
Ideal gas

Find the sound speed if

P (T, ρ) = ρRT (3.102)

The necessary partials are

∂P

∂ρ

∣

∣

∣

∣

T

= RT
∂P

∂T

∣

∣

∣

∣

ρ

= ρR (3.103)

so

c(T, ρ) =

√

RT +
T

cvρ2
(ρR)

2
(3.104)

=

√

RT +
R2T

cv
(3.105)

=

√

RT

(

1 +
R

cv

)

(3.106)

=

√

RT

(

1 +
cP − cv

cv

)

(3.107)

=

√

RT

(

cv + cP − cv
cv

)

(3.108)

=
√

γRT (3.109)

Sound speed depends on temperature alone for the calorically perfect ideal gas.

Example 3.5
Virial gas

Find the sound speed if

P (T, ρ) = ρRT (1 + b1ρ) (3.110)

The necessary partials are

∂P

∂ρ

∣

∣

∣

∣

T

= RT + 2b1ρRT
∂P

∂T

∣

∣

∣

∣

ρ

= ρR (1 + b1ρ) (3.111)
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so

c(T, ρ) =

√

RT + 2b1ρRT +
T

cvρ2
(ρR (1 + b1ρ))

2 (3.112)

=

√

RT

(

1 + 2b1ρ+
R

cv
(1 + b1ρ)2

)

(3.113)

Sound speed depends on both temperature and density.

Example 3.6
Thermodynamic process with a van der Waals Gas

A van der Waals gas with

R = 200 J/kg/K (3.114)

a = 150 Pa m6/kg2 (3.115)

b = 0.001 m3/kg (3.116)

cv = [350 + 0.2(T − 300K)] J/kg/K (3.117)

begins at T1 = 300 K, P1 = 1×105 Pa. It is isothermally compressed to state 2 where P2 = 1×106 Pa.
It is then isochorically heated to state 3 where T3 = 1, 000 K. Find w13, q13, and s3 − s1. Assume the
surroundings are at 1, 000 K. Recall

P =
RT

v − b
− a

v2
(3.118)

so at state 1

100, 000 =
200× 300

v1 − 0.001
− 150

v21
(3.119)

or expanding

−0.15 + 150v − 60, 100v2 + 100, 000v3 = 0 (3.120)

Cubic equation–three solutions:

v1 = 0.598 m3/kg (3.121)

v1 = 0.00125− 0.0097i m3/kg not physical (3.122)

v1 = 0.00125 + 0.0097i m3/kg not physical (3.123)

Now at state 2 we know P2 and T2 so we can determine v2

1, 000, 000 =
200× 300

v2 − 0.001
− 150

v22
(3.124)

The physical solution is v2 = 0.0585 m3/kg. Now at state 3 we know v3 = v2 and T3. Determine P3:

P3 =
200× 1, 000

0.0585− 0.001
− 150

0.05852
= 3, 478, 261− 43, 831 = 3, 434, 430 Pa (3.125)
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Now w13 = w12 + w23 =
∫ 2

1
Pdv +

∫ 3

2
Pdv =

∫ 2

1
Pdv since 2− 3 is at constant volume. So

w13 =

∫ v2

v1

(

RT

v − b
− a

v2

)

dv (3.126)

= RT1

∫ v2

v1

dv

v − b
− a

∫ v2

v1

dv

v2
(3.127)

= RT1 ln

(

v2 − b

v1 − b

)

+ a

(

1

v2
− 1

v1

)

(3.128)

= 200× 300 ln

(

0.0585− 0.001

0.598− 0.001

)

+ 150

(

1

0.0585
− 1

0.598

)

(3.129)

= −140, 408+ 2, 313 (3.130)

= −138, 095 J/kg = −138 kJ/kg (3.131)

The gas is compressed, so the work is negative. Since e is a state property:

e3 − e1 =

∫ T3

T1

cv(T )dT + a

(

1

v1
− 1

v3

)

(3.132)

Now

cv = 350 + 0.2(T − 300) = 290 +
1

5
T (3.133)

so

e3 − e1 =

∫ T3

T1

(

290 +
1

5
T

)

dT + a

(

1

v1
− 1

v3

)

(3.134)

= 290 (T3 − T1) +
1

10

(

T 2
3 − T 2

1

)

+ a

(

1

v1
− 1

v3

)

(3.135)

290 (1, 000− 300) +
1

10

(

1, 0002 − 3002
)

+ 150

(

1

0.598
− 1

0.0585

)

(3.136)

= 203, 000+ 91, 000− 2, 313 (3.137)

= 291, 687 J/kg = 292 kJ/kg (3.138)

Now from the first law

e3 − e1 = q13 − w13 (3.139)

q13 = e3 − e1 + w13 (3.140)

q13 = 292− 138 (3.141)

q13 = 154 kJ/kg (3.142)

The heat transfer is positive as heat was added to the system.

Now find the entropy change. Manipulate the Gibbs equation:

Tds = de+ Pdv (3.143)

ds =
1

T
de+

P

T
dv (3.144)

ds =
1

T

(

cv(T )dT +
a

v2
dv
)

+
P

T
dv (3.145)
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ds =
1

T

(

cv(T )dT +
a

v2
dv
)

+
1

T

(

RT

v − b
− a

v2

)

dv (3.146)

ds =
cv(T )

T
dT +

R

v − b
dv (3.147)

s3 − s1 =

∫ T3

T1

cv(T )

T
dT +R ln

v3 − b

v1 − b
(3.148)

=

∫ 1,000

300

(

290

T
+

1

5

)

dT +R ln
v3 − b

v1 − b
(3.149)

= 290 ln
1, 000

300
+

1

5
(1, 000− 300) + 200 ln

0.0585− 0.001

0.598− 0.001
(3.150)

= 349 + 140− 468 (3.151)

= 21
J

kg K
= 0.021

kJ

kg K
(3.152)

Is the second law satisfied for each portion of the process?

First look at 1 → 2

e2 − e1 = q12 − w12 (3.153)

q12 = e2 − e1 + w12 (3.154)

q12 =

(

∫ T2

T1

cv(T )dT + a

(

1

v1
− 1

v2

)

)

+

(

RT1 ln

(

v2 − b

v1 − b

)

+ a

(

1

v2
− 1

v1

))

(3.155)

(3.156)

Since T1 = T2 and canceling the terms in a we get

q12 = RT1 ln

(

v2 − b

v1 − b

)

= 200× 300 ln

(

0.0585− 0.001

0.598− 0.001

)

= −140, 408
J

kg
(3.157)

Since isothermal

s2 − s1 = R ln

(

v2 − b

v1 − b

)

(3.158)

= 200 ln

(

0.0585− 0.001

0.598− 0.001

)

(3.159)

= −468.0
J

kg K
(3.160)

Entropy drops because heat was transferred out of the system.

Check the second law. Note that in this portion of the process in which the heat is transferred out
of the system, that the surroundings must have Tsurr ≤ 300 K. For this portion of the process let us
take Tsurr = 300 K.

s2 − s1 ≥ q12
T

? (3.161)

−468.0
J

kg K
≥

−140, 408 J
kg

300 K
(3.162)

−468.0
J

kg K
≥ −468.0

J

kg K
ok (3.163)
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Next look at 2 → 3

q23 = e3 − e2 + w23 (3.164)

q23 =

(

∫ T3

T2

cv(T )dT + a

(

1

v2
− 1

v3

)

)

+

(∫ v3

v2

Pdv

)

(3.165)

since isochoric q23 =

∫ T3

T2

cv(T )dT (3.166)

=

∫ 1000

300

(

290 +
T

5

)

dT = 294, 000
J

K
(3.167)

Now look at the entropy change for the isochoric process:

s3 − s2 =

∫ T3

T2

cv(T )

T
dT (3.168)

=

∫ T3

T2

(

290

T
+

1

5

)

dT (3.169)

= 290 ln
1, 000

300
+

1

5
(1, 000− 300) = 489

J

kg K
(3.170)

Entropy rises because heat transferred into system.

In order to transfer heat into the system we must have a different thermal reservoir. This one must
have Tsurr ≥ 1000 K. Assume here that the heat transfer was from a reservoir held at 1, 000 K to
assess the influence of the second law.

s3 − s2 ≥ q23
T

? (3.171)

489
J

kg K
≥

294, 000 J
kg

1, 000 K
(3.172)

489
J

kg K
≥ 294

J

kg K
ok (3.173)

3.4 Canonical equations of state

If we have a single equation of state in a special canonical form, we can form both thermal
and caloric equations. Since

de = Tds− Pdv (3.174)

dh = Tds+ vdP (3.175)

it is suggested that the form

e = e(s, v) (3.176)

h = h(s, P ) (3.177)
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is useful.

Example 3.7
Canonical Form

If

h(s, P ) = KcpP
R/cp exp

(

s

cp

)

+ (ho − cpTo) (3.178)

derive both thermal and caloric state equations P (v, T ) and e(v, T ).

Now for our material

∂h

∂s

∣

∣

∣

∣

P

= KPR/cp exp

(

s

cp

)

(3.179)

∂h

∂P

∣

∣

∣

∣

s

= KRPR/cp−1 exp

(

s

cp

)

(3.180)

Now since

∂h

∂s

∣

∣

∣

∣

P

= T (3.181)

∂h

∂P

∣

∣

∣

∣

s

= v (3.182)

we have

T = KPR/cp exp

(

s

cp

)

(3.183)

v = KRPR/cp−1 exp

(

s

cp

)

(3.184)

Dividing one by the other gives

T

v
=

P

R
(3.185)

P =
RT

v
(3.186)

Substituting our expression for T into our canonical equation for h we also get

h = cpT + (ho − cpTo) (3.187)

h = cp(T − To) + ho (3.188)

which is useful in itself. Substituting in for T and To

h = cp

(

Pv

R
− Povo

R

)

+ ho (3.189)

Using h ≡ e+ Pv we get

e+ Pv = cp

(

Pv

R
− Povo

R

)

+ eo + Povo (3.190)
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so

e =
(cp
R

− 1
)

Pv −
(cp
R

− 1
)

Povo + eo (3.191)

e =
(cp
R

− 1
)

(Pv − Povo) + eo (3.192)

e =
(cp
R

− 1
)

(RT −RTo) + eo (3.193)

e = (cp −R) (T − To) + eo (3.194)

e = [cp − (cp − cv)] (T − To) + eo (3.195)

e = cv (T − To) + eo (3.196)

So one canonical equation gives us all the information we need! Oftentimes, it is difficult to do a
single experiment to get the canonical form.

Exercise: For a calorically perfect ideal gas, write the Helmholtz free energy and Gibbs
free energy in canonical form, i.e. what is a(T, v), g(P, T )?

3.5 Isentropic relations

Of particular importance in thermodynamics in general and compressible flow in particular
are relations that describe an isentropic process, s = constant. Recall the second law.

ds ≥ δq

T
(3.197)

If the process is reversible,

ds =
δq

T
(3.198)

If the process is adiabatic

δq ≡ 0 so ds = 0 (3.199)

So an isentropic process is both adiabatic and reversible. We know from the first law written
in terms of entropy that this implies that

q ≡ 0 (3.200)

τ ≡ 0 (3.201)

In this case the Gibbs relation and the first law reduce to the same expression:

de = −Pdv (3.202)

That is the energy change is all due to reversible pressure volume work.

We would like to develop an expression between two variables for an isentropic process.

With knowledge of P (T, v)
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• form e(T, v)

• eliminate T to form e(P, v)

• take derivative and substitute into Gibbs/First Law

∂e

∂P

∣

∣

∣

∣

v

dP +
∂e

∂v

∣

∣

∣

∣

P

dv = −Pdv (3.203)

∂e

∂P

∣

∣

∣

∣

v

dP +

(

∂e

∂v

∣

∣

∣

∣

P

+ P

)

dv = 0 (3.204)

Integration of this equation gives a relationship between P and v.

Example 3.8
Calorically Perfect Ideal Gas

Find the relationship for a calorically perfect ideal gas which undergoes an isentropic process.

Ideal Gas:
Pv = RT (3.205)

Calorically Perfect:
e = cvT + eo (3.206)

Thus

e = cv
Pv

R
+ eo =

cv
cP − cv

Pv + eo =
1

γ − 1
Pv + eo (3.207)

Thus the necessary derivatives are

∂e

∂P

∣

∣

∣

∣

v

=
1

γ − 1
v (3.208)

∂e

∂v

∣

∣

∣

∣

P

=
1

γ − 1
P (3.209)

so substituting into our developed relationship gives

1

γ − 1
vdP +

(

1

γ − 1
P + P

)

dv = 0 (3.210)

vdP + γPdv = 0 (3.211)

dP

P
= −γ

dv

v
(3.212)

ln
P

Po
= −γ ln

v

vo
(3.213)

ln
P

Po
= ln

(vo
v

)γ

(3.214)

P

Po
=
(vo
v

)γ

(3.215)

Pvγ = Pov
γ
o = constant (3.216)
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also using the thermal state equation

P

Po
=

RT
v

RTo

vo

=
T

To

vo
v

=
(vo
v

)γ

(3.217)

T

To
=
(vo
v

)γ−1

=

(

P

Po

)
γ−1

γ

(3.218)

Find the work in a process from v1 to v2

w12 =

∫ 1

2

Pdv (3.219)

= Pov
γ
o

∫ v2

v1

dv

vγ
(3.220)

= Pov
γ
o

[

v1−γ

1− γ

]v2

v1

(3.221)

=
Pov

γ
o

1− γ

(

v1−γ
2 − v1−γ

1

)

(3.222)

=
P2v2 − P1v1

1− γ
(3.223)

Also

de = δq − δw = 0− δw so (3.224)

e2 − e1 =
P2v2 − P1v1

γ − 1
(3.225)

Figure 3.4 gives a sketch for the calorically perfect ideal gas undergoing an isentropic
expansion in various planes.

Example 3.9
Virial Gas

Find the relationship between P and v for a virial gas with constant cv which undergoes an isentropic
process.

Virial Gas:

P =
RT

v − b
(3.226)

This is van der Waals with a = 0 and cv constant so:

e = cvT + eo (3.227)

Thus

e = cv
P (v − b)

R
+ eo (3.228)
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v

P

T 
2

T
1

v
2

v1

12 122 1∫w   =     P dv 
12 1

2

s

T

∫q   =       T ds 
12 1

2
e  -  e  = q   - w

v2

v
1

s2s   =1

T

T

1

2

T

P

T

v

v1

v
2

T
1

T
2

T
1

T
2

v1

v
2

P

P

1

2

P
2

P
1

P

P

1

2

Figure 3.4: Sketch of isentropic expansion process

Thus the necessary derivatives are

∂e

∂P

∣

∣

∣

∣

v

=
cv
R

(v − b) (3.229)

∂e

∂v

∣

∣

∣

∣

P

=
cv
R
P (3.230)

so substituting into our developed relationship gives

cv
R

(v − b) dP +
(cv
R
P + P

)

dv = 0 (3.231)

(v − b)dP +

(

1 +
R

cv

)

Pdv = 0 (3.232)

with γ̂ ≡ 1 +
R

cv
(3.233)

dP

dv
+

γ̂

v − b
P = 0 (3.234)

(

exp

∫

γ̂

v − b
dv

)

dP

dv
+

(

exp

∫

γ̂

v − b
dv

)

γ̂

v − b
P = 0 (3.235)

(

exp
(

ln (v − b)γ̂
)) dP

dv
+
(

exp
(

ln (v − b)γ̂
)) γ̂

v − b
P = 0 (3.236)

(v − b)γ̂
dP

dv
+ (v − b)γ̂

γ̂

v − b
P = 0 (3.237)

d

dv

(

(v − b)γ̂ P
)

= 0 (3.238)
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(v − b)
γ̂
P = (vo − b)

γ̂
Po (3.239)

P

Po
=

(

vo − b

v − b

)γ̂

(3.240)

Exercise: Find the relationship between T and v for a virial gas in an isentropic process.

Exercise: Find an expression for the work done by a van der Waals gas in an isentropic
process.

Exercise: A virial gas, m = 3 kg with R = 290 J
kgK

, b = 0.002 m3

kg
with constant specific

heat cv = 0.700 kJ
kg K

is initially at P = 1.2 bar and T = 320 K. It undergoes a two step
process: 1 → 2 is an isochoric compression to 500 kPa; 2 → 3 is an isentropic expansion to
300 kPa. Find the total work W13 in units of J , the total heat transfer Q13 in units of J ,
and the change in entropy S3−S1 in units of J/K. Include a sketch, roughly to scale, of the
total process in the P − v and T − s planes.
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Chapter 4

One-dimensional compressible flow

White, Chapter 9: pp. 511-559,

Liepmann and Roshko, Chapter 2: pp. 39-65,

Hughes and Brighton, Chapter 7: pp. 178-185,

Shapiro, Vol. 1, Chapters 4-8: pp. 73-262,

This chapter will discuss one-dimensional flow of a compressible fluid. Notation can pose
problems, and many common ones are in use. Here a new convention will be adopted. In
this chapter

• velocity in the x-direction will be denoted as u,

• specific internal energy, denoted in previous chapters by u, will here be e,

• total internal energy, denoted in previous chapters by U , will here be E.

The following topics will be covered:

• development of generalized one-dimensional flow equations,

• isentropic flow with area change,

• flow with normal shock waves,

• flow with friction (Fanno flow),

• flow with heat transfer (Rayleigh flow),

• flow in a shock tube.

Assume for this chapter:

• The flow is uni-directional in the x− direction with u 6= 0 and with the y− and z−
components of the velocity vector both zero: v ≡ 0, w ≡ 0

61



62 CHAPTER 4. ONE-DIMENSIONAL COMPRESSIBLE FLOW

• Spatial gradients are admitted in x, but not in y or z: ∂
∂x

6= 0, ∂
∂y

≡ 0, ∂
∂z

≡ 0.

Friction and heat transfer will not be modelled rigorously. Instead, they will be modelled
in a fashion which captures the relevant physics and retains analytic tractability.

4.1 Generalized one-dimensional equations

Flow with area change is illustrated by the following sketch of a control volume:. See Figure
4.1.

ρ
u
A
P
e

1
1

1

1

1

ρ
u
A
P
e

2
2

2

2

2x1

x2
x  - x  = ∆ x

2 1

q

τw

Perimeter = L

Figure 4.1: Control volume sketch

For this problem adopt the following conventions

• surface 1 and 2 are open and allow fluxes of mass, momentum, and energy

• surface w is a closed wall; no mass flux through the wall

• external heat flux qw (Energy/Area/Time: W
m2 ) through the wall allowed-qw known fixed

parameter

• diffusive, longitudinal heat transfer ignored, qx = 0

• wall shear τw (Force/Area: N
m2 ) allowed–τw known, fixed parameter

• diffusive viscous stress not allowed τxx = 0

• cross-sectional area a known fixed function: A(x)
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4.1.1 Mass

Take the overbar notation to indicate a volume averaged quantity.

The amount of mass in a control volume after a time increment ∆t is equal to the original
amount of mass plus that which came in minus that which left:

ρ̄Ā∆x
∣

∣

t+∆t
= ρ̄Ā∆x

∣

∣

t
+ ρ1A1 (u1∆t)− ρ2A2 (u2∆t) (4.1)

Rearrange and divide by ∆x∆t:

ρ̄Ā
∣

∣

t+∆t
− ρ̄Ā

∣

∣

t

∆t
+

ρ2A2u2 − ρ1A1u1

∆x
= 0 (4.2)

(4.3)

Taking the limit as ∆t → 0,∆x → 0:

∂

∂t
(ρA) +

∂

∂x
(ρAu) = 0 (4.4)

If steady

d

dx
(ρAu) = 0 (4.5)

Au
dρ

dx
+ ρu

dA

dx
+ ρA

du

dx
= 0 (4.6)

1

ρ

dρ

dx
+

1

A

dA

dx
+

1

u

du

dx
= 0 (4.7)

Integrate from x1 to x2:

∫ x2

x1

d

dx
(ρAu)dx =

∫ x2

x1

0dx (4.8)

∫ 2

1

d (ρAu) = 0 (4.9)

ρ2u2A2 − ρ1u1A1 = 0 (4.10)

ρ2u2A2 = ρ1u1A1 ≡ ṁ = C1 (4.11)

4.1.2 Momentum

Newton’s Second Law says the time rate of change of linear momentum of a body equals the
sum of the forces acting on the body. In the x direction this is roughly as follows:

d

dt
(mu) = Fx (4.12)
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In discrete form this would be

mu|t+∆t − mu|t
∆t

= Fx (4.13)

mu|t+∆t = mu|t + Fx∆t (4.14)

For a control volume containing fluid, one must also account for the momentum which
enters and leaves the control volume. The amount of momentum in a control volume after
a time increment ∆t is equal to the original amount of momentum plus that which came in
minus that which left plus that introduced by the forces acting on the control volume.

• pressure force at surface 1 pushes fluid

• pressure force at surface 2 restrains fluid

• force due to the reaction of the wall to the pressure force pushes fluid if area change
positive

• force due to the reaction of the wall to the shear force restrains fluid

(

ρ̄Ā∆x
)

ū
∣

∣

t+∆t
=

(

ρ̄Ā∆x
)

ū
∣

∣

t

+ (ρ1A1 (u1∆t)) u1

− (ρ2A2 (u2∆t)) u2

+ (P1A1)∆t− (P2A2)∆t

+
(

P̄ (A2 −A1)
)

∆t

−
(

τwL̄∆x
)

∆t

Rearrange and divide by ∆x∆t:

ρ̄Āū
∣

∣

t+∆t
− ρ̄Āū

∣

∣

t

∆t
+

ρ2A2u
2
2 − ρ1A1u

2
1

∆x

= −P2A2 − P1A1

∆x
+ P̄

A2 −A1

∆x
− τwL̄

In the limit ∆x → 0,∆t → 0 one gets

∂

∂t
(ρAu) +

∂

∂x

(

ρAu2
)

= − ∂

∂x
(PA) + P

∂A

∂x
− τwL (4.15)

In steady state:

d

dx

(

ρAu2
)

= − d

dx
(PA) + P

dA

dx
− τwL (4.16)
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ρAu
du

dx
+ u

d

dx
(ρAu) = −P

dA

dx
− A

dP

dx
+ P

dA

dx
− τwL (4.17)

ρu
du

dx
= −dP

dx
− τw

L
A

(4.18)

ρudu+ dP = −τw
L
A
dx (4.19)

du+
1

ρu
dP = −τw

L
ṁ
dx (4.20)

ρd

(

u2

2

)

+ dP = −τw
L
A
dx (4.21)

Wall shear lowers the combination of pressure and dynamic head.

