

War Industries Presents:

An Introduction to Programming for Hackers
Part I

By Lovepump, 2004

Visit:

www.warindustries.com

Part I – The Beginning

Intro:

What is programming? Why should I learn to code? What is a hacker?

Many of the questions and discussions on the War Industries Forums ask such
things as: “Where can I get X program to ‘hack’ my friend’s computer”, or “How
can I send a trojan to someone”. These questions indicate that the person is only
interested in using pre-made programs and possess little understanding of how
computer systems really work. They are often referred to as “script kiddies”,
“skiddies” or “skidiots”. They believe that being a hacker only entails
downloading a programming and running it.

In my opinion, a hacker is someone who is curious about how something works.
Just knowing how to operate a system (a script kiddie) is insufficient to a true
hacker. The hacker wants to know the ins and outs, nuts and bolts of the entire
thing. If you’ve ever torn apart a lawnmower, VCR, radio, or any device for that
matter, you have a hacker mind. Using duct tape to fix a car is a “hack”!

If you really want to be a hacker, you must want to understand the working guts
of a computer. What makes it tick? Why does it crash? What is a buffer
overflow? How can I tell the computer what to do?

This series will attempt to do just that.

Conventions:

 The discussion and examples in this series will deal strictly with the x86
architecture. Analogies to other architectures may be made, but there are
significant differences between platforms.

 All code examples will be in C and ASM. The intent is to teach C, but
some ASM is required for low level explanations of processor functions.

 Code examples will be for Linux platforms, but should work as well
under “command line” MS Windows.

 Comments can be made to me (Lovepump) at the WI Forums.
 Watch for bold italics like this: address. It highlights an important term

that you need to fully understand. Don’t skip over it.

What is a program?

A computer program is a series of statements that provide step by step
instructions to a computer. A computer is not a human and cannot divine or
interpolate commands nor anticipate steps. It requires explicit and concise
instructions to perform even the most basic task.

To show and example, we use the famous “Hello World” example in C:

#include <stdio.h>

int main(int argc, char *argv[]){

 printf(“Hello World!\n”);

}

That’s it.

We won’t get in to the nuts and bolts yet. Just wanted to give you a taste of what
a C program looks like.

To understand more, we need to do more of a “deep dive” into the guts of what
makes a computer tick. You want to be a hacker don’t you?

Memory and Base16

Computer memory is like a series of boxes. Each box can contain a small piece of
information. In our case, each box is 1 byte, or 8 bits. That means that each box
can contain a number between 0 and 255. That’s it. It can’t contain anything
else.

Each box has a number, or address. The address is used to send and receive
information to each piece of memory. The addresses start at 0 and move up
sequentially to your maximum installed memory. The numbering system used
in referring to addresses is hexadecimal, or hex. Hex is base 16.

Huh? Base 16? Yes. The hex number system goes like this:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A …

So basically instead of “rolling digits” at 10, like the decimal system, we roll
digits at 16. So hex 10 = decimal 16. Instead of saying “hex” we will use the

notation: 0x. So 0x0A would translate to decimal 10. 0xFF would translate to
255. Other notations for hex you might see are: \x0A (you’ll see this notation in
“shellcode”) or 0Ah (‘h’ for hex).

OK, so it’s up to us to make use of a bunch of little boxes that can’t hold much
and make the computer perform miracles? Let’s carry on.

You may be thinking: “If a computer can only store little boxes with numbers
between 0 – 255, how can I calculate 100 * 100?” It is true that the computer can
only store discreet numbers from 0 – 255 (hex – FF), but it can combine two more
locations to form larger numbers. This is not done by adding two numbers
together, but by combining two to form a larger number. Here’s an example:

Here are two memory locations:

Address 1000 1001
Value (Hex) 3F 2C

We can see that the memory location with address 1000 stores a value of 0x3F
(decimal 63) and 1001 holds 0x2C (44 decimal). If we ask the computer to stick
the two together to make one number, we get 0x3F2C, or in decimal 16172. By
sticking two bytes we can make numbers between 0 – 65535 (0xFFFF). If we stick
four bytes together, we can represent numbers from 0 – 4294967295
(0xFFFFFFFF).

This last example is significant. Four bytes put together makes a word in the x86
architecture. Other processors have different word sizes. Our processor uses a
32 bit or 4 byte word size (hence the 32 bit architecture).

The values stored in memory can serve a number of purposes. You can directly
store numeric information. You can also store an address in memory that refers
to another memory location! This type of use is called a pointer. A pointer
doesn’t hold data, but it points to the place that holds the data. This is an
extremely important concept in programming. The idea of pointing to memory
is a base programming concept. Here’s an example:

Address 3AF4 3AF5
Value D2 A4

Address D2A4
Value 1C

In this example the values at 3AF4 and 3AF5 combine to produce an address
D2A4, which holds a value 1C. So we can directly address D2A4, or we can tell
the computer “the value we want is held in the box pointed to by 3AF4 & 5”.

Let this concept sink in. It’s important. In the real world of x86, the pointer is
one word in size, but the implementation is the same. When it comes to
programming in the later sections, the pointer size is unimportant (and invisible),
but the concept is extremely important.

The Processor (CPU)

The processor is the heart of the system. It is designed to do a couple of things:

 Fetch an instruction from memory.
 Execute the instruction.

Computer programs are stored in memory. RAM memory is very slow
compared to how fast modern processors can work. The processor needs its own
“memory” to save current working information locally. These memory spaces
are called registers. The registers are physically located in the processor itself, so
it doesn’t have to fetch anything from RAM. The processor also uses a space of
memory called the stack. More on the stack later.

There are a number of registers on an x86. For now let’s concern ourselves with
six of the registers:

EAX, EBX, ECX, ESP, EBP, EIP.

Each register starts with an ‘E’. This refers to a 32 bit, or 1 word length registers.
(Prior to the 386, the registers were typically 16 bit).

The first three registers, EAX, EBX, and ECX are called General Purpose registers.
They are used for memory storage and retrieval, addition, subtraction and value
passing.

The next three registers, ESP, EBP and EIP are Indexes and Pointers. They help
control program flow and memory referencing. These are very important
registers to understand for a hacker and are at the heart of a buffer overflow
(BOF). More on the buffer overflow later.