If no wall shear:

dP = −ρd

(

u2

2

)

(4.22)

Increase in velocity magnitude decreases the pressure.

If no area change dA = 0 and no friction τw ≡ 0:

ρu
du

dx
+

dP

dx
= 0 (4.23)

add u mass u
d

dx
(ρu) = 0 (4.24)

d

dx

(

ρu2 + P
)

= 0 (4.25)

ρu2 + P = ρou
2
o + Po = C2 (4.26)

4.1.3 Energy

The first law of thermodynamics states that the change of total energy of a body equals the
heat transferred to the body minus the work done by the body:

E2 − E1 = Q−W (4.27)

E2 = E1 +Q−W (4.28)

So for the control volume this becomes the following when one also accounts for the energy
flux in and out of the control volume in addition to the work and heat transfer:

(

ρ̄Ā∆x
)

(

ē+
ū2

2

)∣

∣

∣

∣

t+∆t

=
(

ρ̄Ā∆x
)

(

ē+
ū2

2

)∣

∣

∣

∣

t

+ρ1A1 (u1∆t)

(

e1 +
u2
1

2

)

− ρ2A2 (u2∆t)

(

e2 +
u2
2

2

)

+qw
(

L̄∆x
)

∆t+ (P1A1) (u1∆t)− (P2A2) (u2∆t)
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Note:

• mean pressure times area difference does no work because acting on stationary bound-
ary

• work done by shear force not included1

Rearrange and divide by ∆t∆x:

ρ̄Ā
(

ē + ū2

2

)∣

∣

∣

t+∆t
− ρ̄Ā

(

ē+ ū2

2

)∣

∣

∣

t

∆t

+
ρ2A2u2

(

e2 +
u2
2

2
+ P2

ρ2

)

− ρ1A1u1

(

e1 +
u2
1

2
+ P1

ρ1

)

∆x
= qwL̄

In differential form as ∆x → 0,∆t → 0

∂

∂t

(

ρA

(

e+
u2

2

))

+
∂

∂x

(

ρAu

(

e+
u2

2
+

P

ρ

))

= qwL

In steady state:

d

dx

(

ρAu

(

e+
u2

2
+

P

ρ

))

= qwL (4.29)

ρAu
d

dx

(

e+
u2

2
+

P

ρ

)

+

(

e +
u2

2
+

P

ρ

)

d

dx
(ρAu) = qwL (4.30)

ρu
d

dx

(

e+
u2

2
+

P

ρ

)

=
qwL
A

(4.31)

ρu

(

de

dx
+ u

du

dx
+

1

ρ

dP

dx
− P

ρ2
dρ

dx

)

=
qwL
A

(4.32)

subtract product of momentum and velocity (4.33)

ρu2du

dx
+ u

dP

dx
= −τwLu

A
(4.34)

ρu
de

dx
− Pu

ρ

dρ

dx
=

qwL
A

+
τwLu
A

(4.35)

de

dx
− P

ρ2
dρ

dx
=

(qw + τwu)L
ṁ

(4.36)

1In neglecting work done by the wall shear force, I have taken an approach which is nearly universal, but
fundamentally difficult to defend. At this stage of the development of these notes, I am not ready to enter
into a grand battle with all established authors and probably confuse the student; consequently, results for
flow with friction will be consistent with those of other sources. The argument typically used to justify this
is that the real fluid satisfies no-slip at the boundary; thus, the wall shear actually does no work. However,
one can easily argue that within the context of the one-dimensional model which has been posed that the
shear force behaves as an external force which reduces the fluid’s mechanical energy. Moreover, it is possible
to show that neglect of this term results in the loss of frame invariance, a serious defect indeed. To model
the work of the wall shear, one would include the term

(

τw
(

L̄∆x
))

(ū∆t) in the energy equation.
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Since e = e(P, ρ)

de =
∂e

∂ρ

∣

∣

∣

∣

P

dρ+
∂e

∂P

∣

∣

∣

∣

ρ

dP (4.37)

de

dx
=

∂e

∂ρ

∣

∣

∣

∣

P

dρ

dx
+

∂e

∂P

∣

∣

∣

∣

ρ

dP

dx
(4.38)

so

∂e

∂ρ

∣

∣

∣

∣

P

dρ

dx
+

∂e

∂P

∣

∣

∣

∣

ρ

dP

dx
− P

ρ2
dρ

dx
=

(qw + τwu)L
ṁ

(4.39)

dP

dx
+





∂e
∂ρ

∣

∣

∣

P
− P

ρ2

∂e
∂P

∣

∣

ρ





dρ

dx
=

(qw + τwu)L
ṁ ∂e

∂P

∣

∣

ρ

(4.40)

Now it can be shown that

c2 =
∂P

∂ρ

∣

∣

∣

∣

s

= −





∂e
∂ρ

∣

∣

∣

P
− P

ρ2

∂e
∂P

∣

∣

ρ



 (4.41)

so

dP

dx
− c2

dρ

dx
=

(qw + τwu)L
ṁ ∂e

∂P

∣

∣

ρ

(4.42)

dP

dx
− c2

dρ

dx
=

(qw + τwu)L
ρuA ∂e

∂P

∣

∣

ρ

(4.43)

Special case of flow with no heat transfer qw ≡ 0. Area change allowed!, wall friction
allowed! (see earlier footnote):

ρu
d

dx

(

e+
u2

2
+

P

ρ

)

= 0 (4.44)

e+
u2

2
+

P

ρ
= eo +

u2
o

2
+

Po

ρo
= C3 (4.45)

h +
u2

2
= ho +

u2
o

2
= C3 (4.46)

Example 4.1
Adiabatic Flow of Argon2

2adopted from White’s 9.1, p. 583
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Given: Argon, γ = 5
3 , flows adiabatically through a duct. At section 1, P1 = 200 psia, T1 =

500◦F, u1 = 250 ft
s . At section 2 P2 = 40 psia, u2 = 1, 100 ft

s .

Find: T2 in ◦F and s2 − s1 in Btu
lbm◦R

Assume: Ar is a calorically perfect ideal gas, tables give R = 38.68 ft lbf
lbmR , cp = 0.1253 Btu

lbmR

Analysis: First get the units into shape:

T1 = 500 + 460 = 960 R (4.47)

cp =

(

0.1253
Btu

lbm R

)(

779
ft lbf

Btu

)(

32.17
lbm ft

lbf s2

)

= 3, 140
ft2

s2 R
(4.48)

R =

(

38.68
ft lbf

lbm R

)(

32.17
lbm ft

lbf s2

)

= 1, 244
ft2

s2 R
(4.49)

R =

(

38.68
ft lbf

lbm R

)(

1

779

Btu

ft lbf

)

= 0.04965
Btu

lbm R
(4.50)

Now consider an energy balance:

h2 +
u2
2

2
= h1 +

u2
1

2
(4.51)

cpT2 + ho +
u2
2

2
= cpT1 + ho +

u2
1

2
(4.52)

T2 = T1 +
1

2cp

(

u2
1 − u2

2

)

(4.53)

T2 = 960 R+
1

2

1

3, 140 ft2

s2R

(

(

250
ft

s

)2

−
(

1, 100
ft

s

)2
)

= 777 R (4.54)

T2 = 777− 460 = 317◦F (4.55)

The flow sped up; temperature went down. Thermal energy was converted into kinetic energy

Calculate the entropy change. For the calorically perfect ideal gas:

s2 − s1 = cp ln

(

T2

T1

)

−R ln

(

P2

P1

)

(4.56)

= 0.1253
Btu

lbm R
ln

(

777 R

960 R

)

− 0.04965
Btu

lbm R
ln

(

40 psia

200 psia

)

(4.57)

= −0.0265− (−.0799) = 0.0534
Btu

lbm R
(4.58)

Entropy change positive. Since adiabatic, there must have been irreversible friction which gave rise to
this.

Example 4.2
Adiabatic Flow of Steam3

3adopted from White’s 9.2, p. 583
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Same problem now with steam Given: Steam flows adiabatically through a duct. At section 1,
P1 = 200 psia, T1 = 500◦F, u1 = 250 ft

s . At section 2 P2 = 40 psia, u2 = 1, 100 ft
s .

Find: T2 in ◦F and s2 − s1 in Btu
lbm◦R

Analysis:

Use steam tables for property values.

Energy balance:

h2 +
u2
2

2
= h1 +

u2
1

2
(4.59)

h2 = h1 +
1

2

(

u2
1 − u2

2

)

(4.60)

h2 = 1269
Btu

lbm
+

1

2

(

1

779

Btu

ft lbf

)(

1

32.17

lbf s2

lbm ft

)

(

(

250
ft

s

)2

−
(

1, 100
ft

s

)2
)

(4.61)

h2 = 1, 246
Btu

lbm
(4.62)

Interpolate steam tables at P2 = 40 psia, h2 = h2 = 1, 246 Btu
lbm and find

T2 = 420◦F (4.63)

s2 = 1.7720
Btu

lbm R
(4.64)

Tables give s1 = 1.6239 Btu
lbm R so the entropy change is

s2 − s1 = 1.7720− 1.6239 = 0.148
Btu

lbm R
(4.65)

Example 4.3
Flow of Air with Heat Addition

Given: Air initially at P1 = 100 kPa, T1 = 300 K, u1 = 10 m
s flows in a duct of length 100 m.

The duct has a constant circular cross sectional area of A = 0.02 m2 and is isobarically heated with
a constant heat flux qw along the entire surface of the duct. At the end of the duct the flow has
P2 = 100 kPa, T2 = 500 K

Find: the mass flow rate ṁ, the wall heat flux qw and the entropy change s2 − s1; check for
satisfaction of the second law.

Assume: Calorically perfect ideal gas, R = 0.287 kJ
kg K , cp = 1.0035 kJ

kg K

Analysis:
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Geometry:

A = πr2 (4.66)

r =

√

A

π
(4.67)

L = 2πr = 2
√
πA = 2

√

π (0.02 m2) = 0.501 m (4.68)

Get the mass flux.

P1 = ρ1RT1 (4.69)

ρ1 =
P1

RT1
=

100 kPa
(

0.287 kJ
kg K

)

(300 K)
(4.70)

= 1.161
kg

m3
(4.71)

So

ṁ = ρ1u1A1 =

(

1.161
kg

m3

)

(

10
m

s

)

(

0.02 m2
)

= 0.2322
kg

s
(4.72)

Get the flow variables at state 2:

ρ2 =
P2

RT2
=

100 kPa
(

0.287 kJ
kg K

)

(500 K)
(4.73)

= 0.6969
kg

m3
(4.74)

ρ2u2A2 = ρ1u1A1 (4.75)

u2 =
ρ1u1A1

ρ2A2
=

ρ1u1

ρ2
(4.76)

=

(

1.161 kg
m3

)

(

10 m
s

)

0.6969 kg
m3

= 16.67
m

s
(4.77)

Now consider the energy equation:

ρu
d

dx

(

e+
u2

2
+

P

ρ

)

=
qwL
A

(4.78)

d

dx

(

h+
u2

2

)

=
qwL
ṁ

(4.79)

∫ L

0

d

dx

(

h+
u2

2

)

dx =

∫ L

0

qwL
ṁ

dx (4.80)

h2 +
u2
2

2
− h1 −

u2
1

2
=

qwLL
ṁ

(4.81)

cp (T2 − T1) +
u2
2

2
− u2

1

2
=

qwLL
ṁ

(4.82)

qw =

(

ṁ

LL

)(

cp (T2 − T1) +
u2
2

2
− u2

1

2

)

(4.83)

(4.84)
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Substituting the numbers, one finds,

qw =

(

0.2322 kg
s

(100 m) (0.501 m)

)(

1, 003.5
J

kg K
(500 K − 300 K) +

(

16.67 m
s

)2

2
−
(

10 m
s

)2

2

)

(4.85)

qw = 0.004635
kg

m2 s

(

200, 700
J

kg
− 88.9

m2

s2

)

(4.86)

qw = 0.004635
kg

m2 s

(

200, 700
J

kg
− 88.9

J

kg

)

(4.87)

qw = 930
W

m2
(4.88)

Heat flux positive, denoting heat into the air.

Now find the entropy change.

s2 − s1 = cp ln

(

T2

T1

)

−R ln

(

P2

P1

)

(4.89)

s2 − s1 =

(

1, 003.5
J

kg K

)

ln

(

500 K

300 K

)

−
(

287
J

kg K

)

ln

(

100 kPa

100 kPa

)

(4.90)

s2 − s1 = 512.6− 0 = 512.6
J

kg K
(4.91)

Is the second law satisfied? Assume the heat transfer takes place from a reservoir held at 500 K. The
reservoir would have to be at least at 500 K in order to bring the fluid to its final state of 500 K. It
could be greater than 500 K and still satisfy the second law.

S2 − S1 ≥ Q12

T
(4.92)

Ṡ2 − Ṡ1 ≥ Q̇12

T
(4.93)

ṁ (s2 − s1) ≥ Q̇12

T
(4.94)

ṁ (s2 − s1) ≥ qwAtot

T
(4.95)

ṁ (s2 − s1) ≥ qwLL
T

(4.96)

s2 − s1 ≥ qwLL
ṁT

(4.97)

512.6
J

kg K
≥

(

930 J
s m2

)

(100 m) (0.501 m)
(

0.2322 kg
s

)

(500 K)
(4.98)

512.6
J

kg K
≥ 401.3

J

kg K
(4.99)
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4.1.4 Influence coefficients

Now, uncouple these equations. First, summarize:

u
dρ

dx
+ ρ

du

dx
= −ρu

A

dA

dx
(4.100)

ρu
du

dx
+

dP

dx
= −τwL

A
(4.101)

dP

dx
− c2

dρ

dx
=

(qw + τwu)L
ρuA ∂e

∂P

∣

∣

ρ

(4.102)

In matrix form this is




u ρ 0
0 ρu 1

−c2 0 1









dρ
dx
du
dx
dP
dx



 =







−ρu
A

dA
dx

− τwL
A

(qw+τwu)L
ρuA ∂e

∂P |ρ






(4.103)

Use Cramer’s Rule to solve for the derivatives. First calculate the determinant of the coef-
ficient matrix:

u ((ρu)(1)− (1)(0))− ρ
(

(0)(1)− (−c2)(1)
)

= ρ
(

u2 − c2
)

(4.104)

Implementing Cramer’s Rule:

dρ

dx
=

ρu
(

−ρu
A

dA
dx

)

− ρ
(

− τwL
A

)

+ ρ

(

(qw+τwu)L
ρuA ∂e

∂P |ρ

)

ρ (u2 − c2)
(4.105)

du

dx
=

−c2
(

−ρu
A

dA
dx

)

+ u
(

− τwL
A

)

− u

(

(qw+τwu)L
ρuA ∂e

∂P |ρ

)

ρ (u2 − c2)
(4.106)

dP

dx
=

ρuc2
(

−ρu
A

dA
dx

)

− ρc2
(

− τwL
A

)

+ ρu2

(

(qw+τwu)L
ρuA ∂e

∂P |ρ

)

ρ (u2 − c2)
(4.107)

Simplify

dρ

dx
=

1

A

−ρu2 dA
dx

+ τwL+ (qw+τwu)L
ρu ∂e

∂P |ρ
(u2 − c2)

(4.108)

du

dx
=

1

A

c2ρudA
dx

− uτwL − (qw+τwu)L
ρ ∂e

∂P |ρ
ρ (u2 − c2)

(4.109)

dP

dx
=

1

A

−c2ρu2 dA
dx

+ c2τwL+ (qw+τwu)Lu
ρ ∂e

∂P |ρ
(u2 − c2)

(4.110)

Note:
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• a system of coupled non-linear ordinary differential equations

• in standard form for dynamic system analysis: du
dx

= f(u)

• valid for general equations of state

• singular when velocity sonic u = c

4.2 Flow with area change

This section will consider flow with area change with an emphasis on isentropic flow. Some
problems will involve non-isentropic flow but a detailed discussion of such flows will be
delayed.

4.2.1 Isentropic Mach number relations

Take special case of

• τw = 0

• qw = 0

• calorically perfect ideal gas (CPIG)

Then

d

dx
(ρuA) = 0 (4.111)

d

dx

(

ρu2 + P
)

= 0 (4.112)

d

dx

(

e +
u2

2
+

P

ρ

)

= 0 (4.113)

Integrate the energy equation with h = e+ P/ρ

h+
u2

2
= ho +

u2
o

2
(4.114)

If one defines the “o” condition to be a condition of rest, then uo ≡ 0. This is a stagnation
condition. So

h +
u2

2
= ho (4.115)

(h− ho) +
u2

2
= 0 (4.116)

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


74 CHAPTER 4. ONE-DIMENSIONAL COMPRESSIBLE FLOW

Since CPIG,

cp (T − To) +
u2

2
= 0 (4.117)

T − To +
u2

2cp
= 0 (4.118)

1− To

T
+

u2

2cpT
= 0 (4.119)

Now note that

cp = cp
cp − cv
cp − cv

=
cp
cv

cp − cv
cp
cv

− 1
=

γR

γ − 1
(4.120)

so

1− To

T
+

γ − 1

2

u2

γRT
= 0 (4.121)

To

T
= 1 +

γ − 1

2

u2

γRT
(4.122)

Recall the sound speed and Mach number for a CPIG:

c2 = γRT if P = ρRT, e = cvT + eo (4.123)

M2 ≡
(u

c

)2

(4.124)

thus,

To

T
= 1 +

γ − 1

2
M2 (4.125)

T

To
=

(

1 +
γ − 1

2
M2

)−1

(4.126)

Now if the flow is isentropic one has

T

To
=

(

ρ

ρo

)γ−1

=

(

P

Po

)
γ−1

γ

(4.127)

Thus

ρ

ρo
=

(

1 +
γ − 1

2
M2

)− 1

γ−1

(4.128)

P

Po
=

(

1 +
γ − 1

2
M2

)− γ
γ−1

(4.129)
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For air γ = 7/5 so

T

To
=

(

1 +
1

5
M2

)−1

(4.130)

ρ

ρo
=

(

1 +
1

5
M2

)− 5

2

(4.131)

P

Po

=

(

1 +
1

5
M2

)− 7

2

(4.132)

Figures 4.2, 4.3 4.4 show the variation of T , ρ and P with M2 for isentropic flow.

Other thermodynamic properties can be determined from these, e.g. sound speed:

c

co
=

√

γRT

γRTo

=

√

T

To

=

(

1 +
γ − 1

2
M2

)−1/2

(4.133)

calorically perfect

ideal gas

 
 
R = 0.287 kJ/(kg K) 

γ = 7/5 

stagnation temperature = 300 K

0 2 4 6 8 10
M2

50

100

150

200

250

300

T(K)

Figure 4.2: Static temperature versus Mach number squared

calorically perfect

ideal gas

 
 
R = 0.287 kJ/(kg K) 

γ = 7/5 

stagnation pressure = 1 bar 

0 2 4 6 8 10
M2

0.2

0.4

0.6

0.8

1

P(bar)

Figure 4.3: Static pressure versus Mach number squared

Example 4.4
Airplane problem
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0 2 4 6 8 10
M2

0.2

0.4

0.6

0.8

1

1.2

ρ(kg/m3)

calorically perfect  
ideal gas 
R = 0.287 kJ/(kg K) 

γ = 7/5 

stagnation density = 1.16 kg/m3 

Figure 4.4: Static density versus Mach number squared

Given: An airplane is flying into still air at u = 200 m/s. The ambient air is at 288 K and
101.3 kPa.

Find: Temperature, pressure, and density at nose of airplane

Assume: Steady isentropic flow of CPIG

Analysis: In the steady wave frame, the ambient conditions are static while the nose conditions are
stagnation.

M =
u

c
=

u√
γRT

=
200 m/s

√

7
5

(

287 J
kgK

)

288 K

= 0.588 (4.134)

so

To = T

(

1 +
1

5
M2

)

, (4.135)

= (288 K)

(

1 +
1

5
0.5882

)

, (4.136)

= 307.9 K (4.137)

ρo = ρ

(

1 +
1

5
M2

)
5
2

(4.138)

=
101.3 kPa

0.287 kJ
kgK 288 K

(

1 +
1

5
0.5882

)
5
2

, (4.139)

= 1.45 kg/m3 (4.140)

Po = P

(

1 +
1

5
M2

)
7
2

, (4.141)

= (101.3 kPa)

(

1 +
1

5
0.5882

)
7
2

(4.142)

= 128 kPa (4.143)

Note the temperature, pressure, and density all rise in the isentropic process. In this wave frame, the
kinetic energy of the flow is being converted isentropically to thermal energy.
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Example 4.5
Pressure measurement in compressible flows4

See Figure 4.5.

Air at 
100 F 
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12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890112345678901

12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901

Mercury 

8 inches Stagnation 
State "o" 

 Static 
     State "1" 

z g 

Figure 4.5: Compressible pitot tube sketch

Given: Air at u = 750 ft
s , Mercury manometer which reads a change in height of 8 inches.