The stack is a FILO (First In Last Out) area of memory used by the processor.
Imagine a stack of papers on a desk. You can put papers on the stack and take
papers off of the stack. The first paper you put on the stack is the last on off (it’s
on the bottom). In computer speak, you “push” values on to the stack, and
“pop” values off of the stack. The processor has a register that points at the
“top” of the stack. This register is ESP. As you may have guessed, SP stands for
stack pointer. EBP (Base Pointer) is also used for stack pointing, but it used
“locally” by functions.

Physically in memory, the stack starts at a certain point and builds down. If the
stack started by pointing at address 1000, and 4 bytes are pushed on the stack,
the stack pointer would now point at memory address 996 (1000 – 4).

The processor fetches and executes instructions. Instructions in native machine
code are numerical and stored in memory. How does it know which command
to execute next? The EIP register (Instruction Pointer) points to the memory
location of the next instruction to execute. This register is read only, so don’t
jump yet. But you can indirectly change EIP to point to other addresses. This is
a key point in buffer overflow exploits.

The native language of the x86 is machine code. The human readable version is
assembly. We will not be going into assembly in any great detail here, but here
is an example:

 .file "hello.c"
 .section .rodata
.LC0:
 .string "Hello World.\n"
 .text

.globl main
 .type main,@function
main:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 andl $-16, %esp
 movl $0, %eax
 subl %eax, %esp
 subl $12, %esp
 pushl $.LC0
 call printf
 addl $16, %esp
 leave
 ret
.Lfe1:
 .size main,.Lfe1-main
 .ident "GCC: (GNU) 3.2.2 20030222 (Red
Hat Linux 3.2.2-5)"

This is the assembly version of our “Hello World” program. It was produced by
the GNU compiler (more about compilers later). We won’t be focusing on
assembly, but for interest’s sake, we will discuss some highlights of the code
above.

The line “main:” is the beginning of our program. Before that there are some
other things going on. What’s happening? If you look at the section “.LC0” the
ASM code is telling the computer to store the string “Hello World\n” in memory
and refer to that memory “.LC0”. That sounds familiar. LC0 refers to, or points,
at the memory where the string starts! It is a symbol that points to the beginning
of our text in memory. So now instead of sending the whole string every time
you need to access it, you can just send a pointer to the start of the string in
memory. This approach is much more efficient.

In “Main” you can see some assembly commands and references to some of the
registers we mentioned above. For example:

 movl %esp, %ebp

This command moves (movl, think of the ‘l’ to mean ‘long’ for word. movb
moves a ‘b’ or byte of data) the contents of the register ESP to the register EBP. It
moves the entire word (don’t forget a word is 4 bytes here) from one to the other.

The command before that one has some interest for us as well.

 pushl %ebp

This command “pushes” a word (4 bytes) from EBP onto the stack. The pushl
command automatically adjusts ESP.

One last interesting one is:

subl $8, %esp

subl means subtract. This command subtracts 8 from ESP. Why? More later, but
this is the assembly way of creating space for a “variable”. It is memory space on
the stack that the processor can use later. In this case, the processor created space
for 2 words, or 8 bytes.

Please review this section for important words. It is not important that you
understand the program above at this point. Just understand the concepts of the
key words.

Programming Languages:

Programming languages come in many flavours and shapes., however they all
fall in three general categories:

Machine Code – The native language of the processor. Not for human
consumption. If you see old pictures of people feeding punch cards in to some of
the first computers in the 60’s, you’ll understand. Programs were made by
coding numbers on punch cards and feeding them into a reader one at a time.
You have to be a serious grognard to even consider this.

Assembly – The human readable machine code. Assembly takes the numeric
commands of machine code and replaces them with text commands (like ‘movl’
above). It is as close as you get to machine code. You can directly access all
registers and memory. There are things (not many though) that can really only
be done in assembly. Hand tweaked assembly code can be very fast, however
the advantage is not that great over a modern, optimizing compiler. Assembly is
difficult to use and can be very difficult to “debug”.

High Level Languages – This group is a large family of languages that includes
C, Perl, Pascal and Basic. The high level language is most commonly used for
programming projects. The advantage of high level languages is that they use
the same “language” as the problems we as coders are trying to solve. Review
the two previous programs. One in C, one in assembly. You can see that the C

program is “printing” something (printf(“Hello World\n”);) even if you don’t
know any C at all. Conversely, the assembly program is not clear at all.

High level languages are generally broken in to two groups: interpreted and
compiled. Interpreted languages like Perl, are translated by the computer one
instruction at a time. The interpreter makes machine code out of the program
one instruction at a time. Troubleshooting is typically easier with interpreted
languages. The downside is that the target computer for your program must
have the interpreter installed. For example, you cannot run Perl program unless
you have Perl installed on your machine.

Compiled languages are not under that restriction. Compiled languages, like C,
are passed through a program called a compiler all at once. An executable is
generated. This executable can be sent to any computer, without the restriction
of having an interpreter installed. The downside to compiled languages is that
they are typically stricter in what they will allow.

The language we have chosen to learn here is C. It is a compiled language. To
continue on this journey, you will need a compiler. Free compilers are available
for most platforms. The examples in this tutorial will be using the GNU C
compiler, GCC.

Questions:

 What is a register? Which register tells the processor the address of the next
instruction to execute?

 What is 24 in hex? What is 0x2E in decimal?
 What is a pointer?
 How does a computer represent numbers greater than 255?
 What is a ‘word’ and how long is a word in the x86 architecture?

Next – Starting in C.

War Industries Presents:

An Introduction to Programming for Hackers
Part II

By Lovepump, 2004

Visit:

www.warindustries.com

Part II – Programs 101

Goals:

At the end of this part, you should be able to code, compile and execute your first
C program. Our programming focus will remain on C, but some ASM will be
covered for the sake of being thorough.

Review:

Please ensure you understand the following terms:

 Address
 Hex
 Word
 Pointer
 Registers
 Stack
 Execution

If you are unsure of any of these terms, go back and review Part I now.

Programs:

program:

n. 1. A magic spell cast over a computer allowing it
to turn one's input into error messages.

2. An exercise in experimental epistemology.

3. A form of art, ostensibly intended for the instruction of
computers, which is nevertheless almost inevitably a failure if other
programmers can't understand it.

From Jargon File

I prefer to think of a program as a series of instructions in a given language and
syntax designed to perform a function. In our case, the language is C. The
function to perform is up to the coder.

C Syntax

Like any language (computer, spoken word, etc) C has a form, or syntax. The
syntax includes words, format and punctuation just like a spoken language.
Let’s review our “Hello World” example from the previous lesson:

/* Hello World Program */

#include <stdio.h>

main(){

 printf(“Hello World!\n”);

}

In this example there a number of syntax items we can analyze.