Find: Static pressure of air in psia

Assume: Ideal gas behavior for air

Analysis:

First consider the manometer which is governed by fluid statics. In fluid statics, there is no motion,
thus there are no viscous forces or fluid inertia; one thus has a balance between surface and body forces.
Consider the linear momentum equation:

ρ
dv

dt
= −∇P + ρHgg +∇ · τ (4.144)

0 = −∇P + ρHgg (4.145)

dP

dz
= ρHggz (4.146)

P1 − Po = ρHggz (z1 − zo) (4.147)

P1 − Po =

(

845.9
lbm

ft3

)(

1

32.2

lbf s2

ft lbm

)(

−32.2
ft

s2

)

(0 in− (−8 in))

(

1

12

ft

in

)

(4.148)

P1 − Po = −563.9
lbf

ft2
(4.149)

Po − P1 = 563.9
lbf

ft2
(4.150)

Po = P1 + 563.9
lbf

ft2
(4.151)

4adopted from White, 9.26, p. 584
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Now calculate the local Mach number

T1 = 100 + 460 = 560 R (4.152)

M1 =
u1√
γRT1

(4.153)

M1 =
750 ft

s
√

(1.4)
(

1, 717 ft2

s2 R

)

(560 R)

(4.154)

M1 = 0.646 (4.155)

Isentropic flow relations relate stagnation to static properties, so for air

Po = P1

(

1 +
1

5
M2

1

)3.5

(4.156)

Po = P1

(

1 +
1

5
(0.646)

2

)3.5

(4.157)

Po = 1.324P1 (4.158)

Substituting from the measured pressure difference

P1 + 563.9
lbf

ft2
= 1.324P1 (4.159)

−0.324P1 = −563.9
lbf

ft2
(4.160)

P1 =
−563.9 lbf

ft2

−0.324
(4.161)

P1 = 1, 740
lbf

ft2
(4.162)

Po = (1.324)

(

1, 740
lbf

ft2

)

= 2, 304
lbf

ft2
(4.163)

P1 =

(

1, 740
lbf

ft2

)(

1

12

ft

in

)2

= 12.1 psia (4.164)

Po =

(

2, 304
lbf

ft2

)(

1

12

ft

in

)2

= 16.0 psia (4.165)

What might one estimate if one did not account for compressibility effects? Assume one had the
same static pressure and calculate what velocity one would predict.

First calculate the static density.

ρ1 =
P1

RT1
(4.166)

ρ1 =
1, 740 lbf

ft2
(

1, 717 ft2

s2 R

)

(560 R)

(

32.2
ft lbm

lbf s2

)

(4.167)

ρ1 = 0.05827
lbm

ft3
(4.168)

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


4.2. FLOW WITH AREA CHANGE 79

One would then use an incompressible Bernoulli equation:

Po +
ρ (0)

2

2
= P1 +

ρ1u
2
1

2
(4.169)

u1 =

√

2 (Po − P1)

ρ1
(4.170)

u1 =

√

√

√

√

√

2
(

563.9 lbf
ft2

)

0.05827 lbm
ft3

(

32.2
ft lbm

lbf s2

)

(4.171)

u1 = 789.4
ft

s
(4.172)

So the relative error in using the incompressible approximation would be

Error =
789.4− 750

750
= 5.3% (4.173)

Example 4.6
Adiabatic Duct Flow5

Given: Air flowing adiabatically through a duct. At section 1, u1 = 400 ft
s , T1 = 200◦F, P1 =

35 psia. Downstream u2 = 1, 100 ft
s , P2 = 18 psia.

Find: M2, umax,
Po2

Po1

Assume: Calorically perfect ideal gas, steady, one-dimensional flow

Analysis:

Some preliminaries:

T1 = 200 + 460 = 660 R (4.174)

cp =

(

0.240
Btu

lbm R

)(

779
ft lbf

Btu

)(

32.17
lbm ft

lbf s2

)

= 6, 015
ft2

s2 R
(4.175)

R =

(

53.34
ft lbf

lbm R

)(

32.17
lbm ft

lbf s2

)

= 1, 716
ft2

s2 R
(4.176)

(4.177)

Energy conservation gives stagnation conditions at state 1

h1 +
u2
1

2
= ho1 (4.178)

5adopted from White’s 9.30, p. 585
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cpT1 +
u2
1

2
= cpTo1 (4.179)

To1 = T1 +
u2
1

2cp
(4.180)

To1 = 660 R+

(

400 ft
s

)2

2
(

6, 015 ft2

s2 R

) (4.181)

To1 = 673 R (4.182)

Note since in adiabatic flow ho is a constant, ho2 = ho1 and since ideal gas To2 = To1 So

To2 = 673 R (4.183)

T2 = To2 −
u2
2

2cp
(4.184)

T2 = 673 R−

(

1, 100 ft
s

)2

2
(

6, 015 ft2

s2 R

) (4.185)

T2 = 572 R (4.186)

Calculate the Mach numbers:

c1 =
√

γRT1 (4.187)

c1 =

√

1.4

(

1, 716
ft2

s2 R

)

(660 R) = 1, 259
ft

s
(4.188)

M1 =
u1

c1
=

400 ft
s

1, 259 ft
s

= 0.318 (4.189)

c2 =
√

γRT2 (4.190)

c2 =

√

1.4

(

1, 716
ft2

s2 R

)

(572 R) = 1, 173
ft

s
(4.191)

M2 =
u2

c2
=

1, 100 ft
s

1, 173 ft
s

= 0.938 (4.192)

Since for CPIG air one has

P

Po
=

(

1 +
1

5
M2

)

−
7
2

(4.193)

Po = P

(

1 +
1

5
M2

)
7
2

(4.194)

Po1 = (35 psia)

(

1 +
1

5
0.3182

)
7
2

= 37.54 psia (4.195)

Po2 = (18 psia)

(

1 +
1

5
0.9382

)
7
2

= 31.74 psia (4.196)

Po2

Po1
=

31.74 psia

37.54 psia
= 0.845 (4.197)
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Stagnation pressure drop indicates that friction was present. If one computed an entropy change one
would see an increase in entropy.

The maximum velocity is found by converting all the thermal energy to kinetic energy. Taking
zero thermal energy to correspond to absolute zero (despite the fact that air would not be a gas at this
point) one could estimate

ho =
u2
max

2
(4.198)

cpTo =
u2
max

2
(4.199)

umax =
√

2cpTo (4.200)

umax =

√

2

(

6, 015
ft2

s2 R

)

(673 R) = 2, 845
ft

s
(4.201)

4.2.2 Sonic properties

Let “*” denote a property at the sonic state M2 ≡ 1

T∗

To
=

(

1 +
γ − 1

2
12
)−1

=
2

γ + 1
(4.202)

ρ∗
ρo

=

(

1 +
γ − 1

2
12
)− 1

γ−1

=

(

2

γ + 1

)
1

γ−1

(4.203)

P∗

Po
=

(

1 +
γ − 1

2
12
)− γ

γ−1

=

(

2

γ + 1

)
γ

γ−1

(4.204)

c∗
co

=

(

1 +
γ − 1

2
12
)−1/2

=

√

2

γ + 1
(4.205)

u∗ = c∗ =
√

γRT∗ =

√

2γ

γ + 1
RTo (4.206)

If air γ = 7/5 and

T∗

To
= 0.8333 (4.207)

ρ∗
ρo

= 0.6339 (4.208)

P∗

Po

= 0.5283 (4.209)

c∗
co

= 0.9123 (4.210)

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


82 CHAPTER 4. ONE-DIMENSIONAL COMPRESSIBLE FLOW

4.2.3 Effect of area change

Influence of mass equation must be considered. So far only looked at energy has been
examined. In the isentropic limit the mass, momentum, and energy equation for a CPIG
reduce to

dρ

ρ
+

du

u
+

dA

A
= 0 (4.211)

ρudu+ dP = 0 (4.212)

dP

P
= γ

dρ

ρ
(4.213)

Substitute energy then mass into momentum:

ρudu+ γ
P

ρ
dρ = 0 (4.214)

ρudu+ γ
P

ρ

(

−ρ

u
du− ρ

A
dA
)

= 0 (4.215)

du+ γ
P

ρ

(

− 1

u2
du− 1

uA
dA

)

= 0 (4.216)

du

(

1− γP/ρ

u2

)

= γ
P

ρ

dA

uA
(4.217)

du

u

(

1− γP/ρ

u2

)

=
γP/ρ

u2

dA

A
(4.218)

du

u

(

1− 1

M2

)

=
1

M2

dA

A
(4.219)

du

u

(

M2 − 1
)

=
dA

A
(4.220)

du

u
=

1

M2 − 1

dA

A
(4.221)

Figure 4.6 gives show the performance of a fluid in a variable area duct.
It is noted that

• equation singular when M2 = 1

• if M2 = 1, one needs dA = 0

• area minimum necessary to transition from subsonic to supersonic flow!!

• can be shown area maximum not relevant

Consider A at a sonic state. From the mass equation:

ρuA = ρ∗u∗A∗ (4.222)
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Consider u > 0

Subsonic
Diffuser

Subsonic
Nozzle

Supersonic
Nozzle

Supersonic
Diffuser

dA > 0, M  < 1 so
du < 0, flow slows down
dp > 0

2

dA < 0, M  <1 so
du > 0, flow speeds up
dp < 0

2

dA < 0, M  > 1 so
du < 0, flow slows down
dp > 0

2

dA > 0, M  >1 so
du > 0, flow speeds up
dp < 0

2

Figure 4.6: Behavior of fluid in sub- and supersonic nozzles and diffusers

ρuA = ρ∗c∗A∗ (4.223)

A

A∗
=

ρ∗
ρ
c∗
1

u
, (4.224)

=
ρ∗
ρ

√

γRT∗
1

u
, (4.225)

=
ρ∗
ρ

√
γRT∗√
γRT

√
γRT

u
(4.226)

=
ρ∗
ρ

√

T∗

T

1

M
, (4.227)

=
ρ∗
ρo

ρo
ρ

√

T∗To

ToT

1

M
(4.228)

Substitute from earlier-developed relations and get:

A

A∗
=

1

M

(

2

γ + 1

(

1 +
γ − 1

2
M2

))
1

2

γ+1

γ−1

(4.229)

Figure 4.7 shows the performance of a fluid in a variable area duct.

Note:
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0 0.5 1 1.5 2 2.5 3
M

1

2

3

4

5

6

A/A*

calorically perfect 
ideal gas 
R = 0.287 kJ/(kg K) 

γ = 7/5 

Figure 4.7: Area versus Mach number for a calorically perfect ideal gas

• A
A∗

has a minimum value of 1 at M = 1

• For each A
A∗ > 1, there exist two values of M

• A
A∗

→ ∞ as M → 0 or M → ∞

4.2.4 Choking

Consider mass flow rate variation with pressure difference

• small pressure difference gives small velocity, small mass flow

• as pressure difference grows, velocity and mass flow rate grow

• velocity is limited to sonic at a particular duct location

• this provides fundamental restriction on mass flow rate

• can be proven rigorously that sonic condition gives maximum mass flow rate

ṁmax = ρ∗u∗A∗ (4.230)

if ideal gas: = ρo

(

2

γ + 1

)
1

γ−1
(
√

2γ

γ + 1
RTo

)

A∗ (4.231)

= ρo

(

2

γ + 1

)
1

γ−1
(

2

γ + 1

)1/2
√

γRToA∗ (4.232)

= ρo

(

2

γ + 1

)
1

2

γ+1

γ−1 √

γRToA∗ (4.233)

A flow which has a maximum mass flow rate is known as choked flow. Flows will choke
at area minima in a duct.
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Example 4.7
Isentropic area change problem with choking6

Given: Air with stagnation conditions Po = 200 kPa To = 500 K flows through a throat to an exit
Mach number of 2.5. The desired mass flow is 3.0 kg/s,

Find: a) throat area, b) exit pressure, c) exit temperature, d) exit velocity, and e) exit area.

Assume: CPIG, isentropic flow, γ = 7/5

Analysis:

ρo =
Po

RTo
=

200 kPa

(0.287 kJ/kg) (500 K)
= 1.394 kg/m3 (4.234)

Since it necessarily flows through a sonic throat:

ṁmax = ρo

(

2

γ + 1

)
1
2

γ+1

γ−1
√

γRToA∗ (4.235)

A∗ =
ṁmax

ρo

(

2
γ+1

)
1
2

γ+1

γ−1 √
γRTo

(4.236)

=
3 kg/s

(

1.394 kg
m3

)

(0.5787)

√

1.4
(

287 J
kg K

)

(500 K)

, (4.237)

= 0.008297 m2 (4.238)

Since Me is known, use the isentropic relations to find other exit conditions.

Pe = Po

(

1 +
γ − 1

2
M2

e

)

−
γ

γ−1

, (4.239)

= (200 kPa)

(

1 +
1

5
2.52

)

−3.5

, (4.240)

= 11.71 kPa (4.241)

Te = To

(

1 +
γ − 1

2
M2

e

)

−1

, (4.242)

= (500 K)

(

1 +
1

5
2.52

)

−1

, (4.243)

= 222.2 K (4.244)

Note

ρe =
Pe

RTe
, (4.245)

=
11.71 kPa

(

0.287 kJ
kgK

)

(222.2 K)
, (4.246)

= 0.1834
kg

m3
(4.247)

6adopted from White, Fluid Mechanics McGraw-Hill: New York, 1986, p. 529, Ex. 9.5
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Now the exit velocity is simply

ue = Mece = Me

√

γRTe = 2.5

√

1.4

(

287
J

kg K

)

(222.2 K) = 747.0
m

s
(4.248)

Now determine the exit area:

A =
A∗

Me

(

2

γ + 1

(

1 +
γ − 1

2
M2

e

))
1
2

γ+1

γ−1

(4.249)

=
0.008297 m2

2.5

(

5

6

(

1 +
1

5
2.52

))3

, (4.250)

= 70.0219 m2 (4.251)

Example 4.8
Discharge Problem7

Given: Air in tank, Po = 700 kPa, To = 20◦C, V = 1.5 m3. Throat area in converging nozzle of
0.65 cm2, exhausting to 1 atm environment

Find: Time for pressure in tank to decrease to 500 kPa.

Assume: CPIG, stagnation temperature constant (so small heat transfer to tank in time of opera-
tion)

Analysis:
First, To = 20 + 273 = 293 K

Now check for choked flow! At the initial state

Patm

Po
=

101.3 kPa

700 kPa
= 0.145 (4.252)

But for air P∗

Po

= 0.5283, so the flow must be choked at the exit and the mass flow is restricted.
(Further expansion takes place outside the nozzle)

For choked flow one has

ṁe = ρo

(

2

γ + 1

)
1
2

γ+1

γ−1
√

γRToA∗ (4.253)

=

(

Po

RTo

)(

2

γ + 1

)
1
2

γ+1

γ−1
√

γRToA∗ (4.254)

=





Po
(

287 J
kg K

)

(293 K)



 0.5787

√

1.4

(

287
J

kg K

)

(293 K)
(

0.65 cm2
)

(

1

100

m

cm

)2

(4.255)

= 1.5348× 10−7Po (4.256)

7from White, 9.33,35

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


4.3. NORMAL SHOCK WAVES 87

Now mass conservation gives

d

dt
mcv = −ṁe (4.257)

d

dt
(ρoV ) = −ṁe (4.258)

d

dt

(

Po

RTo
V

)

= −ṁe (4.259)

dPo

dt
= −RTo

V
ṁe (4.260)

dPo

dt
= −

(

287 J
kg K

)

(293 K)

1.5 m3
1.5348× 10−7Po (4.261)

dPo

dt
= −0.008604Po (4.262)

Po = A exp (−0.008604t) (4.263)

Use initial value of Po to fix the constant A so

Po = 700 exp (−0.008604t) (4.264)

When does Po = 500 kPa?

500 = 700 exp (−0.008604t) ln
500

700
= −0.008604t (4.265)

t = − 1

0.008604
ln

500

700
= 39.1 s (4.266)

4.3 Normal shock waves

This section will develop relations for normal shock waves in fluids with general equations of
state. It will be specialized to calorically perfect ideal gases to illustrate the general features
of the waves.

Assumptions for this section

• one-dimensional flow

• steady flow

• no area change

• viscous effects and wall friction do not have time to influence flow

• heat conduction and wall heat transfer do not have time to influence flow
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Steady Frame 

x 

u = - D 

P1 
ρ

1 

u2 

P2 

ρ2 

Laboratory Frame 

v = 0 
P1 

ρ1 

v = v2 
P2 

ρ2 

vp = v2 

D 

u = v - D;       v = u + D 
x = x* - D t;    x* = x + D t 

x* 

Figure 4.8: Normal shock sketch

The piston problem as sketched in Figure 4.8 will be considered.
Physical problem:

• Drive piston with known velocity vp into fluid at rest (v1 = 0) with known properties,
P1, ρ1 in the x∗ laboratory frame

• Determine disturbance speed D

• Determine disturbance properties v2, P2, ρ2

• in this frame of reference unsteady problem

Transformed Problem:

• use Galilean transformation x = x∗−Dt, u = v−D to transform to the frame in which
the wave is at rest, therefore rending the problem steady in this frame

• solve as though D is known to get downstream “2” conditions: u2(D), P2(D), ...

• invert to solve for D as function of u2, the transformed piston velocity: D(u2)

• back transform to get all variables as function of v2, the laboratory piston velocity:
D(v2), P2(v2), ρ2(v2), ...

4.3.1 Governing equations

Under these assumptions the conservation principles in conservative form and equation of
state are in the steady frame as follows:

d

dx
(ρu) = 0 (4.267)

d

dx

(

ρu2 + P
)

= 0 (4.268)
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d

dx

(

ρu

(

h+
u2

2

))

= 0 (4.269)

h = h(P, ρ) (4.270)

Upstream conditions are ρ = ρ1, P = P1, u = −D. With knowledge of the equation of
state, one gets h = h1. Integrating the equations from upstream to state “2” gives:

ρ2u2 = −ρ1D (4.271)

ρ2u
2
2 + P2 = ρ1D

2 + P1 (4.272)

h2 +
u2
2

2
= h1 +

D2

2
(4.273)

h2 = h(P2, ρ2) (4.274)

4.3.2 Rayleigh line

Work on the momentum equation:

P2 = P1 + ρ1D
2 − ρ2u

2
2 (4.275)

P2 = P1 +
ρ21D

2

ρ1
− ρ22u

2
2

ρ2
(4.276)

Since mass gives ρ22u
2
2 = ρ21D

2 one gets an equation for the Rayleigh Line, a line in (P, 1
ρ
)

space:

P2 = P1 + ρ21D
2

(

1

ρ1
− 1

ρ2

)

(4.277)

Note:

• Rayleigh line passes through ambient state

• Rayleigh line has negative slope

• magnitude of slope proportional to square of wave speed

• independent of state and energy equations

4.3.3 Hugoniot curve

Operate on the energy equation, using both mass and momentum to eliminate velocity. First
eliminate u2 via the mass equation:
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h2 +
u2
2

2
= h1 +

D2

2
(4.278)

h2 +
1

2

(

ρ1D

ρ2

)2

= h1 +
D2

2
(4.279)

h2 − h1 +
D2

2

(

(

ρ1
ρ2

)2

− 1

)

= 0 (4.280)

h2 − h1 +
D2

2

(

ρ21 − ρ22
ρ22

)

= 0 (4.281)

h2 − h1 +
D2

2

(

(ρ1 − ρ2) (ρ1 + ρ2)

ρ22

)

= 0 (4.282)

Now use the Rayleigh line to eliminate D2:

D2 = (P2 − P1)

(

1

ρ21

)(

1

ρ1
− 1

ρ2

)−1

(4.283)

D2 = (P2 − P1)

(

1

ρ21

)(

ρ2 − ρ1
ρ1ρ2

)−1

(4.284)

D2 = (P2 − P1)

(

1

ρ21

)(

ρ1ρ2
ρ2 − ρ1

)

(4.285)

so the energy equation becomes

h2 − h1 +
1

2
(P2 − P1)

(

1

ρ21

)(

ρ1ρ2
ρ2 − ρ1

)(

(ρ1 − ρ2) (ρ1 + ρ2)

ρ22

)

= 0 (4.286)

h2 − h1 −
1

2
(P2 − P1)

(

1

ρ1

)(

ρ1 + ρ2
ρ2

)

= 0 (4.287)

h2 − h1 −
1

2
(P2 − P1)

(

1

ρ2
+

1

ρ1

)

= 0 (4.288)

(4.289)

Solving finally for the enthalpy difference, one finds

h2 − h1 = (P2 − P1)

(

1

2

)(

1

ρ2
+

1

ρ1

)

(4.290)

This equation is the Hugoniot equation.

• enthalpy change equals pressure difference times mean volume

• independent of wave speed D and velocity u2

• independent of equation of state
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4.3.4 Solution procedure for general equations of state

The shocked state can be determined by the following procedure:

• specify and equation of state h(P, ρ)

• substitute the equation of state into the Hugoniot to get a second relation between P2

and ρ2.