The first line starts with /*. This character sequence indicates the start of a
comment. Everything past this is considered a comment until the ‘end comment’
symbols are found. The */ at the end of the line indicated the end of the
comment.

Comments are skipped by the compiler and have absolutely no impact on the
final program. They are extremely important for coders however. Well
commented code is far easier for others to read. If you want to have some fun
and look at some real comments, get the Linux source code, go to the src
directory and type:

grep –R fuck *.c

 It will show how many lines of Linux source include the word “fuck” (literally
hundreds). Here are some highlights from the 2.6 kernel:

arch/sparc/kernel/sunos_ioctl.c: /* Binary compatibility is good
American knowhow fuckin' up. */

arch/mips/kernel/irixioctl.c: * irixioctl.c: A fucking mess...

arch/sparc64/kernel/traps.c: /* Why the fuck did they have
to change this? */

drivers/char/watchdog/shwdt.c: * brain-damage, it's managed to fuck
things up one step further..

drivers/ide/pci/cmd640.c: * These chips are basically fucked by
design, and getting this driver

As you can see, even the kernel programmers get frustrated!

The next line of code is:

#include <stdio.h>

The # character indicates a complier directive. This line will not generate any
executable code. It is a special instruction for the compiler. This particular
instruction tells the compiler that we need an external library, stdio.h, to be
included in our program. stdio.h contains the ‘printf’ function that we use in our
program. If we didn’t ‘include’ this, the compiler wouldn’t know what ‘printf’
meant. We will see a lot of includes in future code.

The first real program code line is the next one (this has changed from the Part I
example for ease of explanation, but more on that later):

 main() {

There are two items of interest on this line. The first is the function name main.
Main is the entry point of our program. It is the function where the executable
will begin when the code is run.

The next item of interest is the curvy bracket, or brace { Braces are used in C to
enclose sections of code. You will see them everywhere in C programs you read.
This particular brace in our program says “the function main starts here”. If you
look to the last line of code you will see the closed brace. You’ve probably
figured out that it means “main ends here”. Braces can be nested inside each
other, but more on that when we get to it.

The next line of code is:

 printf(“Hello World\n”);

This is the only thing our program really does. It prints Hello World to the
screen. You may wonder what the \n is for. It is a format character meaning
‘newline’. When we compile the program later, leave it out as an experiment to
see the result.

Notice that this line ends in a semicolon ; The semicolon is required after every
statement in C. It declares the ‘end of command’. You will see them everywhere
in C code.

Notice also that this line is indented. Why? It considered excellent style in C to
indent your code. Each time you ‘open’ a brace, indent one tab further. You will
see better examples in later exercises.

Finally, our closing brace meaning ‘end of main’. Since main is done, so is our
program. Upon reaching the end of main, our program exits.

That’s all. Let’s try to compile and run this program. First, in your favourite
editor, enter the program exactly as it appears above. You may leave out the
comments if you wish, but it is good practice to try them out! Save your work as
‘test.c’ .c is the traditional file extension used for C source code.

To compile the program we use the GNU C compiler, gcc.

gcc test.c -o test

This invokes the compiler, giving it our code (test.c) and telling it to output the
executable (-o) to a file called test. If we omit the –o option, gcc by will save your
program to a file called a.out by default. We may now execute our code by
invoking the command ‘test’.

./test

Here is my result:

-sh-2.05b$ gcc test.c -o test
-sh-2.05b$./test
Hello World!
-sh-2.05b$

Hello to you too…

To see some of the forms we learned, have a look at some of the source code for a
classic trojan Remote Administration Suite: Back Orifice 2k:

Disclaimer:

The following is C code. The example provided is to demonstrate form only.
Don’t let your head explode if you don’t understand what it does.

/* Back Orifice 2000 - Remote Administration Suite

 Copyright (C) 1999, Cult Of The Dead Cow

The author of this program may be contacted at dildog@l0pht.com. */

// **
// BO2K cDc
// Back Orifice 2000
// Written By DilDog and Sir Dystic
// Copyright (C) 1999, Cult of the Dead Cow
// Special thanks to L0pht Heavy Industries, Inc.
// **

#include<windows.h>
#include<main.h>
#include<bo_debug.h>
#include<functions.h>
#include<osversion.h>
#include<bocomreg.h>
#include<commandloop.h>
#include<dll_load.h>
#include<config.h>
#include<pviewer.h>
#include<process_hop.h>

#ifdef NDEBUG
//#define HOOK_PROCESS5684818,5683735,5684300
//#define HIDE_COPY
#endif

HMODULE g_module=NULL;
HANDLE g_hfm=NULL;
DWORD g_dwThreadID=0;

BOOL g_bRestart=FALSE;
char g_svRestartProcess[64];
BOOL g_bEradicate=FALSE;

// --------------- Stealth options ----------------
char g_svSubOptions[]="<**CFG**>BO2k Sub Options\0"

// Back Orifice Thread Entry Point
DWORD WINAPI EntryPoint(LPVOID lpParameter)
{
startofentrypoint:;
 g_bRestart=FALSE;

 g_module=(HMODULE)lpParameter;

 // Load up other DLLs just to make sure we have them (we're acting as a loader
here).

 LoadLibrary("kernel32.dll");
 LoadLibrary("user32.dll");
 LoadLibrary("gdi32.dll");
 LoadLibrary("winspool.dll");
 LoadLibrary("advapi32.dll");
 LoadLibrary("shell32.dll");
 LoadLibrary("ole32.dll");
 LoadLibrary("oleaut32.dll");
 LoadLibrary("wsock32.dll");

 // Create useless window class
 WNDCLASS wndclass;
 wndclass.style = 0;
 wndclass.lpfnWndProc = DefWindowProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = g_module;

 wndclass.hIcon = NULL;
 wndclass.hCursor = NULL;
 wndclass.hbrBackground = NULL;
 wndclass.lpszMenuName = NULL;
 wndclass.lpszClassName = "WSCLAS";

 RegisterClass(&wndclass);

 // Determine OS version
 GetOSVersion();

 // Use Dynamic Libraries
 InitDynamicLibraries();

 // Enable permissions on Windows NT
 if(g_bIsWinNT) {
 HANDLE tok;
 if(pOpenProcessToken(GetCurrentProcess(),TOKEN_ADJUST_PRIVILEGES,&tok)) {
 LUID luid;
 TOKEN_PRIVILEGES tp;
 pLookupPrivilegeValue(NULL,SE_SHUTDOWN_NAME,&luid);
 tp.PrivilegeCount=1;
 tp.Privileges[0].Attributes=SE_PRIVILEGE_ENABLED;
 tp.Privileges[0].Luid=luid;
 pAdjustTokenPrivileges(tok,FALSE,&tp,NULL,NULL,NULL);

 pLookupPrivilegeValue(NULL,SE_SECURITY_NAME,&luid);
 tp.PrivilegeCount=1;
 tp.Privileges[0].Attributes=SE_PRIVILEGE_ENABLED;
 tp.Privileges[0].Luid=luid;
 pAdjustTokenPrivileges(tok,FALSE,&tp,NULL,NULL,NULL);
 CloseHandle(tok);
 }
 }

I have edited out some of the code, for ease of read. (If anyone takes issue with
this edit, please drop me a line and I will correct it).

There is a lot of stuff there. What we want to see is that this program has a lot of
the things we have discussed so far. Look for includes, comments, braces and
indenting. The rest will be covered in later exercises.

Proper structure and form is extremely important. I cannot stress that enough.
Without these things code can be confusing at best, or unreadable at worst. You
may be thinking that “I’m an uber leet haxor who doesn’t need all that form and
stuff”. For an answer to that, let’s look at some assembly code.

Disclaimer:

 Caution, you are about to look at an assembly program, do not try to
understand it yet. Just look at the “form”:

; ###

 .486
 .model flat, stdcall
 option casemap :none ; case sensitive

; ###

 .nolist
 include kernel32.inc
 include windows.inc
 include user32.inc
 include wsock32.inc
 include ole32.inc
 include shlwapi.inc
 include oaidl.inc
 include wininet.inc
 include advapi32.inc
 include urlmon.inc
 include shell32.inc
 include gdi32.inc

 .list
 includelib kernel32.lib
 includelib user32.lib
 includelib wsock32.lib
 includelib ole32.lib
 includelib shlwapi.lib
 includelib wininet.lib
 includelib advapi32.lib
 includelib urlmon.lib
 includelib shell32.lib
 includelib gdi32.lib

; ###

 szText MACRO Name, Text:VARARG
 LOCAL lbl
 jmp lbl
 Name db Text,0
 lbl:
 ENDM

 m2m MACRO M1, M2
 push M2
 pop M1
 ENDM

 mNextListEntry MACRO ML
 cld
 xor eax, eax
 or ecx, -1
 repnz scasb
 cmp byte ptr[edi], 0
 jnz ML
 ENDM

.data
 EncryptStart2 dw "$$", "$$"

.code
 EncryptStart dw "$$", "$$"

 include Config.inc
 include Src\SrcFile.inc
 include Utils.asm
 include Stream.asm
 include PassGen.asm
 include HashTable.asm
 IFNDEF DisablePK
 include ProcKiller.asm

 ENDIF
 include CPLStub.inc
 include CPL.asm
 include VBS.asm
 include HTA.asm
 include ZIP.asm
 include StartUp.asm
 include Network.asm
 IFNDEF DisableNotify
 include Notify.asm
 ENDIF
 include Admin.asm
 include DNS.asm
 include SMTPClient.asm
 include SMTPThread.asm
 IFNDEF DisableInfect
 include PVG.asm
 include PEInfector.asm
 ENDIF
 include EmailScanner.asm
 include HDDScanner.asm
 include SMTPMessage.asm

 .data
 ; Do not change order
 szSeDebug db "SeDebugPrivilege",0
 szAdvApi db "advapi32.dll",0
 db "AdjustTokenPrivileges", 0
 db "InitializeAcl",0
 db "LookupPrivilegeValueA",0
 db "OpenProcessToken",0
 db "SetSecurityInfo",0,0

 szKernel32 db "kernel32.dll",0
 db "RegisterServiceProcess",0,0 ;
RegisterServiceProcess(GetCurrentProcessID,1);. ..

Hey! Includes, comments (look for lines starting with ;) and indenting. The
format and structure are just the same as in C. And yes, to those of you who
noticed, this is a section of assembly code from the Bagel, (aka Beagle) worm.
Even the virus and trojan coders use proper style. You should too.

Let’s move on. The first solid piece of programming we need to cover is
variables.

Variables:

A variable is a data storage unit used in your program. Without variables, we
would have great difficulty working with pieces of information. Variable types
in C are:

char, int, float, double

To declare a variable, we use the following syntax:

int i;

This statement declares ‘i’ as an integer variable (notice the semicolon). We can
now use i to hold integer information.

The int type can hold an integer between -231 and 231 – 1. The int type is one
word (remember, 4 bytes) long.

The char type is one byte long, and can hold on character. If you recall from our
previous lesson, one byte can store a number between 0 – 255. That is the extent
of character storage.

The first type of operation we need to learn about variables is the assignment:

int i;
i = 7;

In this example, we create an integer name i, then assign it the value 7. The =
operator is the assignment operator in C.

We can perform various arithmetic operations on variables. Arithmetic
operations include addition, subtraction and multiplication. For example:

int i, j, k; /* Multiple declaration. */
i = 6;
j = 5;
k = i + j; /* k now equals 11 (5 + 6) */
j = i * k; /* j now equals 66 (6 * 11) */
i = j + 1; /* i equals 67 */
k += 6; /* Whoa! huh? */
i++; /* WTF? */

The last two examples seem a bit confusing, but are in fact quite real. k += 6 is
short form for k = k + 6. This increases the value of k by 6, so in this example it
would equal 17. i++ also appears strange. ++ is the increment operator. It
increments your variable by one of whatever it is. In the case presented, the
statement i++ increments i by one integer, so i would equal 68. We can also use
the -- operator to decrement the variable by 1.

We can also use comparison operators on variables. For the example, we’ll use
something call ‘if’:

int i, j, k; //Multiple declaration.
i = 6;
j = 5;

k = 7;
if(i == j); /* false - note double = */
if(k > j); /* true */

Operators to know:

Operator Meaning
== Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to

An important distinction is made between = and ==. One is assignment, the
other is comparison. Many a coder (me included) have made the mistake:

if(a = b) …

That statement evaluates to TRUE for any value of b other than zero. Why?
When C evaluates expressions, it gives the value of non-zero to TRUE and 0 to
FALSE. If b = 17 in the above example, then ‘a’ would be set to the value of ‘b’
(17) and the statement would evaluate to true, regardless if ‘a’ actually did equal
‘b’. It would also change the value of ‘a’ when you don’t expect it to. Yikes. That
little bug can cause no end of head scratching and yelling, so be careful.