• use the Rayleigh line to eliminate P2 in the Hugoniot so that the Hugoniot is a single
equation in ρ2

• solve for ρ2 as functions of “1” and D

• back substitute to solve for P2, u2, h2, T2 as functions of “1” and D

• invert to find D as function of “1” state and u2

• back transform to laboratory frame to getD as function of “1” state and piston velocity
v2 = vp

4.3.5 Calorically perfect ideal gas solutions

Follow this procedure for the special case of a calorically perfect ideal gas.

h = cp(T − To) + ho (4.291)

P = ρRT (4.292)

so

h = cp

(

P

Rρ
− Po

Rρo

)

+ ho (4.293)

h =
cp
R

(

P

ρ
− Po

ρo

)

+ ho (4.294)

h =
cp

cp − cv

(

P

ρ
− Po

ρo

)

+ ho (4.295)

h =
γ

γ − 1

(

P

ρ
− Po

ρo

)

+ ho (4.296)

Evaluate at states 1 and 2 and substitute into Hugoniot:
(

γ

γ − 1

(

P2

ρ2
− Po

ρo

)

+ ho

)

−
(

γ

γ − 1

(

P1

ρ1
− Po

ρo

)

+ ho

)

= (P2 − P1)

(

1

2

)(

1

ρ2
+

1

ρ1

)
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γ

γ − 1

(

P2

ρ2
− P1

ρ1

)

− (P2 − P1)

(

1

2

)(

1

ρ2
+

1

ρ1

)

= 0

P2

(

γ

γ − 1

1

ρ2
− 1

2ρ2
− 1

2ρ1

)

− P1

(

γ

γ − 1

1

ρ1
− 1

2ρ2
− 1

2ρ1

)

= 0

P2

(

γ + 1

2 (γ − 1)

1

ρ2
− 1

2ρ1

)

− P1

(

γ + 1

2 (γ − 1)

1

ρ1
− 1

2ρ2

)

= 0

P2

(

γ + 1

γ − 1

1

ρ2
− 1

ρ1

)

− P1

(

γ + 1

γ − 1

1

ρ1
− 1

ρ2

)

= 0

P2 = P1

γ+1
γ−1

1
ρ1

− 1
ρ2

γ+1
γ−1

1
ρ2

− 1
ρ1

• a hyperbola in (P, 1
ρ
) space

• 1
ρ2

→ γ−1
γ+1

1
ρ1

causes P2 → ∞, note = γ = 1.4, ρ2 → 6 for infinite pressure

• as 1
ρ2

→ ∞, P2 → −P1
γ−1
γ+1

, note negative pressure, not physical here

The Rayleigh line and Hugoniot curves are sketched in Figure 4.9.

2 3 4 5 6 7

100

200

300

400

500

1/ρ  (kg/m  )3

P (kPa)

1/ρ 
1

1/ρ 
2

P
1

P
2

initial state

excluded zone
slope of Rayleigh line < 0

excluded zone, 2nd law violation

Hugoniot,
from energy

Rayleigh line, slope ~ D
from mass and momentum

2

1/ρ     =  (γ-1)  1 
              (γ+1)  ρ 

min

1

-(γ-1) P
1

γ+1 excluded zone, negative pressure

shocked state

excluded
zone,
1/ρ  < 1/ρ

min

Figure 4.9: Rayleigh line and Hugoniot curve.

Note:

• intersections of the two curves are solutions to the equations

• the ambient state “1” is one solution
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• the other solution “2” is known as the shock solution

• shock solution has higher pressure and higher density

• higher wave speed implies higher pressure and higher density

• a minimum wavespeed exists

– occurs when Rayleigh line tangent to Hugoniot

– occurs for very small pressure changes

– corresponds to a sonic wave speed

– disturbances are acoustic

• if pressure increases, can be shown entropy increases

• if pressure decreases (wave speed less than sonic), entropy decreases; this is non-
physical

Substitute Rayleigh line into Hugoniot to get single equation for ρ2

P1 + ρ21D
2

(

1

ρ1
− 1

ρ2

)

= P1

γ+1
γ−1

1
ρ1

− 1
ρ2

γ+1
γ−1

1
ρ2

− 1
ρ1

(4.297)

This equation is quadratic in 1
ρ2

and factorizable. Use computer algebra to solve and get

two solutions, one ambient 1
ρ2

= 1
ρ1

and one shocked solution:

1

ρ2
=

1

ρ1

γ − 1

γ + 1

(

1 +
2γ

(γ − 1)D2

P1

ρ1

)

(4.298)

The shocked density ρ2 is plotted against wave speed D for CPIG air in Figure 4.10.

Note

• density solution allows allows all wave speeds 0 < D < ∞

• plot range, however, is c1 < D < ∞

• Rayleigh line and Hugoniot show D ≥ c1

• solution for D = D(vp), to be shown, rigorously shows D ≥ c1

• strong shock limit: D2 → ∞, ρ2 → γ+1
γ−1

• acoustic limit: D2 → γ P1

ρ1
, ρ2 → ρ1

• non-physical limit: D2 → 0, ρ2 → 0
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  strong

shock

limit 

calorically perfect
ideal air 

γ = 7/5 

R = 0.287 kJ/(kg K) 
 

exact 
solution 

D = Dmin = c1 

500 1000 1500 2000 2500 3000
D (m/s)

1

2

3

4

5

6

7

ρ2 (kg/m
3)

Figure 4.10: Shock density vs. shock wave speed for calorically perfect ideal air.

Back substitute into Rayleigh line and mass conservation to solve for the shocked pressure
and the fluid velocity in the shocked wave frame:

P2 =
2

γ + 1
ρ1D

2 − γ − 1

γ + 1
P1 (4.299)

u2 = −D
γ − 1

γ + 1

(

1 +
2γ

(γ − 1)D2

P1

ρ1

)

(4.300)

The shocked pressure P2 is plotted against wave speed D for CPIG air in Figure 4.11
including both the exact solution and the solution in the strong shock limit. Note for these
parameters, the results are indistinguishable.

calorically perfect

ideal air

γ = 7/5 

R = 0.287 kJ/(kg K) 
 

exact 
solution and 
strong shock limit  

ambient = 
100000 Pa 

D = Dmin = c1 

500 1000 1500 2000 2500 3000
D (m/s)

    6
2. 10

    6
4. 10

    6
6. 10

    6
8. 10

P2 (Pa)

x

x

x

x

Figure 4.11: Shock pressure vs. shock wave speed for calorically perfect ideal air.

The shocked wave frame fluid particle velocity u2 is plotted against wave speed D for
CPIG air in Figure 4.12.
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strong

shock

limit

  

 
γ = 7/5 

R = 0.287 kJ/(kg K) 
 

exact 
solution 

u1 = - c1 
D = Dmin = c1 

500 1000 1500 2000 2500 3000
D (m/s)

-500

-400

-300

-200

-100

u2 (m/s)

calorically perfect

ideal air

Figure 4.12: Shock wave frame fluid particle velocity vs. shock wave speed for calorically
perfect ideal air.

The shocked wave frame fluid particle velocity M2
2 =

ρ2u2
2

γP2
is plotted against wave speed

D for CPIG air in Figure 4.13.

calorically perfect
ideal air 

γ = 7/5 

R = 0.287 kJ/(kg K) 
 

exact 
solution  

strong 

shock  
limit 

D = Dmin = c1 
M2

2 = 1 

0 500 1000 1500 2000 2500 3000
D (m/s)

0.2

0.4

0.6

0.8

1

M2
2

Figure 4.13: Mach number squared of shocked fluid particle vs. shock wave speed for calor-
ically perfect ideal air.

Exercise: For the conditions shown in the plot of M2
2 vs. D do the detailed calculations

to demonstrate the plot is correct.

Note in the steady frame that

• The Mach number of the undisturbed flow is (and must be) > 1: supersonic

• The Mach number of the shocked flow is (and must be) < 1: subsonic
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Transform back to the laboratory frame u = v −D:

v2 −D = −D
γ − 1

γ + 1

(

1 +
2γ

(γ − 1)D2

P1

ρ1

)

(4.301)

v2 = D −D
γ − 1

γ + 1

(

1 +
2γ

(γ − 1)D2

P1

ρ1

)

(4.302)

Manipulate the above equation and solve the resulting quadratic equation for D and get

D =
γ + 1

4
v2 ±

√

γP1

ρ1
+ v22

(

γ + 1

4

)2

(4.303)

Now if v2 > 0, one expects D > 0 so take positive root, also set velocity equal piston
velocity v2 = vp

D =
γ + 1

4
vp +

√

γP1

ρ1
+ v2p

(

γ + 1

4

)2

(4.304)

Note:

• acoustic limit: as vp → 0, D → c1; the shock speed approaches the sound speed

• strong shock limit: as vp → ∞, D → γ+1
2
vp

The shock speed D is plotted against piston velocity vp for CPIG air in Figure 4.14. Both
the exact solution and strong shock limit are shown.

200 400 600 800 1000
vp (m/s)

200

400

600

800

1000

1200
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exact 
solution 

acoustic 
limit,   

D    c1 

calorically perfect
ideal air 

γ = 7/5 

R = 0.287 kJ/(kg K) 
 

strong

shock

limit

Figure 4.14: Shock speed vs. piston velocity for calorically perfect ideal air.

If the Mach number of the shock is defined as

Ms ≡
D

c1
(4.305)
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one gets

Ms =
γ + 1

4

vp√
γRT1

+

√

1 +
v2p

γRT1

(

γ + 1

4

)2

(4.306)

The shock Mach number Ms is plotted against piston velocity vp for CPIG air in Figure
4.15. Both the exact solution and strong shock limit are shown.
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Figure 4.15: Shock Mach number vs. piston velocity for calorically perfect ideal air

Example 4.9
Normal shock problem8

Given: Air flowing through normal shock. Upstream u1 = 600 m/s, To1 = 500 K, Po1 = 700 kPa.

Find: Downstream conditions M2, u2, T2, P2, Po2 and s2 − s1.

Assume: calorically perfect ideal gas

Analysis:
First get all local unshocked conditions.

To1 = T1 +
u2
1

2cp
(4.307)

T1 = To1 −
u2
1

2cp
(4.308)

T1 = 500 K −
(

600 m
s

)2

2
(

1004.5 J
kg K

) , (4.309)

= 320.81 K (4.310)

c1 =
√

γRT1, (4.311)

=

√

1.4

(

287
J

kg K

)

(320.81 K), (4.312)

= 359.0
m

s
(4.313)

8adopted from White’s 9.46, p. 586
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M1 =
u1

c1
, (4.314)

=
600 m

s

359.0 m
s

, (4.315)

= 1.671 (4.316)

P1 = Po1

(

1 +
1

5
M2

1

)

−3.5

, (4.317)

= (700 kPa)

(

1 +
1

5
(1.671)

2

)

−3.5

, (4.318)

= 148.1 kPa (4.319)

ρ1 =
P1

RT1
, (4.320)

=
148.1 kPa

(

0.287 kJ
kg K

)

(320.81 K)
, (4.321)

= 1.609
kg

m3
(4.322)

A1

A1∗
=

1

M1

(

2

γ + 1

(

1 +
γ − 1

2
M2

1

))
1
2

γ+1

γ−1

(4.323)

=
1

1.671

(

2

1.4 + 1

(

1 +
1.4− 1

2
1.6712

))
1
2

1.4+1

1.4−1

, (4.324)

= 1.311 (4.325)

Now in this case it is fortunate because the incoming velocity D = 600 m
s is known. Note that the

shock density only depends on D2, so one can be a little sloppy here with sign. Solve for the shocked
state:

1

ρ2
=

1

ρ1

γ − 1

γ + 1

(

1 +
2γ

(γ − 1)D2

P1

ρ1

)

(4.326)

1

ρ2
=

1

1.609 kg
m3

1.4− 1

1.4 + 1

(

1 +
2 (1.4)

(1.4− 1)
(

600 m
s

)2

148, 100 Pa

1.609 kg
m3

)

(4.327)

= 0.2890
m3

kg
(4.328)

ρ2 =
1

0.2890 m3

kg

, (4.329)

= 3.461
kg

m3
(4.330)

Now a variety of equations can be used to determine the remaining state variables. Mass gives u2:

ρ2u2 = ρ1u1 (4.331)

u2 =
ρ1u1

ρ2
, (4.332)

=

(

1.609 kg
m3

)

(

600 m
s

)

3.461 kg
m3

, (4.333)
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= 278.9
m

s
. (4.334)

Momentum gives P2

P2 + ρ2u
2
2 = P1 + ρ1u

2
1 (4.335)

P2 = P1 + ρ1u
2
1 − ρ2u

2
2 (4.336)

P2 = 148, 100 Pa+

(

1.609
kg

m3

)

(

600
m

s

)2

−
(

3.461
kg

m3

)

(

278.9
m

s

)2

(4.337)

P2 = 458, 125 Pa = 458 kPa (4.338)

Remaining assorted variables are straightforward:

T2 =
P2

ρ2R
(4.339)

=
458, 125 Pa

(

3.461 kg
m3

)(

287 J
kg K

) , (4.340)

= 461.2 K (4.341)

c2 =
√

γRT2, (4.342)

=

√

1.4

(

287
J

kg K

)

(461.2 K), (4.343)

= 430.5
m

s
(4.344)

M2 =
u2

c2
, (4.345)

=
278.9 m

s

430.5 m
s

, (4.346)

= 0.648 (4.347)

To2 = T2

(

1 +
1

5
M2

2

)

, (4.348)

= 461.2 K

(

1 +
1

5
0.6482

)

(4.349)

= 500 K unchanged as required (4.350)

Po2 = P2

(

1 +
1

5
M2

2

)3.5

, (4.351)

= 458 kPa

(

1 +
1

5
0.6482

)3.5

(4.352)

= 607.4 kPa dropped from unshocked state (4.353)

s2 − s1 = cp ln

(

T2

T1

)

−R ln

(

P2

P1

)

(4.354)

= 1004.5
J

kg K
ln

(

461.2 K

320.81 K

)

− 287
J

kg K
ln

(

458 kPa

148.1 kPa

)

(4.355)

= 364.6− 324.0, (4.356)

= 40.6
J

kg K
(4.357)

A2

A2∗
=

1

M2

(

2

γ + 1

(

1 +
γ − 1

2
M2

2

))
1
2

γ+1

γ−1

(4.358)
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=
1

0.648

(

2

1.4 + 1

(

1 +
1.4− 1

2
0.6482

))
1
2

1.4+1

1.4−1

, (4.359)

= 1.966. (4.360)

Since A2 = A1 = A,

A2

A2∗
=

A
A1∗

A
A2∗

=
1.311

1.966
= 0.667 (4.361)

Note the entropy increased despite not including any entropy-generating mechanisms in this model.
Why? First, the differential equations themselves required the assumption of continuous differentiable
functions. Our shock violates this. When one returns to the more fundamental control volume forms,
it can be shown that the entropy-generating mechanism returns. From a continuum point of view, one
can also show that the neglected terms, that momentum and energy diffusion, actually give rise to a
smeared shock. These mechanisms generate just enough entropy to satisfy the entropy jump which was
just calculated. Just as with Burger’s equation and the kinematic wave equation, the jumps are the
same, diffusion simply gives a wave thickness.

Example 4.10
Piston Problem

Given: A piston moving at vp = 1, 000 m
s is driven into Helium which is at rest in the ambient

state at a pressure of P1 = 10 kPa, T1 = 50 K.

Find: The shock speed and post shock state.

Assume: Helium is calorically perfect and ideal

Analysis: For Helium,

γ = 1.667 (4.362)

R = 2077
J

kg K
(4.363)

cp =
γR

γ − 1
, (4.364)

=
1.667

(

2, 077 J
kg K

)

1.667− 1
, (4.365)

= 5, 192.5
J

kg K
. (4.366)

Ambient density

ρ1 =
P1

RT1
, (4.367)

=
10, 000 Pa

(

2, 077 J
kg K

)

(50 K)
, (4.368)
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= 0.0963
kg

m3
(4.369)

c1 =
√

γRT1, (4.370)

=

√

1.667

(

2, 077
J

kg K

)

(50 K), (4.371)

= 416.0
m

s
(4.372)

Now the wave speed D one gets from

D =
γ + 1

4
vp +

√

γP1

ρ1
+ v2p

(

γ + 1

4

)2

(4.373)

=
1.667 + 1

4

(

1, 000
m

s

)

+

√

√

√

√

1.667 (10, 000 Pa)

0.0963 kg
m3

+
(

1, 000
m

s

)2
(

1.667 + 1

4

)2

(4.374)

= 666.7 + 785.8, (4.375)

= 1, 452.5
m

s
(4.376)

Strong shock limit is appropriate here as a quick check:

D ∼ γ + 1

2
vp =

1.667 + 1

2

(

1, 000
m

s

)

= 1, 333.3
m

s
(4.377)

P2 =
2

γ + 1
ρ1D

2 − γ − 1

γ + 1
P1 (4.378)

=
2

1.667 + 1

(

0.0963
kg

m3

)

(

1, 452.5
m

s

)2

− 1.667− 1

1.667 + 1
(10, 000 Pa) (4.379)

= 152, 377− 2, 500, (4.380)

= 149, 877 Pa = 150 kPa (4.381)

ρ2u2 = ρ1u1 (4.382)

ρ2 (v2 −D) = ρ1 (v1 −D) (4.383)

ρ2 (vp −D) = ρ1 (0−D) (4.384)

ρ2 =
−ρ1D

vp −D
(4.385)

=
−
(

0.0963 kg
m3

)

(

1, 452.5 m
s

)

1, 000 m
s − 1, 452.5 m

s

, (4.386)

= 0.309
kg

m3
(4.387)

T2 =
P2

ρ2R
(4.388)

=
149, 877 Pa

(

0.309 kg
m3

)(

2, 077 J
kg K

) , (4.389)

= 233.5 K (4.390)
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4.3.6 Acoustic limit

Consider that state 2 is a small perturbation of state 1 so that

ρ2 = ρ1 +∆ρ (4.391)

u2 = u1 +∆u1 (4.392)

P2 = P1 +∆P (4.393)

Substituting into the normal shock equations, one gets

(ρ1 +∆ρ) (u1 +∆u) = ρ1u1 (4.394)

(ρ1 +∆ρ) (u1 +∆u)2 + (P1 +∆P ) = ρ1u1
2 + P1 (4.395)

γ

γ − 1

P1 +∆P

ρ1 +∆ρ
+

1

2
(u1 +∆u)2 =

γ

γ − 1

P1

ρ1
+

1

2
u1

2 (4.396)

Expanding, one gets

ρ1u1 + ũ1 (∆ρ) + ρ1 (∆u) + (∆ρ) (∆u) = ρ1u1
(

ρ1u1
2 + 2ρ1u1 (∆u) + u1

2 (∆ρ) + ρ1 (∆u)2 + 2u1 (∆u) (∆ρ) + (∆ρ) (∆u)2
)

+ (P1 +∆P ) = ρ1u1
2 + P1

γ

γ − 1

(

P1

ρ1
+

1

ρ1
∆P − P1

ρ21
∆ρ+ ...

)

+
1

2

(

u1
2 + 2u1 (∆u) + (∆u)2

)

=
γ

γ − 1

P1

ρ1
+

1

2
u1

2

Subtracting the base state and eliminating products of small quantities yields

u1 (∆ρ) + ρ1 (∆u) = 0 (4.397)

2ρ1u1 (∆u) + u1
2 (∆ρ) + ∆P = 0 (4.398)

γ

γ − 1

(

1

ρ1
∆P − P1

ρ21
∆ρ

)

+ u1 (∆u) = 0 (4.399)

In matrix form this is





u1 ρ1 0
u1

2 2ρ1u1 1
− γ

γ−1
P1

ρ2
1

u1
γ

γ−1
1
ρ1









∆ρ
∆u
∆P



 =





0
0
0



 (4.400)

As the right hand side is zero, the determinant must be zero and there must be a linear
dependency of the solution. First check the determinant:
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u1

(

2γ

γ − 1
u1 − u1

)

− ρ1

(

γ

γ − 1

u1
2

ρ1
+

γ

γ − 1

P1

ρ21

)

= 0 (4.401)

u1
2

γ − 1
(2γ − (γ − 1))− 1

γ − 1

(

γ u1
2 + γ

P1

ρ1

)

= 0 (4.402)

u1
2 (γ + 1)−

(

γ u1
2 + γ

P1

ρ1

)

= 0 (4.403)

u1
2 = γ

P1

ρ1
= c21 (4.404)

So the velocity is necessarily sonic for a small disturbance!

Take ∆u to be known and solve a resulting 2× 2 system:

(

u1 0
− γ

γ−1
P1

ρ2
1

γ
γ−1

1
ρ1

)(

∆ρ
∆P

)

=

(

−ρ1∆u
−u1∆u

)

(4.405)

Solving yields

∆ρ = − ρ1∆u
√

γ P1

ρ1

(4.406)

∆P = −ρ1

√

γ
P1

ρ1
∆u (4.407)

4.3.7 Non-ideal gas solutions

Non-ideal effects are important

• near the critical point

• for strong shocks

Some other points:

• qualitative trends the same as for ideal gases

• analysis is much more algebraically complicated

• extraneous solutions often arise which must be discarded
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Example 4.11
Shock in van der Waals gas

Given: Shock wave D = 500 m
s propagating into N2 at rest at T1 = 125 K, P1 = 2 MPa.

Find: Shocked state

Assume: van der Waals equation of state accurately models gas behavior, specific heat constant.

Analysis:

First, some data for N2 are needed. At P1 = 2 MPa, N2 has a boiling point of 115.5 K, so
the material is in the gas phase but very near the vapor dome. R = 296.8 J

kg K , cv = 744.8 J
kg K ,

Tc = 126.2 K, Pc = 3, 390, 000 Pa.

Since the material is near the vapor dome, the van der Waals equation may give a good first
correction for non-ideal effects.