It should be:

if(a == b) …

This version uses the comparison ==, not the assignment =.

Jump Ahead.

OK, you say, it’s great we can use some variables, but how am I supposed to
display them and take input into them? We’ll jump ahead a little and cover two
functions that help us out. printf() and scanf(). printf performs formatted
printing (PRINT Formatted - printf). You use it as follows:

printf(“This is text. This is a variable: %d \n”, i);

printf displays everything in the quotes verbatim except for special control
characters. In the above example, there are two such control sequences: %d and
\n.

The %d tells printf to substitute the %d with a decimal number given by a
variable. In this case, the value of ‘i’ is substituted. The next control sequence is
\n. This sequence means new line. If the variable ‘i’ were equal to 1432, our
example would print:

This is text. This is a variable: 1432

There are other variable types, like %c for char and %f for float. We will learn
the rest of these at a later time. The variables are interpreted in order, so if ‘c’
where the letter A and ‘x’ was 98736,

printf(“c: %c, x: %d \n”, c, x);

Would produce the output:

c: A, x: 98736

To take input we use the command scanf, for scan formatted. The syntax is very
similar to printf, however we need to put a special character in front of our
variable for now. It’s not important why (yet), we just need to do it. To take an
integer input and assign it to ‘y’, we use:

scanf(“%d”, &y);

It’s important to note the & symbol in front of y. You will learn about this in a
later chapter on pointers. scanf expects a pointer to your variable. The & gives
scanf the address of your variable in memory.

Our First (Second?) Program

Grab your trusty editor. Here is the program as promised:

//Our first C Program

#include <stdio.h>
main() {
 char c;

printf(“Please type a letter:\n”);
scanf(“%c”, &c);
printf(“You entered: %c \n”, c);

}

Enter the program and save it as ‘first.c’. What do you think it will do?

To compile our program we enter:

gcc first.c -o first

Run it.

Here’s my output:

-sh-2.05b$ gcc first.c -o first
-sh-2.05b$./first
Please type a letter:
F
You entered: F
-sh-2.05b$

Here’s another code example. See if you can figure out what it does before you
compile and run it.

#include <stdio.h>
main() {
 int a, b, c;
 printf(“Please enter an integer: \n”);
 scanf(“%d”, &a);
 printf(“Please enter a second integer: \n”);
 scanf(“%d”, &b);
 c = a + b;
 printf(“Answer: %d \n”, c);
}

What does this program do?

The first thing it does after main() is to declare three integer variables:

 int a, b, c;

Next, we prompt the user to enter a number:

 printf(“Please enter an integer: \n”);

Then, scanf to store the number in ‘a’. The code then repeats the same, but stores
the next value in ‘b’. We then add the two together to produce the value c:

 c = a + b;

Now we display our result:

 printf(“Answer: %d \n”, c);

So we’ve created a mini addition calculator. It takes two numbers, adds them
and displays the results.

That’s it. Good work and lots to absorb for now. Next we cover flow control in
C.

Exercises:

 Write and compile a program to take two numbers as input and multiply the
numbers together.

 Write a program to take a number as input and display the square of the
number. Only use two variables.

 Take a number as input, then display the number, then display the number
plus 1.

 Put comments in your code.
 Review the structure portion of the paper above.

Next:

Flow Control.

War Industries Presents:

An Introduction to Programming for Hackers
Part III - Advanced Variables & Flow Control

By Lovepump, 2004

Visit:

www.warindustries.com

Part II – Programs 101

Goals:

At the end of Part III, you should be able to use advanced variables and
competently code with flow control statements.

Review:

Please ensure you understand the following terms:

 good program structure & form (indenting, comments)
 variable
 printf, scanf
 int, char, float, double

If you are unsure of any of these terms, go back and review Part II now.

Advanced Variables:

Recall Part II and the introduction of variables. We learned how to store a value
in a variable and do some functions (+, -, etc) to that variable. The problem some
of you may have noticed is that using this method, storing a lot of information
may become cumbersome. For example, to store 6 ‘ints’ using the examples from
the previous lesson, we would code:

int a, b, c, d, e, f, g;

That’s some ugly code. How do we make this easier? Arrays. An array is a
group, list or index of items. Here is an example:

int number[6];

This statement creates an array of integers called “number”. Number has 6
elements, that can be referenced individually, like this:

number[3] = 20;
number[4] = 25;
number[5] = number[3] + number[4];

Each of these statements accesses individual elements of the array ‘number’. An
array starts its index at 0 and proceeds upwards to produce the number of

elements requested. Therefore, in our array, to set all of our elements we would
use:

number[0] = 2;
number[1] = 4;
number[2] = 6;
number[3] = 8;
number[4] = 10;
number[5] = 12;

Note carefully that there are 6 elements, numbered 0 - 5. This is an important
concept to remember. Each of our elements can be treated as an individual
integer now. To set values for our array, we can treat each individually, as we
did above, or we can use a process called enumeration to set them all at once:

int number[6] = {2, 4, 6, 8, 10, 12};

This method combines the declaration and initialization in to one operation.
That is a definite improvement upon our previous example. Another example:

char message[7] = {‘m’, ‘e’, ‘s’, ‘s’, ‘a’, ‘g’, ‘e’};
printf(“%c”, message[4]);

%c is the format string in printf for char. The output of our example would be:

a

If this output is confusing, make sure you understand that the numbering of
array elements starts at 0 not 1. To print the word ‘message’, we could
individually print each array element, 0 through 6. This seems a very
cumbersome solution. There must be a better way. There is.

Strings:

The char array in C serves a special purpose. A specially formatted char array is
called a string.

A string is a character array terminated by a null.

Null in character speak is represented by \0. To make our previous char array
example in to a string, we would:

char message[8] = {‘m’, ‘e’, ‘s’, ‘s’, ‘a’, ‘g’, ‘e’, ‘\0’};

Notice the \0 at the end. This is the marker, or delimiter, for the end of a string
is C. An even easier way of initializing is a string is:

char message[8] = “message”;

Note the use of double quotes here as opposed to the single quotes in the
previous example. The double quotes tells the compiler “this is a string” and a
null will automatically be appended to the end. It is critical when using this
method that you leave room for the terminating null. See above that the array is
size 8, while the string text is 7 letters long. The actual string is 8 long after the
null is added. To make this safer, C allows you to:

char message[] = “message”;

In this example, the compiler automatically sets the array size to fit all the
characters and the null terminator. Now that we can create a string, we can
easily print it using %s, like thus:

printf(“%s”, message);

Note that we don’t include any index after message (i.e. ‘message’, not
‘message[0]’). This is because printf expects a pointer to a string. As we will
learn more about later, ‘message’ by itself is actually a pointer to the beginning of
our string!

The null terminator is very significant to some hackers. Consider this:

char message[50] = “message”;
printf(“%s”, message);

This code example will print:

message

It doesn’t print the entire 50 characters of message[50]. Why? C will read a
string until it reaches the null. If it reaches null before the end of the array, that’s
where it stops. Nothing beyond there is read. So what’s the tie in for hacking?
When coders wish to test buffer overflows, the code is usually injected into a
character buffer using a string variable. The problem occurs when a 0 is found in
the code. When the computer comes across a 0, it is interpreted as a null, and the
read operation ends. If your shellcode contains a 0, nothing after it will be read.

Look at this assembly example of some shell code:

jmp 0x26

 popl %esi
 movl %esi,0x8(%esi)
 movb $0x0,0x7(%esi) **
 movl $0x0,0xc(%esi) **
 movl $0xb,%eax
 movl %esi,%ebx
 leal 0x8(%esi),%ecx
 leal 0xc(%esi),%edx
 int $0x80
 movl $0x1, %eax
 movl $0x0, %ebx **
 int $0x80
 call -0x2b
 .string \"/bin/sh\"

In this example, the lines marked with ** have zeroes in them. If this shell code
were injected into a character buffer overflow, only the first three lines would
make it. The fourth line has a zero, which is interpreted as “end of string”. Not
what a coder would want. There are ways around this problem, but that is
beyond our abilities at this point.

So what is a character buffer overflow anyway? Now is the perfect time to
introduce this topic. Consider this example:

char message[10];
printf(“Please enter your message:\n”);
scanf(“%s”, message); /* no & needed here */
printf(“Your message is: %s”, message);

What does the code do? Line 1 declares or char array ‘message’ as ten chars
long. Line 3 takes user input to message, then line 4 prints it out. No problem,
right? What if a user were to enter: ABCDEFGHIJKLMNOPQRSTUVWXYZ ?
Well you’d have a big problem on your hands. The computer will take this input
and store it in memory starting at the address pointed to by ‘message’. The
problem is that the code has only put aside 10 bytes for message. You entered 26
characters. The remaining 16 characters write over whatever is the in space after
the space allocated to ‘message’. What’s there? Who knows?

In the worst case scenario, this would happen inside a function and the extra
characters would overwrite the return instruction pointer, in essence creating a
new value in the EIP register. If you recall from Part I, we discussed that EIP is
read-only. While that is true, you can “poison” the return value while it’s on the
stack. In this case, someone could inject a new instruction pointer and take

control of the execution of the program. When we cover functions in Part IV, we
will have enough background to explore the buffer overflow in detail.

Now we have the ability to store data efficiently using variables, interact with
users with printf and scanf, but how can we make a program that doesn’t just
run through once and stop?

Flow Control:

Flow control instructions do just that. They change, loop, interrupt or redirect
where the program executes next. The first example is the ‘for’ loop. The for
statement is created like this:

for(initialization; condition; modifier) {statements to loop}

Here is an example:

 int i;
 for(i = 0; i <= 10, i++)
 {
 printf(“%d\n”, i);
 }

After we create the integer, i, it is used as a counter in our ‘for’ loop. The for
statement is read like this: Start i at 0, if i is less than or equal to 10, then execute
the code in the section in braces after the ‘for’ statement, then increment i and
continue looping and incrementing while our condition (i <= 10) is true.
Remember from Part I that braces enclose sections of code. Here they enclose the
code we want to loop. You can include as much code as you wish in the braces.

This code will output:

0
1
2
3
4
5
6
7
8
9
10

Look at the code again. Make sure to take note that there is no ; after the for
statement. This is because the for statement really doesn’t end at the end of the
line. It ends at the closing brace after the printf. The entire section of code inside
those braces is part of the ‘for’. To show this in practice:

int i;
for(i = 0; i <=10; i++) printf(“%d\n”, i);

This code does exactly the same thing as the previous code. If you only need one
statement in the ‘for’ loop, this is an acceptable way of performing it. If more
than one statement or function is required, open and close braces around the
code is required.

What will be the output of this code?

 #include <stdio.h>

int main() {
int i, array[20];
for(i = 0; i < 20; i++)
{

 array[i] = i * 2;
 printf(“Array [%d] = %d \n”, i, array[i]);

}
}

I leave it as an exercise for you to understand the output and why it happens.

Here is a sample ‘for’ loop in the “decrypt” function of irc spybot 1.1. It
demonstrates both the loop and array index use.

for (BYTE i = 0;str[i] != 0; i++) {
 str[i] = str[i] - decryptkey - 3*i;
 }

Do/While:

The next type of loop we will explore does not operate a set number of times.
The ‘do - while’ loop will continue until a specified condition is met. Example:

#include <stdio.h>
int main() {
 int answer;
 do
 {
 printf("Enter the number 3: \n");
 scanf("%d", &answer);
 }
 while(answer != 3);
}

This code will ‘do’ the code in the braces (starting after ‘do’) ‘while’ the answer is
not 3. It will continue to loop until answer is 3. Again, note the use of braces and
semi-colon.

There is another form of ‘while’:

#include <stdio.h>
int main() {
 int answer;
 while(answer != 3)
 {
 printf("Enter the number 3: \n");
 scanf("%d", &answer);
 }
}

This code loops while answer is not equal to three. It seems to be exactly the
same as above, except the ‘while’ is at the beginning and the ‘do’ is gone. There
is one very important difference between the two uses of ‘while’. In the first
example (do-while) the code inside the braces will always get executed at least
once because the condition is not tested until after the code segment. In the
second example, if we were to set answer to 3 before the while, the code would
never execute. Example:

#include <stdio.h>
int main() {
 int answer = 3;
 while(answer != 3) /* This is false
 */
 {
 printf("Enter the number 3: \n");
 scanf("%d", &answer);
 }
}

In this example, when the code reaches the ‘while’ statement answer = 3, so the
code in the braces never executes. Make sure you understand the difference
between the two uses of while.

One important use of while is in daemon (or server) type coding. You want the
daemon to keep doing whatever it’s doing forever (or until it’s asked to stop). In
these circumstances, it’s not uncommon to see this:

…initialization code …
while(1)
{

-------the main loop ---------
…..lots of code….