P =
RT

v − b
− a

v2
(4.408)

P =
RT
1
ρ − b

− aρ2 (4.409)

P =
ρRT

1− bρ
− aρ2 (4.410)

As derived earlier, the corresponding caloric equation of state is

e(T, v) = eo +

∫ T

To

cv(T̂ )dT̂ + a

(

1

vo
− 1

v

)

(4.411)

Taking cv constant and exchanging v for ρ gives

e(T, ρ) = eo + cv (T − To) + a (ρo − ρ) (4.412)

Eliminating T in favor of P then gives

e(P, ρ) = eo + cv

(

(

P + aρ2
)

(1− bρ)

ρR
− To

)

+ a (ρo − ρ) (4.413)

and in terms of h = e+ P/ρ:

h(P, ρ) = eo + cv

(

(

P + aρ2
)

(1− bρ)

ρR
− To

)

+ a (ρo − ρ) +
P

ρ
(4.414)

and h2 − h1 allows cancellation of the “o” state so that

h2 − h1 = cv

(

(

P2 + aρ22
)

(1− bρ2)

ρ2R
−
(

P1 + aρ21
)

(1− bρ1)

ρ1R

)

− a (ρ2 − ρ1) +
P2

ρ2
− P1

ρ1
(4.415)
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The constants a and b are fixed so that an isotherm passing through the critical point, P = Pc, T =

Tc, passes through with ∂P
∂v

∣

∣

T
= 0 and ∂2P

∂v2

∣

∣

∣

T
= 0 A standard analysis9 yields

a =
27

64

R2T 2
c

Pc
, (4.416)

=
27

64

(

296.8 J
kg K

)2

(126.2 K)
2

3, 390, 000 Pa
, (4.417)

= 174.6
Pa m6

kg2
(4.418)

b =
RTc

8Pc
, (4.419)

=

(

296.8 J
kg K

)

(126.2 K)

8 (3, 390, 000 Pa)
, (4.420)

= 0.00138
m3

kg
(4.421)

Find the ambient density.

2, 000, 000 Pa =
ρ1

(

296.8 J
kg K

)

(125 K)

1−
(

0.00138 m3

kg

)

ρ1
−
(

174.6
Pa m6

kg2

)

ρ21 (4.422)

Three solutions (from computer algebra):

ρ1 = 69.0926
kg

m3
physical (4.423)

ρ1 = (327.773 + 112.702 i)
kg

m3
non-physical (4.424)

ρ1 = (327.773 + 112.702 i)
kg

m3
non-physical (4.425)

Tabular data from experiments gives ρ1 = 71.28 kg
m3 , error = (71.28−69.09)/71.28 = 3%, so it seems the

first root is the physical root. Note that the van der Waals prediction is a significant improvement over
the ideal gas law which gives ρ1 = P1

RT1
= 2,000,000

296.8×125 = 53.91 kg
m3 , error = (71.28−53.91)/71.28 = 21.4%!

Even with this improvement there are much better (and more complicated!) equations of state for
materials near the vapor dome.

Now use the Rayleigh line and Hugoniot equations to solve for the shocked density:

P2 = P1 + ρ21D
2

(

1

ρ1
− 1

ρ2

)

(

cv

(

(

P2 + aρ22
)

(1− bρ2)

ρ2R
−
(

P1 + aρ21
)

(1− bρ1)

ρ1R

)

− a (ρ2 − ρ1) +
P2

ρ2
− P1

ρ1

)

−
(

1

2

)

(P2 − P1)

(

1

ρ2
+

1

ρ1

)

= 0

9Sonntag and Van Wylen, 1991, Introduction to Thermodynamics: Classical and Statistical, John Wiley:
New York, p. 392.
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Plugging in all the numbers into a computer algebra program yields the following solutions for ρ2:

ρ2 = 195.309
kg

m3
shocked solution (4.426)

ρ2 = 69.0926
kg

m3
inert solution (4.427)

ρ2 = (85.74 + 657.9 i)
kg

m3
non-physical solution (4.428)

ρ2 = (85.74− 657.9 i)
kg

m3
non-physical solution (4.429)

The Rayleigh line then gives the pressure:

P2 = 2, 000, 000 Pa+

(

69.0926
kg

m3

)2
(

500
m

s

)2
(

1

69.0926 kg
m3

− 1

195.309 kg
m3

)

(4.430)

P2 = 13, 162, 593 Pa = 13.2 MPa (4.431)

The state equation gives the temperature.

T2 =

(

P2 + aρ22
)

(1− bρ2)

ρ2R
(4.432)

=

(

13, 162, 593 Pa+
(

174.6 Pa m6

kg2

)(

195.3 kg
m3

)2
)

(

1−
(

0.00138 m3

kg

)(

195.3 kg
m3

))

(

195.3 kg
m3

)(

296.8 J
kg K

) (4.433)

= 249.8 K (4.434)

Note the temperature is still quite low relative to standard atmospheric conditions; it is unlikely at
these low temperatures that any effects due to vibrational relaxation or dissociation will be important.
Our assumption of constant specific heat is probably pretty good.

The mass equation gives the shocked particle velocity:

ρ2u2 = ρ1u1 (4.435)

u2 =
ρ1u1

ρ2
(4.436)

=

(

69.0926 kg
m3

)

(

500 m
s

)

195.3 kg
m3

(4.437)

= 176.89
m

s
(4.438)

An ideal gas approximation (γN2
= 1.4) would have yielded

1

ρ2
=

1

ρ1

γ − 1

γ + 1

(

1 +
2γ

(γ − 1)D2

P1

ρ1

)

(4.439)

1

ρ2
=

(

1

53.91 kg
m3

)

1.4− 1

1.4 + 1

(

1 +
2 (1.4)

(1.4− 1)
(

500 m
s

)2

2, 000, 000 Pa

53.91 kg
m3

)

(4.440)

ρ2 = 158.65
kg

m3
ideal gas approximation (4.441)

relative error =
195.3− 158.65

195.3
= 18.8% (4.442)
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The Rayleigh line then gives the pressure:

P2 = 2, 000, 000 Pa+

(

53.91
kg

m3

)2
(

500
m

s

)2
(

1

53.91 kg
m3

− 1

158.65 kg
m3

)

(4.443)

P2 = 10, 897, 783 Pa = 10.90 MPa (4.444)

relative error =
13.2− 10.9

13.2
= 17.4% (4.445)

4.4 Flow with area change and normal shocks

This section will consider flow from a reservoir with the fluid at stagnation conditions to a
constant pressure environment. The pressure of the environment is commonly known as the
back pressure: Pb.

Generic problem: Given A(x), stagnation conditions and Pb, find the pressure, tempera-
ture, density at all points in the duct and the mass flow rate.

4.4.1 Converging nozzle

A converging nozzle operating at several different values of Pb is sketched in Figure 4.16.
The flow through the duct can be solved using the following procedure

• check if Pb ≥ P∗

• if so, set Pe = Pb

• determine Me from isentropic flow relations

• determine A∗ from A
A∗

relation

• at any point in the flow where A is known, compute A
A∗

and then invert A
A∗

relation to
find local M

Note:

• These flows are subsonic throughout and correspond to points a and b in Figure 4.16.

• If Pb = P∗ then the flow is sonic at the exit and just choked. This corresponds to point
c in Figure 4.16.

• If Pb < P∗, then the flow chokes, is sonic at the exit, and continues to expand outside
of the nozzle. This corresponds to points d and e in Figure 4.16.
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Pb 

Pe  Po  

x 

P(x)/Po 

1 

P*/Po 

a--subsonic exit 
b--subsonic exit 
c--sonic exit 

d--choked, external expansion 
e--choked, external expansion 

pb/p o 

m/mmax 

. . 

1 

1 
0 

xe  

p*/p o 

a 

b 

c d e 

Figure 4.16: Converging nozzle sketch

4.4.2 Converging-diverging nozzle

A converging-diverging nozzle operating at several different values of Pb is sketched in Figure
4.17.

The flow through the duct can be solved using the a very similar following procedure

• set At = A∗

• with this assumption, calculate Ae

A∗

• determine Mesub,Mesup, both supersonic and subsonic, from A
A∗

relation

• determine Pesub, Pesup, from Mesub,Mesup; these are the supersonic and subsonic design
pressures

• if Pb > Pesub, the flow is subsonic throughout and the throat is not sonic. Use same
procedure as for converging duct: DetermineMe by setting Pe = Pb and using isentropic
relations

• if Pesub > Pb > Pesup, the procedure is complicated

– estimate the pressure with a normal shock at the end of the duct, Pesh

– If Pb ≥ Pesh, there is a normal shock inside the duct

– If Pb < Pesh, the duct flow is shockless, and there may be compression outside the
duct
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x 

P(x)/Po 

1 

P*/Po 

a--subsonic exit 

b--subsonic exit 

c--subsonic design 

xe  

Pb 

Pe  Po  Pt 

possible 
normal  
shock 

xt 

d--shock in duct 

e-shock at end of duct 

f--external compression 

g--supersonic design 

h--external expansion 

sonic 
throat 

Pb / P o 

m/mmax 

. . 

1 

1 
0 

P*/Po 

a 

b 

c d e f 

 
 
g h 

Figure 4.17: Converging-diverging nozzle sketch

• if Pesup = Pb the flow is at supersonic design conditions and the flow is shockless

• if Pb < Pesup, the flow in the duct is isentropic and there is expansion outside the duct

Example 4.12
Nozzle Problem10

Given: Air at To = 600 K flowing through converging-diverging nozzle. At = 1 cm2, Ae = 3 cm2,
ṁ = 148.5 kg

hr . Pitot tube at exit plane gives Poe = 200 kPa, Pe = 191.5 kPa.

10adopted from White’s 9.69, p. 588
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Find: exit velocity, location of possible normal shock in duct, Mach number just upstream of normal
shock

Assume: Air is calorically perfect and ideal

Analysis:

ṁ = 148.5
kg

hr

hr

3600 s
= 0.04125

kg

s
(4.446)

Now if there is no shock, the stagnation pressure would be constant in the duct; one can use the choked
flow formula to compare to the actual mass flow rate:

ṁe =
Po

RTo

(

2

γ + 1

)
1
2

γ+1

γ−1
√

γRToA∗ (4.447)

=
200, 000 Pa

(

287 J
kg K

)

(600 K)

(

2

1.4 + 1

)
1
2

1.4+1

1.4−1

√

1.4

(

287
J

kg K

)

(600 K)
(

1 cm2
)

(

1 m

100 cm

)2

(4.448)

= 200, 000×
(

165× 10−9
)

= 0.033
kg

s
(4.449)

Now the actual mass flow is higher than this, so the stagnation pressure upstream must also be higher;
therefore, there must be a shock in the duct which lowers the stagnation pressure. Use this equation
to determine what the upstream stagnation pressure must be.

0.04125
kg

s
= Po1 ×

(

165× 10−9kg

s

1

Pa

)

(4.450)

Po1 = 250 kPa (4.451)

So

Po2

Po1
=

200 kPa

250 kPa
= 0.800 (4.452)

The flow conditions could be deduced from this; one can also utilize the normal shock tables for
air. These are valid only for a calorically perfect ideal air. Interpolating this table yields

M1 ∼ 1.83 (4.453)

M2 ∼ 0.61 (4.454)

The area ratio is determined from the isentropic flow tables. Recall that A∗ changes through a
shock, so in this case one wants to use conditions upstream of the shock. From the tables at M1 = 1.83
one finds A1

A∗

= 1.4723 so,

A1 = 1.4723× 1 cm2 = 1.4723 cm2 (4.455)

Get the exit velocity. Even if there is a shock, the stagnation temperature is constant; thus, one
has from energy conservation:
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he +
u2
e

2
= ho (4.456)

ue =
√

2 (ho − he) (4.457)

=
√

2cp (To − Te) (4.458)

=

√

2cpTo

(

1− Te

To

)

(4.459)

=

√

√

√

√2cpTo

(

1−
(

Pe

Poe

)
γ−1

γ

)

(4.460)

=

√

√

√

√2

(

1004.5
J

kg K

)

(600 K)

(

1−
(

191.5 kPa

200 kPa

)
1.4−1

1.4

)

(4.461)

= 121.9
m

s
(4.462)

4.5 Flow with friction–Fanno flow

Wall friction is typically considered by modelling the wall shear as a constant. Wall friction
is usually correlated with what is known as the Darcy friction factor: f , where

f ≡ 8τw
ρu2

(4.463)

Now in practice f is related to the local flow Reynolds number based on pipe diameter
D: ReD

ReD ≡ ρuD

µ
(4.464)

and roughness of the duct ǫ
D
, where ǫ is the average surface roughness.

f = f
(

ReD,
ǫ

D

)

(4.465)

For steady laminar duct flow, the friction factor is independent of ǫ. It turns out the
Poiseuille flow solution gives the friction factor, which turns out to be

f =
64

ReD
(4.466)
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If the flow is steady and turbulent, the friction factor is described by the following em-
pirical formula known as the Colebrook equation:

1

f 1/2
= −2.0 log10

(

ǫ/D

3.7
+

2.51

ReDf 1/2

)

(4.467)

Often one needs to iterate to find f for turbulent flows. Alternatively, one can use the
Moody chart to estimate f . This is simply a graphical representation of the Colebrook
formula. Most fluid texts will contain a Moody chart. While in principle f varies with a
host of variables, in practice in a particular problem, it is often estimated as a constant.

To get a grasp on the effects of wall friction, consider a special case of generalized one-
dimensional flow:

• steady

• one-dimensional

• adiabatic

• constant area duct

• Darcy friction model

• calorically perfect ideal gas

Our equations from the section on influence coefficients

dρ

dx
=

1

A

−ρu2 dA
dx

+ τwL+ (qw+τwu)L
ρu ∂e

∂P |ρ
(u2 − c2)

(4.468)

du

dx
=

1

A

c2ρudA
dx

− uτwL − (qw+τwu)L
ρ ∂e

∂P |ρ
ρ (u2 − c2)

(4.469)

dP

dx
=

1

A

−c2ρu2 dA
dx

+ c2τwL+ (qw+τwu)Lu
ρ ∂e

∂P |ρ
(u2 − c2)

(4.470)

reduce to

dρ

dx
=

τwL
A

1 + 1

ρ ∂e
∂P |ρ

(u2 − c2)
(4.471)

du

dx
= −uτwL

A

1 + 1

ρ ∂e
∂P |ρ

ρ (u2 − c2)
(4.472)

dP

dx
=

τwL
A

c2 + u2

ρ ∂e
∂P |ρ

(u2 − c2)
(4.473)
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Now for a circular duct

L = 2πr (4.474)

A = πr2 (4.475)

L
A

=
2πr

πr2
=

2

r
=

4

D
(4.476)

For a calorically perfect ideal gas

e =
1

γ − 1

P

ρ
(4.477)

∂e

∂P

∣

∣

∣

∣

ρ

=
1

γ − 1

1

ρ
(4.478)

ρ
∂e

∂P

∣

∣

∣

∣

ρ

=
1

γ − 1
(4.479)

1

ρ ∂e
∂P

∣

∣

ρ

= γ − 1 (4.480)

1 +
1

ρ ∂e
∂P

∣

∣

ρ

= γ (4.481)

So making these substitutions yields

dρ

dx
=

4τw
D

γ

(u2 − c2)
(4.482)

du

dx
= −4uτw

D

γ

ρ (u2 − c2)
(4.483)

dP

dx
=

4τw
D

c2 + u2 (γ − 1)

(u2 − c2)
(4.484)

Substituting for τw gives

dρ

dx
=

fρu2

2D

γ

(u2 − c2)
(4.485)

du

dx
= −fρu2u

2D

γ

ρ (u2 − c2)
(4.486)

dP

dx
=

fρu2

2D

c2 + u2 (γ − 1)

(u2 − c2)
(4.487)

Rearranging to place in terms of M2 gives

dρ

dx
=

fρM2

2D

γ

(M2 − 1)
(4.488)
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du

dx
= −fM2u

2D

γ

(M2 − 1)
(4.489)

dP

dx
=

fρu2

2D

1 +M2 (γ − 1)

(M2 − 1)
(4.490)

Now with the definition of M2 for the calorically perfect ideal gas, one gets

M2 =
ρu2

γP

dM2

dx
=

u2

γP

dρ

dx
+

2ρu

γP

du

dx
− ρu2

γP 2

dP

dx

=
u2

γP

fρM2

2D

γ

(M2 − 1)
+

2ρu

γP

(

−fM2u

2D

γ

(M2 − 1)

)

− ρu2

γP 2

fρu2

2D

1 +M2 (γ − 1)

(M2 − 1)

=
fM4

2D

γ

(M2 − 1)
− 2fM4

2D

γ

(M2 − 1)
− γfM4

2D

1 +M2 (γ − 1)

(M2 − 1)

=
γfM4

2D (M2 − 1)

(

1− 2− 1−M2 (γ − 1)
)

=
γfM4

D (1−M2)

(

1 +M2

(

γ − 1

2

))

So rearranging gives

(1−M2) dM2

γ (M2)2
(

1 +M2
(

γ−1
2

)) = f
dx

D
(4.491)

Integrate this expression from x = 0 to x = L∗ where L∗ is defined as the length at which
the flow becomes sonic, so M2 = 1 at x = L∗.

∫ 1

M2

(

1− M̂2
)

dM̂2

γ
(

M̂2
)2 (

1 + M̂2
(

γ−1
2

)

)
=

∫ L∗

0

f
dx

D
(4.492)

An analytic solution for this integral is

1−M2

γM2
+

1 + γ

2γ
ln

(1 + γ)M2

2 +M2 (γ − 1)
=

fL∗

D
(4.493)

Example 4.13
Flow in a duct with friction11

11from White, 9.82, p. 589
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Given: Air flowing in pipe D = 1 in, L = 20 ft, P1 = 40 psia, u1 = 200 ft
s , T1 = 520 R.

Find: Exit pressure P2, ṁ

Assume: calorically perfect ideal gas, Darcy friction factor models wall shear, constant viscosity

Analysis: First get the mass flow rate.

ρ1 =
P1

RT1
(4.494)

ρ1 =

(

40 lbf
in2

)(

144 in2

ft2

)

(

53.34 ft lbf
lbm R

)

(520 R)
(4.495)

ρ1 = 0.2077
lbm

ft3
(4.496)

ṁ = ρ1u1A1, (4.497)

= ρ1u1

(

π

(

D

2

)2
)

(4.498)

= 0.2077
lbm

ft3

(

200
ft

s

)

(

π

(

1 in

2

1 ft

12 in

)2
)

(4.499)

= 0.2266
lbm

s
(4.500)

Now compute the friction factor. First for cast iron pipes, one has surface roughness ǫ = 0.00085 ft, so

ǫ

D
=

0.00085 ft

1 in

12 in

1 ft
= 0.0102 (4.501)

The Reynolds number is needed, which involves the viscosity. For air at 520 R, µ ∼ 4.08×10−7 lbf s
ft2

so

ReD =
ρ1u1D

µ
=

(

0.2077 lbm
ft3

)(

200 ft
s

)

(

1
12 ft

)

(

4.08× 10−7 lbf s
ft2

)(

32.17 lbm ft
lbf s2

) = 263, 739 (4.502)

Since ReD >> 2, 300, the flow is turbulent and one needs to use the Colebrook formula to estimate the
Darcy friction factor:

1

f1/2
= −2.0 log10

(

ǫ/D

3.7
+

2.51

ReDf1/2

)

(4.503)

= −2.0 log10

(

0.0102

3.7
+

2.51

263, 739f1/2

)

(4.504)

Now reading the Moody chart gives f = 0.04. A numerical trial and error solution of the Colebrook
equation gives

f = 0.0384 (4.505)
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Now find M1.

M1 =
u1√
γRT1

, (4.506)

=
200 ft

s
√

1.4
(

53.34 ft lbf
lbm R

)(

32.17 lbm ft
lbf s2

)

(520 R)

, (4.507)

= 0.1789 (4.508)

Now

fL1∗

D
=

1−M2
1

γM2
1

+
1 + γ

2γ
ln

(1 + γ)M2
1

2 +M2
1 (γ − 1)

(4.509)

=
1− 0.17892

1.4 (0.1789)2
+

1 + 1.4

2 (1.4)
ln

(1 + 1.4) 0.17892

2 + 0.17892 (1.4− 1)
(4.510)

= 18.804 (4.511)

L1∗ =
18.804

(

1
12 ft

)

0.0384
, (4.512)

= 40.81 ft (4.513)

so at a distance 40.81 ft from station 1, the flow will go sonic. It is needed to find M2 at a station
20 ft from station 1. So

L2∗ = 40.81 ft− 20 ft, (4.514)

= 20.81 ft (4.515)

fL2∗

D
=

0.0384 (20.81 ft)
1
12 ft

, (4.516)

= 9.589 (4.517)

9.589 =
1−M2

2

1.4M2
2

+
1 + 1.4

2 (1.4)
ln

(1 + 1.4)M2
2

2 +M2
2 (1.4− 1)

(4.518)

Iterative solution gives

M2 = 0.237925 (4.519)

Since energy conservation holds in this flow

h2 +
u2
2

2
= h1 +

u2
1

2
(4.520)

T2 +
u2
2

2cp
= T1 +

u2
1

2cp
(4.521)

T2 +
u2
2

2cp
= 520 R+

(

200 ft
s

)2

2
(

6, 015 ft2

s2 R

) (4.522)

T2 +
u2
2

2cp
= 523.33 R (4.523)

T2 +
M2

2 γRT2

2cp
= 523.33 R (4.524)
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T2

(

1 +
(γ − 1)

2
M2

2

)

= 523.33 R (4.525)

T2 =
523.33 R

1 + (γ−1)
2 M2

2

(4.526)

=
523.33 R

1 + (1.4−1)
2 0.2379252

(4.527)

= 517.47 R (4.528)

u2 = M2

√

γRT2, (4.529)

= 0.237925

√

1.4

(

1, 715
ft2

s2 R

)

(517.47 R) (4.530)

= 265.2
ft

s
(4.531)

ρ2u2 = ρ1u1 (4.532)

ρ2 = ρ1
u1

u2
, (4.533)

=

(

0.2077
lbm

ft3

)

(

200 ft
s

265.2 ft
s

)

, (4.534)

= 0.1566
lbm

ft3
(4.535)

P2 = ρ2RT2, (4.536)

=

(

0.1566
lbm

ft3

)(

53.34
ft lbf

lbm R

)

(517.47 R)

(

ft2

144 in2

)

(4.537)

= 30.02 psia (4.538)

s2 − s1 = cp ln
T2

T1
−R ln

P2

P1
(4.539)

=

(

6, 015
ft2

s2 R

)

ln
517.47 R

520 R
−
(

1, 715
ft2

s2 R

)

ln
30.02 psia

40 psia
(4.540)

= 462.9
ft2

s2 R
(4.541)

4.6 Flow with heat transfer–Rayleigh flow

Flow with heat transfer is commonly known as Rayleigh flow. To isolate the effect of heat
transfer, the following assumptions will be adopted:

• constant area duct

• no wall friction

• calorically perfect ideal gas

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/
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Consequences of heat addition:

• stagnation temperature changes

• heating drives both subsonic and supersonic flows towards sonic states

• cooling drives both subsonic and supersonic flows away from sonic state

• heating increases To, decreases Po, both subsonic and supersonic

• cooling decreases To, increases Po, both subsonic and supersonic

The governing equations are

ρ2u2 = ρ1u1 (4.542)

ρ2u
2
2 + P2 = ρ1D

2 + P1 (4.543)

ρ2u2A

(

h2 +
u2
2

2

)

= ρ1u1A

(

h1 +
u2
1

2

)

+ qwLL (4.544)

h =
γ

γ − 1

(

P

ρ
− Po

ρo

)

+ ho (4.545)

Note that these are a more general case of the equations for a normal shock. One could
get equivalents of Rayleigh lines and Hugoniots. The Rayleigh line would be the same as the
equations are the same; the Hugoniot would be modified because of the heat transfer term.

If one defines the heat transfer per unit mass of flow q in terms of the wall heat flux qw:

q ≡ qwLL
ρ1u1A

(4.546)

the energy equation becomes

h2 +
u2
2

2
= h1 +

u2
1

2
+ q (4.547)

ho2 = ho1 + q (4.548)

q = ho2 − ho1 (4.549)
q

cp
= To2 − To1 (4.550)

With lots of effort very similar to that used for the normal shock equations, expressions can
be developed relating the “2” state to the “1” state. If one takes the final “2” state to be
sonic 2 → ∗ and the initial “1” state to be unsubscripted, it is found for the calorically
perfect ideal gas that
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To

To∗
=

(γ + 1)M2 (2 + (γ − 1)M2)

(1 + γM2)2
(4.551)

Example 4.14
Heat Addition Problem12

Given: Fuel air mixture enters combustion chamber at u1 = 250 ft
s , P1 = 20 psia, T1 = 70◦F . The

mixture releases 400 Btu
lbm

Find: Exit properties u2, P2, T2, heat addition to cause flow to go sonic at exit

Assume: Fuel air mixture behaves just like calorically perfect ideal air

Analysis:
Initial state

T1 = 70 + 460, (4.552)

= 530 R (4.553)

c1 =
√

γRT1, (4.554)

=

√

1.4

(

1, 716
ft2

s2 R

)

(530 R), (4.555)

= 1, 128.4
ft

s
(4.556)

M1 =
u1

c1
, (4.557)

=
250 ft

s

1, 128.4 ft
s

, (4.558)

= 0.2216 (4.559)

ρ1 =
P1

RT1
, (4.560)

=

(

20 lbf
in2

)(

32.17 lbm ft2

lbfs2

)(

144 in2

ft2

)

(

1, 716 ft2

s2 R

)

(530 R)
, (4.561)

= 0.1019
lbm

ft3
(4.562)

To1 = T1

(

1 +
1

5
M2

1

)

, (4.563)

= (530 R)

(

1 +
1

5
0.22162

)

, (4.564)

= 535.2 R (4.565)

Po1 = P1

(

1 +
1

5
M2

1

)3.5

, (4.566)

12adopted from White, pp. 557-558
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= (20 psia)

(

1 +
1

5
0.22162

)3.5

, (4.567)

= 20.70 psia (4.568)

Now calculate To∗, the stagnation temperature corresponding to sonic flow

To1

To∗
=

(γ + 1)M2
1

(

2 + (γ − 1)M2
1

)

(1 + γM2
1 )

2 (4.569)

To1

To∗
=

(1.4 + 1)
(

0.22162
) (

2 + (1.4− 1)
(

0.22162
))

(1 + (1.4) (0.22162))
2 , (4.570)

= 0.2084 (4.571)

To∗ =
To1

0.2084
, (4.572)

=
535.2 R

0.2084
, (4.573)

= 2568.3 R (4.574)

Now calculate the effect of heat addition:

q =

(

400
Btu

lbm

)(

779
ft lbf

Btu

)(

32.17
lbm ft

lbf s2

)

, (4.575)

= 10.024× 106
ft2

s2
(4.576)

To2 = To1 +
q

cp
, (4.577)

= 535.2 +
10.024× 106 ft2

s2

6, 015 ft2

s2 R

, (4.578)

= 2, 201.7 R (4.579)

To2

To∗
=

2, 201.7 R

2, 563.3 R
, (4.580)

= 0.8573 (4.581)

To2

To∗
=

(γ + 1)M2
2

(

2 + (γ − 1)M2
2

)

(1 + γM2
2 )

2 (4.582)

0.8573 =
(1.4 + 1)M2

2

(

2 + (1.4− 1)M2
2

)

(1 + 1.4M2
2 )

2 (4.583)

Computer algebra gives four solutions. For a continuous variation of M , choose the positive subsonic
branch. Other branches do have physical meaning.

relevant branch M2 = 0.6380 (4.584)

M2 = −0.6380 (4.585)

M2 = 1.710 (4.586)

M2 = −1.710 (4.587)

Calculate other variables at state 2:

T2 = To2

(

1 +
1

5
M2

2

)

−1

, (4.588)
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= (2, 201.7 R)

(

1 +
1

5

(

0.63802
)

)

−1

, (4.589)

= 2, 036 R (4.590)

c2 =
√

γRT2, (4.591)

=

√

1.4

(

1, 716
ft2

s2 R

)

(2, 036 R), (4.592)

= 2, 211.6
ft

s
(4.593)

u2 = M2c2, (4.594)

= (0.6380)

(

2, 211.6
ft

s

)

, (4.595)

= 1, 411
ft

s
(4.596)

ρ2u2 = ρ1u1 (4.597)

ρ2 = ρ1
u1

u2
, (4.598)

=

(

0.1019
lbm

ft3

)

(

250 ft
s

1, 411 ft
s

)

, (4.599)

= 0.01806
lbm

ft3
(4.600)

P2 = ρ2RT2 (4.601)

=

(

0.01806
lbm

ft3

)(

1, 716
ft2

s2 R

)(

1

32.17

lbf s2

lbm ft

)

(2, 036 R)
ft2

144 in2
, (4.602)

= 13.62 psia (4.603)

Is momentum satisfied?

P2 + ρ2u
2
2 = P1 + ρ1u

2
1

(

13.62
lbf

in2

)(

144 in2

ft2

)

+

(

0.01806
lbm

ft3

)(

1, 411
ft

s

)2(
1

32.17

lbf s2

lbm ft

)

=

(

20
lbf

in2

)(

144 in2

ft2

)

+

(

0.1019
lbm

ft3

)(

250
ft

s

)2(
1

32.17

lbf s2

lbm ft

)

3, 078.97
lbf

ft2
= 3077.97

lbf

ft2
close!

Entropy Change

s2 − s1 = cp ln
T2

T1
−R ln

P2

P1
(4.604)

=

(

6, 015
ft2

s2 R

)

ln

(

2, 036 R

530 R

)

−
(

1, 716
ft2

s2 R

)

ln

(

13.62 psia

20 psia

)

(4.605)

= 8, 095.38− (−659.28) , (4.606)

= 8, 754.66
ft2

s2 R
(4.607)

=

(

8, 754.66
ft2

s2 R

)(

1

779

Btu

ft lbf

)(

1

32.17

lbf s2

lbm ft

)

(4.608)
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= 0.3493
Btu

lbm R
(4.609)

Second Law

s2 − s1 ≥ q

T
(4.610)

0.3493
Btu

lbm R
≥ 400 Btu

lbm

2, 036 R
(4.611)

0.3493
Btu

lbm R
≥ 0.1965

Btu

lbm R
yes! (4.612)

maximum heat release

qmax = cp (To∗ − To1) (4.613)

=

(

6, 015
ft2

s2 R

)

(2, 568.3 R− 535.2 R)

(

1

779

Btu

ft lbf

)(

1

32.17

lbf s2

lbm ft

)

(4.614)

qmax = 488
Btu

lbm
(4.615)

4.7 Numerical solution of the shock tube problem

A detailed development is given in lecture for the numerical solution to the Riemann or
shock tube problem. The equations are first posed in the general conservative form:

∂q

∂t
+

∂

∂x
(f(q)) = 0. (4.616)

Here q and f vector functions of length N = 3; further f is itself a function of q. The
equations are discretized so that

q(x, t) → qn
i , (4.617)

f(q(x, t)) → f(qn
i ). (4.618)

4.7.1 One-step techniques

A brief discussion of finite difference techniques is given in lecture. The most tempting
technique is a first order forward difference in time, central difference in space technique
which yields the finite difference relation:

qn+1
i = qn

i −
∆t

2∆x

(

f(qn
i+1)− f(qn

i−1)
)

. (4.619)

Unfortunately this method is unstable.
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4.7.2 Lax-Friedrichs technique

A robustly stable first order method is found int the Lax-Friedrichs method.

qn+1
i =

1

2

(

qn
i−1 + qn

i+1

)

− ∆t

2∆x

(

f(qn
i+1)− f(qn

i−1)
)

. (4.620)

4.7.3 Lax-Wendroff technique

The two-step Lax-Wendroff discretization is as follows

• at a given time step estimate q at the i+ 1/2 cell interface:

qn
i+1/2 =

1

2

(

qn
i + qn

i+1

)

, (4.621)

• use central differencing (about i + 1/2) to step forward ∆t/2 so that q
n+1/2
i+1/2 can be

estimated:

q
n+1/2
i+1/2 = qn

i+1/2 −
∆t/2

∆x

(

f(qn
i+1)− f(qn

i )
)

. (4.622)

• use central differencing (about i) to step forward ∆t, evaluating f at the i ± 1/2 and
n+ 1/2 steps:

qn+1
i = qn

i −
∆t

∆x

(

f(q
n+1/2
i+1/2 )− f(q

n+1/2
i−1/2 )

)

. (4.623)
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Chapter 5

Steady supersonic two-dimensional
flow

Suggested Reading:

Liepmann and Roshko, Chapter 4: pp. 84-123

Hughes and Brighton, Chapter 8: pp. 208-230

Shapiro, Chapters 9-16: pp. 265-609

White, Chapter 9: pp. 559-581

This chapter will discuss two-dimensional flow of a compressible fluid. The following
topics will be covered:

• presentation of isentropic two-dimensional flow equations

• oblique shocks

• Prandtl-Meyer rarefactions

• flow over an airfoil

Assume for this chapter:

• ∂
∂t

≡ 0; steady flow

• w ≡ 0, ∂
∂z

≡ 0; two-dimensional flow

• no viscous stress or heat conduction, so isentropic except through shocks

• calorically perfect ideal gas
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5.1 Two-dimensional equations

With the assumptions of above the following equations govern the flow away from shock
discontinuities:

5.1.1 Conservative form

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (5.1)

∂

∂x

(

ρu2 + P
)

+
∂

∂y
(ρuv) = 0 (5.2)

∂

∂x
(ρvu) +

∂

∂y

(

ρv2 + P
)

= 0 (5.3)

∂

∂x

(

ρu

(

e+
1

2

(

u2 + v2
)

+
P

ρ

))

+
∂

∂y

(

ρv

(

e+
1

2

(

u2 + v2
)

+
P

ρ

))

= 0 (5.4)

e =
1

γ − 1

P

ρ
+ eo (5.5)

5.1.2 Non-conservative form

(

u
∂ρ

∂x
+ v

∂ρ

∂y

)

+ ρ

(

∂u

∂x
+

∂v

∂y

)

= 0 (5.6)

ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

+
∂P

∂x
= 0 (5.7)

ρ

(

u
∂v

∂x
+ v

∂v

∂y

)

+
∂P

∂y
= 0 (5.8)

ρ

(

u
∂e

∂x
+ v

∂e

∂y

)

+ P

(

∂u

∂x
+

∂v

∂y

)

= 0 (5.9)

e =
1

γ − 1

P

ρ
+ eo (5.10)

5.2 Mach waves

Mach waves are small acoustic disturbances in a flow field. Recall that small disturbances
propagate at the ambient sound speed. Let’s consider a small sphere moving at u1 through
a fluid with ambient sound speed co.

• u1 < co, subsonic flow, sphere does not catch acoustic waves

• u1 = co, sonic flow, upstream flow always unaware of sphere
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• u1 > co, supersonic flow, larger region still unaware of sphere

Consider that in time ∆t, the sphere will move u1∆t and the wave will propagate will be
felt by a circle with radius co∆t, see Figure 5.1

u1 < co 

u1 Δ t 

co Δt 

subsonic 
flow 

co Δt 

u1 Δ t 

co Δt 

u1 = co 

u1 > co 

supersonic 
flow 

sonic  
flow 

u1 Δ t 

β = arcsin (1/M1) 

zone of silence 

Mach wave 

Figure 5.1: Acoustic disturbance sketch

From the geometry,

sin β =
co∆t

u1∆t
=

co
u1

=
1

M1

(5.11)

β = arcsin

(

1

M1

)

(5.12)

5.3 Oblique shock waves

An oblique shock is a shock which is not normal to the incoming flow field. It can be shown
that in the limiting case as the oblique shock strength goes to zero, the oblique shock wave
becomes a Mach wave, as described in the previous section.

Oblique waves can be understood by considering the following problem.
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Given:

• a straight wedge inclined at angle θ to the horizontal

• a freestream flow parallel to the horizontal with known velocity v = u1 i+ 0 j

• known freestream pressure and density of P1 and ρ1

• steady flow of a calorically perfect ideal gas (this can be relaxed and one can still find
oblique shocks)

Find:

• angle of shock inclination β

• downstream pressure and density P2, ρ2

Similar to the piston problem, the oblique shock problem is easiest analyzed if we instead
consider

• β as known

• θ as unknown

They are best modeled in a two-dimensional coordinate system with axes parallel and
perpendicular to the shock, see Figure 5.2, so that

x = x̃ sin β + ỹ cos β (5.13)

y = −x̃ cos β + ỹ sin β (5.14)

u = ũ sin β + ṽ cos β (5.15)

v = −ũ cos β + ṽ sin β (5.16)

Consequently, in this coordinate system, the freestream is two-dimensional.
It is easily shown that the equations of motion are invariant under a rotation of axes, so

that

∂

∂x̃
(ρũ) +

∂

∂ỹ
(ρṽ) = 0 (5.17)

∂

∂x̃

(

ρũ2 + P
)

+
∂

∂ỹ
(ρũṽ) = 0 (5.18)

∂

∂x̃
(ρṽũ) +

∂

∂ỹ

(

ρṽ2 + P
)

= 0 (5.19)

∂

∂x̃

(

ρũ

(

e+
1

2

(

ũ2 + ṽ2
)

+
P

ρ

))

+
∂

∂ỹ

(

ρṽ

(

e+
1

2

(

ũ2 + ṽ2
)

+
P

ρ

))

= 0 (5.20)

e =
1

γ − 1

P

ρ
+ eo (5.21)

To analyze oblique shocks, we make one additional assumption
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x 

y 

v1 

u1 
 

v2 

u2 

P1 
 

ρ1 

P2 
 

ρ2 

wedge 
θ 

β 

unshocked 
freestream 
(supersonic) 

shocked 
flow 

oblique shock wave 

~
~ 

~ 

~ 

~ 

u1 

~ 

x 

y 

β 

u2 
~ 

v2 
~ 

β−θ 

tan (β−θ) = u2 / v2 
∼ ∼ ∼ 

tan β = u1 / v1 
∼ 

Figure 5.2: Oblique Shock Schematic

• ∂
∂ỹ

= 0

Note however that, contrary to one-dimensional flow we will not enforce ṽ = 0, so

• ṽ 6= 0

Consequently, all variables are a function of x̃ at most and ∂
∂x̃

= d
dx̃
. The governing

equations reduce to

d

dx̃
(ρũ) = 0 (5.22)

d

dx̃

(

ρũ2 + P
)

= 0 (5.23)

d

dx̃
(ρṽũ) = 0 (5.24)

d

dx̃

(

ρũ

(

e +
1

2

(

ũ2 + ṽ2
)

+
P

ρ

))

= 0 (5.25)

e =
1

γ − 1

P

ρ
+ eo (5.26)

Integrate and apply freestream conditions
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ρ2ũ2 = ρ1ũ1 (5.27)

ρ2ũ
2
2 + P2 = ρ1ũ

2
1 + P1 (5.28)

ρ2ṽ2ũ2 = ρ1ṽ1ũ1 (5.29)

ρ2ũ2

(

e2 +
1

2

(

ũ2
2 + ṽ22

)

+
P2

ρ2

)

= ρ1ũ1

(

e1 +
1

2

(

ũ2
1 + ṽ21

)

+
P1

ρ1

)

(5.30)

e =
1

γ − 1

P

ρ
+ eo (5.31)

Now using the mass equation, the ỹ momentum equation reduces to

ṽ2 = ṽ1 (5.32)

Using this result and the mass a state equations gives

ρ2ũ2 = ρ1ũ1 (5.33)

ρ2ũ
2
2 + P2 = ρ1ũ

2
1 + P1 (5.34)

1

γ − 1

P2

ρ2
+

1

2
ũ2
2 +

P2

ρ2
=

1

γ − 1

P1

ρ1
+

1

2
ũ2
1 +

P1

ρ1
(5.35)

These are exactly the equations which describe a normal shock jump. All our old results
apply in this coordinate system with the additional stipulation that the component of velocity
tangent to the shock is constant.

Recall our solution for one-dimensional shocks in a calorically perfect ideal gas:

1

ρ2
=

1

ρ1

γ − 1

γ + 1

(

1 +
2γ

(γ − 1)D2

P1

ρ1

)

(5.36)

For this problem D = ũ1 so

1

ρ2
=

1

ρ1

γ − 1

γ + 1

(

1 +
2γ

(γ − 1) ũ2
1

P1

ρ1

)

(5.37)

With the freestream Mach number normal to the wave defined as

M2
1n ≡ ũ2

1

γ P1

ρ1

(5.38)
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we get

ρ1
ρ2

=
γ − 1

γ + 1

(

1 +
2

(γ − 1)M2
1n

)

(5.39)

and since from mass ρ1
ρ2

= ũ2

ũ1

ũ2

ũ1

=
γ − 1

γ + 1

(

1 +
2

(γ − 1)M2
1n

)

(5.40)

Now for our geometry

tanβ =
ũ1

ṽ1
(5.41)

tan (β − θ) =
ũ2

ṽ2
=

ũ2

ṽ1
(5.42)

so
ũ2

ũ1

=
tan (β − θ)

tan β
(5.43)

thus

tan (β − θ)

tan β
=

γ − 1

γ + 1

(

1 +
2

(γ − 1)M2
1n

)

(5.44)

Now note that

M2
1n = M2

1 sin
2 β (5.45)

so

tan (β − θ)

tan β
=

γ − 1

γ + 1

(

1 +
2

(γ − 1)M2
1 sin

2 β

)

(5.46)

tan (β − θ)

tan β
=

γ − 1

γ + 1

(

(γ − 1)M2
1 sin

2 β + 2

(γ − 1)M2
1 sin

2 β

)

(5.47)

tan (β − θ) = tanβ
(γ − 1)M2

1 sin
2 β + 2

(γ + 1)M2
1 sin

2 β
(5.48)

tan β − tan θ

1 + tan θ tan β
= tanβ

(γ − 1)M2
1 sin

2 β + 2

(γ + 1)M2
1 sin

2 β
≡ χ (5.49)

tanβ − tan θ = χ + χ tan θ tanβ (5.50)

tan β − χ = tan θ (1 + χ tan β) (5.51)

tan θ =
tanβ − χ

1 + χ tanβ
(5.52)
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With a little more algebra and trigonometry this reduces to

tan θ = 2cotβ
M2

1 sin
2 β − 1

M2
1 (γ + cos 2β) + 2

(5.53)

Given M1, γ and β, this equation can be solved to find θ the wedge angle. It can be inverted
to form an equation cubic in sin β to solve explicitly for β. Figure 5.3 gives a plot of oblique
shock angle β versus wedge angle θ.

β 

θ 

90 

60 

30 

0 
0   10    20   30   40   50 

γ = 7/5 

Μ1 = 2 

Μ1 = 3 

Μ1 = ∞ 

maximum wedge 
angle for attached 
oblique shock 

strong branch 
(post-shock subsonic) 

weak branch 
(post shock supersonic, primarily) 

-75

-50

-25

25

50

75

-40 -20 20 40

expanded view of β−θ plane 

2nd law
violation 

2nd Law 
Violation 

Μ1 = 2 

Μ1= 3 

Μ1 = ∞ 

β 

θ 

Figure 5.3: Shock angle β versus wedge angle θ

Note the following features:

• for a given θ < θmax, there exist two β’s

– lower β is weak solution

∗ limθ→0 β = arcsin 1
M
, a Mach wave

∗ relevant branch for most external flows, matches in far-field to acoustic wave,
can exist in internal flows

∗ total Mach number primarily supersonic, M2
2 = ũ2+ṽ2

c2
2

> 1 for nearly all 0 <

θ < θmax

∗ normal Mach number subsonic, M2
2n = ũ2

c2
2

< 1
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– higher β is the strong solution

∗ limθ→0 β = π
2
, a normal shock wave

∗ relevant branch for some internal flows

∗ total Mach number completely subsonic, M2
2 = ũ2+ṽ2

c2
2

< 1 for all 0 < θ < θmax

∗ normal Mach number subsonic, M2
2n = ũ2

c2
2

< 1

• for θ > θmax, no solution exists; shock becomes detached

• Consider fixed θ, increasing freestream Mach number M1, see Figure 5.4

– 0 < M1 < 1, subsonic incoming flow, no shocks continuous pressure variation

– 1 < M1 < M1a, supersonic incoming flow, detached curved oblique shock

– M1a < M1 < ∞, supersonic incoming flow, attached straight oblique shock

– as M1 → ∞, β → β∞

• Consider fixed supersonic freestream Mach number M1, increasing θ, see Figure 5.5

– θ ∼ 0, Mach wave, negligible disturbance

– small θ, small β, small pressure, density rise

– medium θ, medium β, moderate pressure and density rise

– large θ, curved detached shock, large pressure and density rise

Example 5.1
Oblique Shock Example

Given: Air flowing over a wedge, θ = 20◦, P1 = 100 kPa, T1 = 300 K, M1 = 3.0

Find: Shock angle β and downstream pressure and temperature P2, T2.