}

while(1) is always true, so it will loop infinitely. Of course, you as a coder must
make some form of test in the code to exit() when appropriate.

Break and Continue:

When in need of getting out of a loop, these two statements are very useful.
Break causes the loop to quit and finish. The program will continue execution
with the code immediately following the loop. Continue will cause this iteration
of the loop to complete. The loop doesn’t quit, it just finishes “prematurely” and
loops again. Any code in the loop after continue is not executed. Upon reset of
the loop, the conditions of ‘while’ and ‘for’ are tested.

Some examples:

#include <stdio.h>

int main() {
 int i;
 for(i = 0; i < 10; i++)
 {
 break;
 printf("%d\n", i);
 }
 printf(“Done\n”);
}

What does this code output? Simply the word: ‘Done’. Upon entry to the loop,
the ‘break’ is encountered immediately, and the loop is exited. Execution shifts
to the code right after the loop, which prints our word.

A ‘continue’ example:

#include <stdio.h>
int main() {
 int i;
 for(i = 0; i < 10; i++)
 {
 printf("%d \n", i);
 continue;
 printf("%d \n", i*2);
 }
 printf("Done\n");
}

What do you think this code will print. It looks like it’s supposed to print i and
i * 2, so the numbers 0 - 9 and their doubles. It doesn’t though. It only prints the
numbers 0 - 9. Why? Because when execution reaches the ‘continue’ the loop
finishes, and loops back to the start.

Recap:

We learned about advanced variables: array and the use of arrays to hold strings
in C. We learned about flow control statement that allow us to loop and change
program flow.

Here are a few examples, from a hacker slant of course:

for (i = size/(8*sizeof(long)); i > 0;) {
 if (files->open_fds->fds_bits[--i])
 break;
 }

This is a ‘for’ loop in fork.c of the Linux 2.6 kernel. (Seems like most coders
prefer to use ‘i’ as the index variable). Also note the ‘break’.

Here’s another:

for(i = num_knocks - 1; i > 0; i--)
{
 knocklist[i].saddr = knocklist[i-1].saddr;
 knocklist[i].port = knocklist[i-1].port;
 knocklist[i].timestamp = knocklist[i-1].timestamp;
}

This example is from the knock daemon project. It shows both a for loop and
array use. This code ‘pops’ a received port knock into the knocklist ‘stack’ array.

while(CopyFile(svFileName,svTargetName,FALSE)==0) Sleep(1000);

This is an example of an ‘inline’ while with no braces. This is from the ‘Remote
Administration Suite’ Back Orifice 2k. This part of the code is attempted to
escalate it’s install privileges to administrator (Which of course every good
Remote Administration Suite does).

 for(unsigned char i1=0;i1<j;i1++)
 {
 buffer[CurResBufferPos+i1]=base64[ResData[i1]];
 }

This is an example of a for loop and array use from zmailer, a spambot Open
Source Small Footprint High Volume Mailing Engine for Windows.

Review all the stuff we learned this time and practice some coding. Modify some
of the code here to work differently. Make them count from 10 down to 0. Make
them count up by 2 instead of 1.

Next:

Conditionals:
if/then/else
switch / case
the ? operator

War Industries Presents:

An Introduction to Programming for Hackers
Part IV - Conditionals

By Lovepump, 2004

Visit:

www.warindustries.com

Goals:

At the end of Part IV, you should be able to use conditional statements and
competently code with functions.

Review:

Please ensure you understand the following terms:

 Arrays.
 Strings.
 While loops (while & d0-while).
 ‘For’ loops.
 The function of ‘break’ and ‘continue’.

If you are unsure of any of these terms, go back and review Part III now.

Conditional Statements:

In Part III, we learned how to make our code loop and change direction based on
comparison to some conditions. This is one critical aspect of programming. The
next, and similarly important topic is Conditional Statements. There are three
basic conditionals in C: If, switch and ‘?’. The first two are very common, while
the last (‘?’) is relatively uncommon.

If / Else:

Lets dive straight to an example:

if(i == 0) printf(“i equals zero.\n”);

It reads like it works. If ‘i’ equals 0, print a message. Really straightforward.
Note carefully the use of the comparison operator (= =), not assignment (=). This
is a subtle and annoying bug that can creep in to you code for many hours of
enjoyable debugging.

The if statement is much like the ‘while’ statement we saw in Part III. If you
need to execute only one statement, the example above is perfect. If we need to
execute a block of code after our ‘if’, we of course enclose it in braces, like this:

if(i == 0)
{
 printf(“Call the army.\n”);
 printf(“i is equal to zero!\n”);
}
blah…

In this example, both printf statements will be executed if i equals zero. If i
doesn’t equal zero, execution of the code continues at ‘blah’.

As you can see, if our statement is true, the code in the braces gets executed, then
execution carries on at ‘blah’.

Here’s a few code examples of if statements you will see in your hacker journeys:

if (ip->protocol == IPPROTO_TCP || ip->protocol == IPPROTO_UDP)

{
 struct tcphdr *tcp=(struct tcphdr *)((_ _u32 *)ip+ip->ihl);
 src_port = ntohs(tcp->source);
 dst_port = ntohs(tcp->dest);
 }

That’s from netfilter.c, the linux firewall (iptables).

Wait! Notice in the ‘if’ it appears there are two conditions! The first one is:

ip->protocol == IPPROTO_TCP

The second is:

ip->protocol == IPPROTO_UDP

They are separated by the || operator. What does that mean? Well, || means
‘OR’. So, if either condition is true, the ‘if’ will execute. The other operator you
may see is &&, meaning “AND”. Both conditions must be true for an ‘if’ to
execute with an && operator.

Here’s another example:

 if (argc < 2)
{

 printf("Usage: %s <hellcode-output-file> [hell-func tion]\n", argv[0]);

 exit(1);
 }
 if (argc < 3)

{
 printf("Warning: defaulting hell-function to 'mai n'.\n\n");
 strcpy (hellfunction, "main");
 } else
 strcpy(hellfunction, argv[2]);
 if ((hell = fopen(argv[1], "w+")) == NULL)

{
 perror("fopen");
 exit(errno);
 }

As you can see, this code is from hellkit-1.2 by stealth. I have put the ‘ifs’ and an
‘else’ in bold for you to see. What’s an ‘else’ statement?