Assume: calorically perfect ideal gas

Analysis:
First some preliminaries:

c1 =
√

γRT1 =

√

(1.4)

(

287
J

kg K

)

(300 K) = 347.2
m

s
(5.54)

u1 = M1c1 = (3.0)
(

347.2
m

s

)

= 1, 041.6
m

s
(5.55)

ρ1 =
P1

RT1
=

100, 000 Pa
(

287 J
kg K

)

(300 K)
= 1.1614

kg

m3
(5.56)
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         M1 < 1 
 
subsonic, shockless flow 

      M1 ~ 1 
 
slightly supersonic flow 

shock approaching 
wedge from infinity 

continuous pressure 
variation 

1 < M1 < M1a 
moderately supersonic flow 

detached  
oblique shock 

M1a < M1 < ∞   
M1 ->  ∞  

attached 
oblique shock 

attached  
oblique shock 
at limiting wave 
angle 

βmin 

Figure 5.4: Shock wave patterns as incoming Mach number varied

Now find the wave angle:

tan θ = 2cotβ
M2

1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

(5.57)

tan 20◦ = 2cotβ
3.02 sin2 β − 1

3.02 (1.4 + cos 2β) + 2
(5.58)

(5.59)

Three solutions:

weak oblique shock; common β = 37.76◦ (5.60)

strong oblique shock; rare β = 82.15◦ (5.61)

second law violating “rarefaction” shock β = −9.91◦ (5.62)

1. Weak Oblique Shock

ũ1 = u1 sinβ =
(

1, 041.6
m

s

)

sin 37.76◦ = 637.83
m

s
(5.63)

ṽ1 = u1 cosβ =
(

1, 041.6
m

s

)

cos 37.76◦ = 823.47
m

s
(5.64)

M1n =

(

ũ1

c1

)

=

(

637.83 m
s

347.2 m
s

)

= 1.837 (5.65)

ρ1
ρ2

=
γ − 1

γ + 1

(

1 +
2

(γ − 1)M2
1n

)

(5.66)
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M1 M1 M1 
M1 

Mach wave  
 
small disturbance 

attached shocks
 
moderate disturbances 

detached shock 
 
large disturbance 

M1 !xed, supersonic, P1, ρ1 !xed

Figure 5.5: Shock wave patterns as wedge angle varied

1.1614 kg
m3

ρ2
=

1.4− 1

1.4 + 1

(

1 +
2

(1.4− 1) 1.8372

)

= 0.413594 (5.67)

ρ2 =
1.1614 kg

m3

0.41359
= 2.8081

kg

m3
(5.68)

ρ2ũ2 = ρ1ũ1 (5.69)

ũ2 =
ρ1ũ1

ρ2
=

(

1.1614 kg
m3

)

(

637.83 m
s

)

2.8081 kg
m3

= 263.80
m

s
(5.70)

ṽ2 = ṽ1 = 823.47
m

s
(5.71)

u2 = ũ2 sinβ + ṽ2 cosβ (5.72)

v2 = −ũ2 cosβ + ṽ2 sinβ (5.73)

u2 =
(

263.80
m

s

)

sin 37.76◦ +
(

823.47
m

s

)

cos 37.76◦ = 812.56
m

s
(5.74)

v2 = −
(

263.80
m

s

)

cos 37.76◦ +
(

823.47
m

s

)

sin 37.76◦ = 295.70
m

s
(5.75)

check on wedge angle θ = arctan

(

v2
u2

)

(5.76)

= arctan

(

295.70 m
s

812.56 m
s

)

= 19.997◦ (5.77)

P2 = P1 + ρ1ũ
2
1 − ρ2ũ

2
2 (5.78)

P2 = 100, 000 Pa+

(

1.1614
kg

m3

)

(

637.83
m

s

)2

−
(

2.8081
kg

m3

)

(

263.80
m

s

)2

(5.79)

P2 = 377, 072 Pa (5.80)

T2 =
P2

ρ2R
=

377, 072 Pa
(

2.8081 kg
m3

)(

287 J
kg K

) = 467.88 K (5.81)

c2 =
√

γRT2 =

√

(1.4)

(

287
J

kg K

)

(467.88 K) = 433.58
m

s
(5.82)
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M2n =
ũ2

c2
=

263.8 m
s

433.58 m
s

= 0.608 (5.83)

M2 =

√

u2
2 + v22
c2

=

√

(

812.56 m
s

)2
+
(

295.7 m
s

)2

433.58 m
s

= 1.994 (5.84)

s2 − s1 = cp ln
T2

T1
−R ln

P2

P1
(5.85)

=

(

1, 004.5
J

kg K

)

ln
467.88 K

300 K
−
(

287
J

kg K

)

ln
377, 072 Pa

100, 000 Pa
(5.86)

s2 − s1 = 65.50
J

kg K
(5.87)

2. Strong Oblique Shock

ũ1 = u1 sinβ =
(

1, 041.6
m

s

)

sin 82.15◦ = 1, 031.84
m

s
(5.88)

ṽ1 = u1 cosβ =
(

1, 041.6
m

s

)

cos 82.15◦ = 142.26
m

s
(5.89)

M1n =

(

ũ1

c1

)

=

(

1, 031.84 m
s

347.2 m
s

)

= 2.972 (5.90)

ρ1
ρ2

=
γ − 1

γ + 1

(

1 +
2

(γ − 1)M2
1n

)

(5.91)

1.1614 kg
m3

ρ2
=

1.4− 1

1.4 + 1

(

1 +
2

(1.4− 1) 2.9722

)

= 0.26102 (5.92)

ρ2 =
1.1614 kg

m3

0.26102
= 4.4495

kg

m3
(5.93)

ρ2ũ2 = ρ1ũ1 (5.94)

ũ2 =
ρ1ũ1

ρ2
=

(

1.1614 kg
m3

)

(

1, 031.84 m
s

)

4.4495 kg
m3

= 269.33
m

s
(5.95)

ṽ2 = ṽ1 = 142.26
m

s
(5.96)

u2 = ũ2 sinβ + ṽ2 cosβ (5.97)

v2 = −ũ2 cosβ + ṽ2 sinβ (5.98)

u2 =
(

269.33
m

s

)

sin 82.15◦ +
(

142.26
m

s

)

cos 82.15◦ = 286.24
m

s
(5.99)

v2 = −
(

269.33
m

s

)

cos 82.15◦ +
(

142.26
m

s

)

sin 82.15◦ = 104.14
m

s
(5.100)

check on wedge angle θ = arctan

(

v2
u2

)

(5.101)

= arctan

(

104.14 m
s

286.24 m
s

)

= 19.99◦ (5.102)

P2 = P1 + ρ1ũ
2
1 − ρ2ũ

2
2 (5.103)

P2 = 100, 000 Pa+

(

1.1614
kg

m3

)

(

1, 031.84
m

s

)2

−
(

4.4495
kg

m3

)

(

269.33
m

s

)2

(5.104)

P2 = 1, 013, 775 Pa (5.105)
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T2 =
P2

ρ2R
=

1, 013, 775 Pa
(

4.4495 kg
m3

)(

287 J
kg K

) = 793.86 K (5.106)

c2 =
√

γRT2 =

√

(1.4)

(

287
J

kg K

)

(793.86 K) = 564.78
m

s
(5.107)

M2n =
ũ2

c2
=

269.33 m
s

564.78 m
s

= 0.477 (5.108)

M2 =

√

u2
2 + v22
c2

=

√

(

286.24 m
s

)2
+
(

104.14 m
s

)2

564.78 m
s

= 0.539 (5.109)

s2 − s1 = cp ln
T2

T1
−R ln

P2

P1
(5.110)

=

(

1, 004.5
J

kg K

)

ln
793.86 K

300 K
−
(

287
J

kg K

)

ln
1, 013, 775 Pa

100, 000 Pa
(5.111)

s2 − s1 = 312.86
J

kg K
(5.112)

3. “Rarefaction Shock”

ũ1 = u1 sinβ =
(

1, 041.6
m

s

)

sin (−9.91◦) = −179.26
m

s
(5.113)

ṽ1 = u1 cosβ =
(

1, 041.6
m

s

)

cos (−9.91◦) = 1, 026.06
m

s
(5.114)

M1n =

(

ũ1

c1

)

=

(−179.26 m
s

347.2 m
s

)

= −0.5163 (5.115)

ρ1
ρ2

=
γ − 1

γ + 1

(

1 +
2

(γ − 1)M2
1n

)

(5.116)

1.1614 kg
m3

ρ2
=

1.4− 1

1.4 + 1

(

1 +
2

(1.4− 1) (−0.5163)
2

)

= 3.2928 (5.117)

ρ2 =
1.1614 kg

m3

3.2928
= 0.3527

kg

m3
(5.118)

ρ2ũ2 = ρ1ũ1 (5.119)

ũ2 =
ρ1ũ1

ρ2
=

(

1.1614 kg
m3

)

(

−179.26 m
s

)

0.3527 kg
m3

= −590.27
m

s
(5.120)

ṽ2 = ṽ1 = 1, 026.06
m

s
(5.121)

u2 = ũ2 sinβ + ṽ2 cosβ (5.122)

v2 = −ũ2 cosβ + ṽ2 sinβ (5.123)

u2 =
(

−590.27
m

s

)

sin (−9.91◦) +
(

1, 026.06
m

s

)

cos (−9.91◦) = 1, 112.34
m

s
(5.124)

v2 = −
(

−590.27
m

s

)

cos (−9.91◦) +
(

1, 026.06
m

s

)

sin (−9.91◦) = 404.88
m

s
(5.125)

check on wedge angle θ = arctan

(

v2
u2

)

(5.126)

= arctan

(

404.88 m
s

1, 112.34 m
s

)

= 20.00◦ (5.127)
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P2 = P1 + ρ1ũ
2
1 − ρ2ũ

2
2 (5.128)

P2 = 100, 000 Pa+

(

1.1614
kg

m3

)

(

−179.26
m

s

)2

−
(

0.3527
kg

m3

)

(

−590.27
m

s

)2

(5.129)

P2 = 14, 433 Pa (5.130)

T2 =
P2

ρ2R
=

14, 433 Pa
(

0.3527 kg
m3

)(

287 J
kg K

) = 142.59 K (5.131)

c2 =
√

γRT2 =

√

(1.4)

(

287
J

kg K

)

(142.59 K) = 239.36
m

s
(5.132)

M2n =
ũ2

c2
=

−590.27 m
s

239.36 m
s

= −2.47 (5.133)

M2 =

√

u2
2 + v22
c2

=

√

(

1, 112.34 m
s

)2
+
(

404.88 m
s

)2

239.36 m
s

= 4.95 (5.134)

s2 − s1 = cp ln
T2

T1
−R ln

P2

P1
(5.135)

=

(

1, 004.5
J

kg K

)

ln
142.59 K

300 K
−
(

287
J

kg K

)

ln
14, 433 Pa

100, 000 Pa
(5.136)

s2 − s1 = −191.5
J

kg K
(5.137)

5.4 Small disturbance theory

By taking a Taylor series expansion of the relationship between β and θ about θ = 0, for
fixed M1 and γ it can be shown that

tanβ =
1

√

M2
1 − 1

+
γ + 1

4

M4
1

(M2
1 − 1)

2 θ θ << 1 (5.138)

Note that when θ = 0 that

tanβ =
1

√

M2
1 − 1

(5.139)

tan2 β =
1

M2
1 − 1

(5.140)

sin2 β

cos2 β
=

sin2 β

1− sin2 β
=

1

M2
1 − 1

(5.141)

sin2 β

1− sin2 β
=

1
M2

1

1− 1
M2

1

(5.142)
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sin β =
1

M1
(5.143)

β = arcsin

(

1

M1

)

(5.144)

After a good deal of algebra and trigonometry, it can also be shown that the pressure
change, change in velocity magnitude, w, and change in entropy for flow over a thin wedge is

P2 − P1

P1
=

γM2
1

√

M2
1 − 1

θ (5.145)

w2 − w1

w1
= − θ

√

M2
1 − 1

(5.146)

s2 − s1
s1

∼ θ3 (5.147)

In terms of changes,

∆P

P1

=
γM2

1
√

M2
1 − 1

∆θ (5.148)

∆w

w1
= − ∆θ

√

M2
1 − 1

(5.149)

∆s

s1
∼ ∆θ3 (5.150)

Note that a small positive ∆θ gives rise to

• an increase in pressure

• a decrease in velocity magnitude

• a very small change in entropy

Figure 5.6 shows the pattern of waves that one obtains when subjecting a flow to a series
of small turns and the pattern that evolves as the turning radius is shrunk.

• compression waves converge

• expansion waves diverge

• convergence of compression waves leads to region of rapid entropy rise–shock formation

• divergence of pressure waves leads to no shock formation in expansion

This has an analog in one-dimensional unsteady flow. Consider a piston with an initial
velocity of zero accelerating into a tube
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Isentropic Compression 

Wave convergence; 
Shock Formation; 
Breakdown of Isentropic Assumption 

Isentropic Expansion 
 
Wave divergence; 
 
No shock formation 

Prandtl-Meyer 
Expansion 

Oblique 
Shock 

Figure 5.6: Wave pattern and streamlines for flows undergoing a series of small turns and
for sudden turns

• lead compression wave travels at sound speed

• lead wave increases temperature (and sound speed) of disturbed flow

• each successive acoustic wave travels faster than lead wave

• eventually acoustic waves catch and form a shock

Consider a piston with zero initial velocity which decelerates

• lead expansion wave travels at sound speed

• lead wave decreases temperature (and sound speed) of disturbed flow

• each successive acoustic wave travels slow than lead wave

• no shock formation

A schematic for these one-dimensional unsteady flows is shown in Figure 5.7
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x x 

t t 
accelerating 
piston 
path 

slow, acoustic 
lead wave 

shock 

decelerating 
piston 
path 

x 

t suddenly 
accelerated 
piston path 

shock 
locus 

x 

t 

suddenly 
decelerated 
piston 
path Prandtl-Meyer 

expansion fan 

P1, ρ1 P1, ρ1 

Figure 5.7: Schematic of compression and expansion waves for one-dimensional unsteady
piston-driven flow

5.5 Centered Prandtl-Meyer rarefaction

If we let ∆θ → 0, the entropy changes become negligibly small relative to pressure and
velocity changes, and the flow is isentropic. The relations can be replaced by differential
relations:

dP

P
=

γM2

√
M2 − 1

dθ (5.151)

dw

w
= − dθ√

M2 − 1
(5.152)

ds

s
∼ 0 (5.153)
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Recall now that for adiabatic flow

To

T
= 1 +

γ − 1

2
M2 (5.154)

γRTo

γRT
= 1 +

γ − 1

2
M2 (5.155)

c2o
c2

= 1 +
γ − 1

2
M2 (5.156)

c = co

(

1 +
γ − 1

2
M2

)− 1

2

(5.157)

dc = −co
2

(

1 +
γ − 1

2
M2

)− 3

2

(γ − 1)MdM (5.158)

dc

c
= −

γ−1
2
MdM

1 + γ−1
2

M2
(5.159)

Also

w = cM (5.160)

dw = cdM +Mdc (5.161)

dw

w
=

dM

M
+

dc

c
(5.162)

dw

w
=

dM

M
−

γ−1
2
MdM

1 + γ−1
2

M2
(5.163)

dw

w
=

1

1 + γ−1
2

M2

dM

M
(5.164)

− dθ√
M2 − 1

=
1

1 + γ−1
2

M2

dM

M
(5.165)

−dθ =

√
M2 − 1

M

dM

1 + γ−1
2

M2
(5.166)

Now positive θ corresponds to compression and negative θ corresponds to expansion.
Let’s define ν so positive ν gives and expansion.

ν ≡ − θ + θo (5.167)

dν = −dθ (5.168)

Now integrate the expression

dν =

√
M2 − 1

M

dM

1 + γ−1
2

M2
(5.169)
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Let ν = 0 correspond to M = 1. This effectively selects θo

ν(M) =

√

γ + 1

γ − 1
tan−1

√

γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1 (5.170)

The function ν(M) is called the Prandtl-Meyer function. It is plotted in Figure 5.8.
Many texts tabulate the Prandtl-Meyer function. For a known turning angle, one can find
the Mach number. As the flow is entirely isentropic, all other flow variables can be obtained
through the isentropic relations. Note:

• As M → ∞, ν → π
2

(√

γ+1
γ−1

− 1
)

, corresponds to vacuum conditions

• given ν, one can calculate M

• isentropic relations give P , ρ, T , etc.

• Prandtl-Meyer function tabulated in many texts

10 20 30 40

60

80

100

120

 

γ = 7/5 

ν (ο) 

M 

νmax = 130.5  
ο 

Figure 5.8: Prandtl-Meyer function

Example 5.2
Centered Expansion

Given: Calorically perfect, ideal air with P1 = 100 kPa, T1 = 300 K, u1 = 500 m
s , turned through

a 30◦ expansion corner.

Find: Fluid properties after the expansion

Analysis:
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ρ1 =
P1

RT1
=

100 kPa
(

0.287 J
kg K

)

(300 K)
= 1.1614

kg

m3
(5.171)

c1 =
√

γRT1 =

√

1.4

(

287
J

kg K

)

(300 K) = 347.2
m

s
(5.172)

M1 =
u1

c1
=

500 m
s

347.2 m
s

= 1.4401 (5.173)

To = T1

(

1 +
γ − 1

2
M2

1

)

(5.174)

To = 300 K

(

1 +
1

5
1.44012

)

= 424.43 K (5.175)

Po = P1

(

1 +
γ − 1

2
M2

1

)
γ

γ−1

(5.176)

Po = 100 kPa

(

1 +
1

5
1.44012

)3.5

= 336.828 kPa (5.177)

Now calculate the Prandtl-Meyer function for the freestream:

ν(M1) =

√

γ + 1

γ − 1
tan−1

√

γ − 1

γ + 1
(M2

1 − 1)− tan−1
√

M2
1 − 1 (5.178)

ν(M1) =

√

1.4 + 1

1.4− 1
tan−1

√

1.4− 1

1.4 + 1
(1.44012 − 1)− tan−1

√

1.44012 − 1 (5.179)

ν(M1) = 0.177138 rad (5.180)

ν(M1) = 0.177138 rad
180◦

π rad
= 10.1493◦ (5.181)

The interpretation here is that an initially sonic flow would have had to had turned 10.1493◦ to achieve
a Mach number of M1 = 1.4401.

Now add on the actual turning:

ν(M2) = ν(M1) + 30◦ (5.182)

ν(M2) = 10.1493◦ + 30◦ = 40.1493◦ (5.183)

ν(M2) = 40.1493◦
π rad

180◦
= 0.700737 rad (5.184)

A trial and error solution gives the M2 which corresponds to ν(M2) = 0.700737 rad:

0.700737 rad =

√

1.4 + 1

1.4− 1
tan−1

√

1.4− 1

1.4 + 1
(M2

2 − 1)− tan−1
√

M2
2 − 1 (5.185)

M2 = 2.54431 (5.186)

T2 = To

(

1 +
γ − 1

2
M2

2

)

−1

(5.187)

T2 = 424.43 K

(

1 +
1

5
2.543312

)

−1

= 189.4 K (5.188)
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P2 = Po

(

1 +
γ − 1

2
M2

2

)

−
γ

γ−1

(5.189)

P2 = 336.828 kPa

(

1 +
1

5
2.543312

)

−3.5

= 18.43 kPa (5.190)

ρ2 =
P2

RT2
=

18.43 kPa
(

0.287 J
kg K

)

(189.4 K)
= 0.3390

kg

m3
(5.191)

c2 =
√

γRT2 =

√

1.4

(

287
J

kg K

)

(189.4 K) = 275.87
m

s
(5.192)

w2 = M2c2 = 2.54431
(

275.87
m

s

)

= 701.89
m

s
(5.193)

5.6 Wave interactions and reflections

Shocks and rarefactions can intersect and reflect in a variety of ways.

5.6.1 Oblique shock reflected from a wall

An oblique shock which reflects from a wall is represented in Figure 5.9.

β1 β2 

Μ1 Μ2 Μ3 

P1 

P2 
P3 

interior streamline 
pressure field 

P1 

P3 

wall pressure 

Figure 5.9: Reflection of an oblique shock from a wall

Note:
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• analysis just that of two oblique shocks

• flow always turns to be parallel to wall

• angle of incidence not equal angle of reflection due to non-linear effects

• interior pressure profile has two steps

• wall pressure profile has single step

• P2 > 2P1, that is the pressure is higher than that obtained in the acoustic limit

5.6.2 Oblique shock intersection

Two oblique shocks intersect as sketched in Figure 5.10

Μ1 

Μ2 

Μ3 

Μ2 

Figure 5.10: Interaction of two oblique shocks

Note:

• flow always turns to be parallel to wall

• when shocks intersect, flow turns again to be parallel to itself

5.6.3 Shock strengthening

A flow turned by a corner through an oblique shock can be strengthened by a second turn
as sketched in Figure 5.11

Note: three new waves generated
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slipstream 

rarefaction 

Figure 5.11: Shock Strengthening Sketch

• strengthened shock

• slipstream in which pressures match, velocity directions match, but velocity magnitudes
differ

• weak rarefaction wave

5.6.4 Shock weakening

A flow turned by a corner through an oblique shock can be weakened by a second turn as
sketched in Figure 5.12

Figure 5.12: Shock Weakening Sketch

5.7 Supersonic flow over airfoils

The standard problem in flow over an airfoil is to determine the lift and the drag. While in
actual design it is the magnitude of the lift force FL, and drag force FD, that is most crucial,
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there exists dimensionless numbers the lift coefficient CL and the drag coefficient CD which
give good relative measures of airfoil performance.

CL ≡ FL

1
2
ρ1u2

1A
(5.194)

CD ≡ FD

1
2
ρ1u2

1A
(5.195)

Though this is the traditional formula, it is probably not the best for interpreting how the
forces vary when flight speed is varied. This is because when u1, flight speed is varied both
numerator and denominator change. To remedy this, we can instead scale by the ambient
sound speed to define a dimensionless lift force F∗L and dimensionless drag force F∗D:

F∗L ≡ FL

ρ1c21A
(5.196)

F∗D ≡ FD

ρ1c21A
(5.197)

5.7.1 Flat plate at angle of attack

The simplest problem is that of a flat plate at angle of attack αo. A schematic is illustrated
in Figure 5.13. Note:

P2 

P2'  

P1 
T1 
M1 

αο 

far 
field 
Mach 
wave 

far 
field 
Mach 
wave 

leading edge 

rarefactio
n 

leading edge 

shock 

slipstream 

Figure 5.13: Supersonic Flow over a Flat Plate

• flow over the top is turned through an isentropic rarefaction to P2
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• flow over the bottom is turned through an oblique shock to P ′
2

• Since P ′
2 > P2, there is both lift and drag forces!

• both a shock and rarefaction are attached to the trailing edge to turn the flow to the
horizontal

• the flow regions are separated by a slipstream in which pressure and velocity directions

match

• FL = (P ′
2 − P2)A cosαo, CL =

(P ′

2
−P2) cosαo

1

2
ρ1u2

1

• FD = (P ′
2 − P2)A sinαo, CD =

(P ′

2−P2) sinαo

1

2
ρ1u2

1

• the drag here is known as wave drag or induced drag

• other components of drag, skin friction drag and thickness drag are zero due to inviscid
limit and zero thickness limit

In the small disturbance limit

∆P

P1
=

γM2
1

√

M2
1 − 1

∆θ (5.198)

P ′
2 = P1 +

γP1M
2
1

√

M2
1 − 1

αo (5.199)

P2 = P1 +
γP1M

2
1

√

M2
1 − 1

(−αo) (5.200)

P ′
2 − P2 =

2γP1M
2
1

√

M2
1 − 1

αo (5.201)

P ′
2 − P2 =

2γP1
√

M2
1 − 1

u2
1

γP1

ρ1

αo (5.202)

P ′
2 − P2 =

2
√

M2
1 − 1

ρ1u
2
1 αo (5.203)

FL =
2

√

M2
1 − 1

ρ1u
2
1 αoA cosαo (5.204)

FL =
2

√

M2
1 − 1

ρ1u
2
1 αoA(1) (5.205)

CL =
4αo

√

M2
1 − 1

(5.206)
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FD =
2

√

M2
1 − 1

ρ1u
2
1 αoA sinαo (5.207)

FD =
2

√

M2
1 − 1

ρ1u
2
1 α2

oA (5.208)

CD =
4 α2

o
√

M2
1 − 1

(5.209)

F∗L =
FL

ρ1c21A
=

2 M2
1αo

√

M2
1 − 1

(5.210)

F∗D =
FD

ρ1c21A
=

2 M2
1α

2
o

√

M2
1 − 1

(5.211)

High Mach number limit: F∗L = 2M1αo (5.212)

High Mach number limit: F∗D = 2M1α
2
o (5.213)

Dimensionless lift and drag are plotted versus Mach number in Figure 5.14

Example 5.3
Lift and Drag on an Inclined Flat Plate

Given: Flat plate, of chord length 2 m, depth 10 m inclined at 20◦ to the horizontal in a freestream
of M1 = 3, P1 = 100 kPa, T1 = 300 K.

Find: Lift and drag forces on the plate.

Analysis: First some preliminaries:

c1 =
√

γRT1 =

√

(1.4)

(

287
J

kg K

)

(300 K) = 347.2
m

s
(5.214)

u1 = M1c1 = (3.0)
(

347.2
m

s

)

= 1, 041.6
m

s
(5.215)

ρ1 =
P1

RT1
=

100, 000 Pa
(

287 J
kg K

)

(300 K)
= 1.1614

kg

m3
(5.216)

Po = P1

(

1 +
γ − 1

2
M2

1

)
γ

γ−1

(5.217)

Po = 100 kPa

(

1 +
1

5
32
)3.5

= 367.327 kPa (5.218)

In a previous example, we found the oblique shock state under identical conditions:

P ′

2 = 377, 072 Pa (5.219)

Now consider the rarefaction.
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2 
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Dimensionless Drag Force 
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ο 

Flat Plate at Small Angle of Attack 

Flat Plate at Small Angle of Attack 

Invalid Region 

Invalid Region 

M 1 

Figure 5.14: Dimensionless Lift and Drag versus Incoming Mach Number for Flat Plate at
Small Angle of Attack

ν(M1) =

√

γ + 1

γ − 1
tan−1

√

γ − 1

γ + 1
(M2

1 − 1)− tan−1
√

M2
1 − 1 (5.220)

ν(M1) =

√

1.4 + 1

1.4− 1
tan−1

√

1.4− 1

1.4 + 1
(32 − 1)− tan−1

√

32 − 1 = 0.8691 rad = 49.7973◦ (5.221)

ν(M2) = ν(M1) + 20◦ (5.222)

ν(M2) = 49.7973◦ + 20◦ = 69.7973◦ (5.223)

69.7973◦ = 1.218 rad =

√

1.4 + 1

1.4− 1
tan−1

√

1.4− 1

1.4 + 1
(M2

2 − 1)− tan−1
√

M2
2 − 1 (5.224)

M2 = 4.3209 (5.225)

P2 = Po

(

1 +
γ − 1

2
M2

2

)

−
γ

γ−1

(5.226)

P2 = 367.327 kPa

(

1 +
1

5
4.32092

)

−3.5

= 1.591 kPa (5.227)

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


152 CHAPTER 5. STEADY SUPERSONIC TWO-DIMENSIONAL FLOW

FL = (P ′

2 − P2)A cosαo (5.228)

FL = (377, 072 Pa− 1, 591 Pa) (10 m) (2 m) cos 20◦ (5.229)

FL = 7, 142, 073 N (5.230)

CL =
FL

1
2ρ1u

2
1A

=
7, 142, 073 N

1
2

(

1.1614 kg
m3

)

(

1, 041.6 m
s

)2
(10 m) (2 m)

(5.231)

CL = 0.5668 (5.232)

FD = (P ′

2 − P2)A sinαo (5.233)

FD = (377, 072 Pa− 1, 591 Pa) (10 m) (2 m) sin 20◦ (5.234)

FD = 2, 320, 600 N (5.235)

CD =
FD

1
2ρ1u

2
1A

=
2, 320, 600 N

1
2

(

1.1614 kg
m3

)

(

1, 041.6 m
s

)2
(10 m) (2 m)

(5.236)

CD = 0.1842 (5.237)

Compare with thin airfoil theory: CL thin =
4αo

√

M2
1 − 1

(5.238)

CL thin =
4 (20◦) π rad

180◦√
32 − 1

= 0.4936 (5.239)

CD thin =
4α2

o
√

M2
1 − 1

(5.240)

CD thin =
4
(

(20◦) π rad
180◦

)2

√
32 − 1

= 0.1723 (5.241)

5.7.2 Diamond-shaped airfoil

The simplest supersonic airfoil with camber for analysis purposes is the diamond shaped
airfoil as sketched in Figure 5.15. The sketch shows the airfoil at zero angle of attack. The
upper half of the wedge is inclined at angle ǫ to the horizontal In this case there will be no
lift but there will be drag. Note the following features:

• sudden turn through lead oblique shock

• turn through isentropic Prandtl-Meyer rarefaction

• final turn through oblique shock attached to trailing edge

• far field limit: acoustic (Mach) waves

• Thin airfoil limit CL thin = 4ǫ√
M2

1
−1

, same as for flat plate!

• Thin airfoil limit CD thin = 4ǫ2√
M2

1
−1

, same as for flat plate!
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2ε 

P1 
T1 
M1 

P2 P3 
P4 

far field 
Mach waves 

lead oblique 
shock trailing oblique 

shock 

Prandtl-Meyer 
rarefaction 

Figure 5.15: Supersonic Flow over a Diamond-Shaped Airfoil

5.7.3 General curved airfoil

A general airfoil with camber is sketched in Figure 5.16. The sketch shows the airfoil at zero
angle of attack. In this case there will be no lift but there will be drag. Note the following
features:

• lead oblique shock

• lead shock weakened by series of non-centered rarefaction waves

• shock at trailing edge, also weakened by non-centered rarefaction waves

• far field: acoustic (Mach) waves

5.7.4 Transonic transition

Transonic flow exists whenever there is a continuous transition from subsonic to supersonic
flow. One example of a transonic flow is sketched in Figure 5.171 which shows an accelerating
airfoil.

Note:

1adopted from Bryson, A. E., “An Experimental Investigation of Transonic Flow Past Two-Dimensional
Wedge and Circular-Arc Sections Using a Mach-Zehnder Interferometer,” NACA Tech. Note 2560, 1951.
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Figure 5.16: Supersonic Flow over a Curved Airfoil

Μ1 = 0.852 Μ1 = 0.892 

Μ1 = 1.207 Μ1 = 1.315 Μ1 = 1.465 

Shock 

M < 1 M > 1 M < 1 

Sonic Locus 

Shock 

Sonic Locus 

M < 1 M > 1 M < 1 

Shock 

M < 1 M > 1 

Sonic Locus 

Shock 

M < 1 
M > 1 

Shock 

M < 1 
M > 1 

M > 1 

M > 1 

Figure 5.17: Transition from Subsonic to Transonic to Supersonic Flow

• for high subsonic Mach number a bubble of supersonic flow appears

• smooth transition from subsonic to supersonic

• shock transition from supersonic to subsonic

• as Mach number increases, supersonic bubble expands

• for slightly supersonic Mach number, new shock approaches from far field

• as supersonic Mach number increases, shock from far field approaches leading edge and
supersonic bubble disappears

• challenging problems, not easily solved till 1960’s!
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Chapter 6

Linear flow analysis

see Anderson, Chapter 9

In this section we consider flows which are

• steady,

• two-dimensional,

• irrotational,

• isentropic,

• calorically perfect, and

• ideal.

The analysis is extensible to other cases.

6.1 Formulation

In lecture a detailed discussion is given in which the linearized velocity potential equation is
obtained:

(

1−M2
∞
) ∂2φ

∂x2
+

∂2φ

∂y2
= 0. (6.1)

6.2 Subsonic flow

Here we consider flows in which the Mach number is subsonic, but not negligibly small.
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6.2.1 Prandtl-Glauret rule

A discussion is given where it is shown that the pressure coefficient on a supersonic airfoil
can be determined in terms of the pressure coefficient known from subsonic theory:

cp =
cpo

√

1−M2
∞
. (6.2)

6.2.2 Flow over wavy wall

The technique of separation of variables is used to show the subsonic flow over a wavy wall
can be written in terms of the velocity potential as

φ(x, y) =
U∞h

√

1−M2
∞

sin

(

2πx

l

)

exp

(

−2π
√

1−M2
∞y

l

)

. (6.3)

6.3 Supersonic flow

6.3.1 D’Alembert’s solution

The D’Alembert solution for the wave equation is shown for supersonic flows:

φ(x, y) = f
(

x+
√

M2
∞ − 1y

)

+ g
(

x−
√

M2
∞ − 1y

)

. (6.4)

6.3.2 Flow over wavy wall

The solution for flow over a wavy wall is given in detail in lecture.
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Chapter 7

Viscous flow

This chapter will focus on problems in which viscous stress plays an important role in deter-
mining the motion of the fluid. The topic in general is quite broad; to gain understanding
of the fundamental physics, we will restrict our attention to the following limits:

• incompressible fluid

• isotropic Newtonian fluid with constant properties

• at most two-dimensional unsteady flow

The chapter will consider the governing equations and then solve a few representative
problems.

7.1 Governing equations

This section considers the governing equations for the conditions specified for this chapter.
In dimensional non-conservative form, the governing equations are as follows:

∂u

∂x
+

∂v

∂y
= 0

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= −∂P

∂x
+ µ

(

∂2u

∂x2
+

∂2u

∂y2

)

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
= −∂P

∂y
+ µ

(

∂2v

∂x2
+

∂2v

∂y2

)

ρcp

(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)

=

(

∂P

∂t
+ u

∂P

∂x
+ v

∂P

∂y

)

+ k

(

∂2T

∂x2
+

∂2T

∂y2

)

+2µ

(

(

∂u

∂x

)2

+
1

2

(

∂u

∂y
+

∂v

∂x

)2

+

(

∂v

∂y

)2
)
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An argument could be made to eliminate the viscous dissipation term and the pressure
derivatives in the energy equation. The argument is subtle and based on the low Mach
number limit which corresponds to incompressibility.

7.2 Couette flow

Consider a channel flow driven by plate motion See Figure 7.1

x = 0 

x 

y 

y = 0 

y = h 

U 

P 0 

T = T 

T = T 0 

0 

P 0 

Figure 7.1: Sketch for Couette flow

The mechanics of such a flow can be described by stripping away many extraneous terms
from the governing equations.

Take

• fully developed velocity and temperature profiles: ∂u
∂x

≡ 0, ∂T
∂x

≡ 0

• steady flow ∂
∂t

≡ 0

• constant pressure field P (x, y, t) = Po

• constant temperature channel walls T (x, 0, t) = T (x, h, t) = To

Since fully developed mass gives:

∂v

∂y
= 0 (7.1)

v(x, y) = f(x) (7.2)

and since in order to prevent mass flowing through the wall boundaries, v(x, 0) = v(x, h) = 0,
thus
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v(x, y) = 0 (7.3)

Since ∂u
∂x

= 0, ∂u
∂t

= 0 and ∂T
∂x

= 0, ∂T
∂t

= 0, we have at most,

u = u(y) (7.4)

T = T (y) (7.5)

The y momentum equation has no information and x momentum and energy reduce to the
following:

0 = µ
d2u

dy2
(7.6)

0 = k
d2T

dy2
+ µ

(

du

dy

)2

(7.7)

The x momentum equation is thus

d2u

dy2
= 0 (7.8)

du

dy
= C1 (7.9)

u(y) = C1y + C2 (7.10)

Now applying u(0) = 0 and u(h) = U to fix C1 and C2 we get

u(y) = U
y

h
(7.11)

Shear stress:

τyx = µ
∂u

∂y
(7.12)

τyx = µ
U

h
(7.13)

The energy equation becomes

d2T

dy2
= −µ

k

(

du

dy

)2

(7.14)
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d2T

dy2
= −µ

k

U2

h2
(7.15)

dT

dy
= −µ

k

U2

h2
y + C1 (7.16)

T (y) = −1

2

µ

k

U2

h2
y2 + C1y + C2 (7.17)

Now T (0) = To and T (h) = To. This fixes the constants, so

T (y) =
1

2

µ

k
U2

(

(y

h

)

−
(y

h

)2
)

+ To (7.18)

In dimensionless form this becomes

T − To

To

=
1

2

µcp
k

U2

cpTo

(

(y

h

)

−
(y

h

)2
)

(7.19)

T − To

To
=

Pr Ec

2

(

(y

h

)

−
(y

h

)2
)

(7.20)

Prandtl Number: Pr ≡ µcp
k

=

µ
ρ

k
ρcp

=
ν

α
=

momentum diffusivity

thermal diffusivity
(7.21)

Eckert Number: Ec ≡ U2

cpTo
=

kinetic energy

thermal energy
(7.22)

Now

dT

dy
=

1

2

µ

k

U2

h2
(h− 2y) (7.23)

qy = −k
dT

dy
=

1

2
µ
U2

h2
(2y − h) (7.24)

qy(0) = −µU2

2h
(7.25)

Note:

• at lower wall, heat flux into wall; heat generated in fluid conducted to wall

• wall heat flux magnitude independent of thermal conductivity

• higher plate velocity, higher wall heat flux

• higher viscosity, higher wall heat flux

• thinner gap, higher wall heat flux

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


7.3. SUDDENLY ACCELERATED FLAT PLATE 161

Also since Tmax occurs at y = h
2

Tmax =
1

8

µ

k
U2 + To (7.26)

Note:

• high viscosity, high maximum temperature

• high plate velocity, high maximum temperature

• low thermal conductivity, high maximum temperature

Dimensionless wall heat flux given by the Nusselt number:

Nu ≡
∣

∣

∣

∣

∣

qy(0)
k∆T
∆y

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

qy(0)∆y

k∆T

∣

∣

∣

∣

(7.27)

Nu =
µU2

2h
h
2

k 1
8
µ
k
U2

= 2 (7.28)

7.3 Suddenly accelerated flat plate

The problem of pulling a plate suddenly in a fluid which is initially at rest is often known
as Stokes’ First Problem or Rayleigh’s problem.

7.3.1 Formulation

Consider a channel flow driven by a suddenly accelerated plate. See Figure 7.2 Initially,
t < 0

• fluid at rest

• plate at rest

For t ≥ 0

• plate pulled at constant velocity U

Assume:

• constant pressure P (x, y, t) = Po

• fully developed flow ∂u
∂x

= 0, ∂T
∂x

= 0
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U 

ρ, µ, 

u = u (y, t) 

u(0,t) = U 

u(∞, t) = 0 

u (y, 0) = 0 

x 

y δ ∼ (µ t / ρ) 1/2 

P 0 

T(∞, t) = T 
0 

T(y, t) = T 
0 

T(0, t) = T 
0 

Figure 7.2: Sketch for Stokes’ First Problem

Again from mass we deduce that v(x, y, t) = 0. The x momentum equation reduces to

ρ
∂u

∂t
= µ

∂2u

∂y2
(7.29)

The initial and boundary conditions are

u(y, 0) = 0 (7.30)

u(0, t) = U (7.31)

u(∞, t) = 0 (7.32)

7.3.2 Velocity profile

This problem is solved in detail in lecture. The solution for the velocity field is shown to be

u

Uo
= 1− 2√

π

∫ y/
√
νt

0

exp
(

−s2
)

ds (7.33)

7.4 Starting transient for plane Couette flow

The starting transient problem for plane Couette flow can be formulated as

∂u

∂t
= ν

∂2u

∂y2
(7.34)

u(y, 0) = 0, u(0, t) = Uo, u(h, t) = 0. (7.35)

In class a detailed solution is presented via the technique of separation of variables. The
solution is
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u

Uo

= 1− y

h
− 2

π

∞
∑

n=1

1

n
exp

(−n2π2νt

h2

)

sin
(nπy

h

)

(7.36)

7.5 Blasius boundary layer

The problem of flow over a flat plate in the absence of pressure gradient is formulated and
solved using the classical approach of Blasius.

7.5.1 Formulation

After suitable scaling and definition of similarity variables, discussed in detail in class, the
following third order non-linear ordinary differential equation is obtained:

d3f

dη3
+

1

2
f
d2f

dη2
= 0, (7.37)

df

dη

∣

∣

∣

∣

η=0

= 0,
df

dη

∣

∣

∣

∣

η→∞
= 1, f |η=0 = 0. (7.38)

This equation is solved numerically as a homework problem.

7.5.2 Wall shear stress

The solution is used to obtain the classical formulae for skin friction coefficient:

Cf =
0.664√
Rex

, (7.39)

and drag coefficient:

CD =
1.328√
ReL

. (7.40)

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


164 CHAPTER 7. VISCOUS FLOW

CC BY-NC-ND. 17 February 2015, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Chapter 8

Acoustics

This chapter outlines the brief introduction to acoustics given in class in somewhat more
detail.

8.1 Formulation

We reduce the Euler equations for isentropic flow to the following equations where quantities
with a hat are understood to be small perturbations about the ambient state, denoted with
a subscript of ”o”.

∂ρ̂

∂t
+ ρo∇ · v̂ = 0 (8.1)

ρo
∂v̂

∂t
+∇ · P̂ = 0 (8.2)

P̂ = c2oρ̂. (8.3)

Introducing the velocity potential ∇φ = v̂ and employing further manipulation allows the
equation to be written as the wave equation:

∂2φ

∂t2
= c2o∇2φ. (8.4)

The pressure, velocity, and density are then obtained from

P̂ = −ρo
∂φ

∂t
, (8.5)

v̂ = ∇φ, (8.6)

ρ̂ = −ρoc
2
o

∂φ

∂t
. (8.7)
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8.2 Planar waves

The D’Alembert solution for planar waves is shown in class to be

φ = f(x+ cot) + g(x− cot), (8.8)

P̂ = −ρocof
′(x+ cot) + ρocog

′(x− cot), (8.9)

û = f ′(x+ cot) + g′(x− cot), (8.10)

(8.11)

8.3 Spherical waves

The D’Alembert solution for spherical waves is shown in class to be

φ =
1

r
f(r + cot) +

1

r
g(r − cot), (8.12)

P̂ = −ρoco
r

f ′(r + cot) +
ρoco
r

g′(r − cot), (8.13)

û =
1

r
f ′(r + cot) +

1

r
g′(r − cot), (8.14)

(8.15)
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