Referring back to our code example (i == 0), what if we wanted one piece of code
to execute for i equals zero, and another different piece of code to execute if i is
not equal to zero? We can use two if statements, or, we can use ‘else’:

if(i == 0)
{
 printf(“Call the army.\n”);
 printf(“i equals zero!\n”);
}
else
{
 printf(“Everyone calm down,\n”);
 printf(“i is not zero.\n”);
}

The important part to note in the above code, is that if i equals zero, the code in
the ‘else’ braces is not executed. The else code is executed only if the ‘if’
condition is not true (i is unequal to zero). What if we wanted to add more
conditions, like if i equaled 1, or 2? Well, ‘else’ can be teamed up with another
‘if’, like this:

if(i == 0)
{
 printf(“Call the army.\n”);
 printf(“i equals zero!\n”);
}
else if(i == 1)
{
 printf(“Everyone watch out,\n”);
 printf(“i is getting close to zero.\n”);
}
else if(i == 2)
{
 printf(“i is 2, which isn’t zero.\n”);
}
else if(i == 3)
{
 printf(“i is pretty far from zero.\n”);
}
else
{
 printf(“No worries, i is really big.\n”);
}

Now that code works, but it’s a real “mouthful”. Actually, it’s plain ugly looking
code. How can we get the same functionality but with more effective coding?
‘Switch / Case’ has the answer.

Switch / Case:

The switch case solves the problem of multiple options. If we wanted to use the
above example, the following code would be used:

switch(i)
{
 case 0:

 printf(“Call the army.\n”);
 printf(“i equals zero!\n”);

break;
 case 1:

 printf(“Everyone watch out,\n”);
 printf(“i is getting close to zero.\n”);

break;
case 2:

 printf(“i is 2, which isn’t zero.\n”);
 break;

case 3:
 printf(“i is pretty far from zero.\n”);
 break;

 default:
 printf(“No worries, i is really big.\n”);
 break;

}

The code here is much more legible. The switch statement works like this:
The expression inside the brackets of ‘switch’ is evaluated and execution
transfers and continues at the case statement where a match is found. If no
match is found, execution is transferred to the ‘default’ case.

Note that each ‘case’ uses the ‘break’ statement. This is necessary, as once
execution is transferred to a ‘case’ from ‘switch’, it will continue all the way
through. If we didn’t have a ‘break’ in case 0, for example, the switch would
transfer execution to the point of “case 0:”, an then continue sequentially through
case 1, case 2, case 3, and default. Not what we intended.

Lets see some examples of Switch/Case.

switch (*str) {
 case 'w': /* "warm" reboot (no memo ry testing etc) */
 reboot_mode = 0x1234;
 break;
 case 'c': /* "cold" reboot (with me mory testing etc) */
 reboot_mode = 0x0;
 break;
 case 'b': /* "bios" reboot by jumpi ng through the BIOS
 reboot_thru_bios = 1;
 break;
 case 'h': /* "hard" reboot by toggl ing RESET and/or
crashing the CPU */
 reboot_thru_bios = 0;
 break;
 }

This piece of code is from the linux 2.6 kernel, reboot.c. Obviously reboot.c
handles the rebooting of the system. Here it is looking at the string *str and
switching on it’s type (w, c, b, h). The switch is deciding what kind of reboot to
perform. In tis example, if *str = ‘w’, then a warm reboot is preformed, by setting
the variable ‘reboot_mode’ to 0x1234. Note the use of the ‘break’ statements after
every ‘case’ section.

switch(h80211[1] & 3)
 {
 case 0: i = 16; break; /* DA, SA, BSSID */
 case 1: i = 4; break; /* BSS ID, SA, DA */
 case 2: i = 10; break; /* DA, BSSID, SA */
 default: i = 4; break; /* RA, TA, DA, SA */
 }

This switch section is from Aircrack v2.1, a WEP cracker by Christophe Devine.
The code form is unusual with two commands per line, but legal. Here’s a
program that we will examine. Please copy/enter and compile this code.

#include <stdio.h>

int main() {

 int i;
 int x[4];
 for(i = 0; i < 4; i++)
 {
 x[i] = i;
 }
 i = 0;
 while(i < 4)
 {
 switch(x[i])
 {
 case 1:
 {
 printf("1\n");
 }
 case 2:
 {
 printf("2\n");
 break;
 }
 case 3:
 {
 printf("3\n");
 break;
 }
 case 4:
 {
 printf("4\n");
 break;
 }
 default: printf("What happe ned ?\n");
 }
 i++;
 }
}

Here’s the result:

-sh-2.05b$ gcc switch.c -o switch
-sh-2.05b$./switch
What happened ?
1
2
2
3
-sh-2.05b$

Indeed, what happened? Did the output of the code surprise you? In not, you
are gaining a solid understanding of C. If it did, no worries, it is a neat one to
decipher. Let’s walk through section by section and see if we can make sense of
this mess.

First, an int array x is declared of size 4. The initial ‘for’ loops through the array
using ‘i’ as a counter and assigns the values 0 - 3 to x[0] - x[3] respectively. So we
have this:

x[0] = 0
x[1] = 1
x[2] = 2
x[3] = 3

If this doesn’t make sense, refer back to Part III and ‘for’ loops. Study the code to
ensure this makes sense.

The code then resets our little counter ‘i’ back to zero (at this point i = 4, so we
need to zero it for our next loop).

The next loop is a while. It loops while i is less than 4. Once inside the loop, we
hit a switch statement. Look at our output again. The first line is “What
happened?” Wouldn’t we expect to see it count from 1 - 4? No. Remember, x[0]
= 0. There is no ‘case’ for 0, so the execution ‘switches’ to default. Default prints
the message. We increment i (i++) and loop back to ‘while’.

In the next loop, we examine x[1]. We ‘switch’ execution to case 1 where we see:

printf(“1\n”);

So far so good, yes? Well maybe not, our next loop prints two 2’s. Look at the
output:

 What happened ?
1
2
2
3

Again, “What happened?” Maybe we skipped over the i = 1 loop too quickly?
Let’s go back and have another look. When we loop in i = 1, the switch sends us
to ‘case 1’. In case 1 we print ‘1’, but wait! There’s no ‘break’ statement is case 1,
so execution just carries on as if everything was fine. The next code to execute is:

printf(“2\n”);

We say that this is the next code to execute because the line:

case 2:

Is not a command, it is only a code section label. So the execution continues and
prints a 2 as well. The execution then hits break and loops again. So, our first
loop with i = 1, not only prints a 1, it prints a 2 as well. That explains our double
2. The next loop with i = 2 prints a 2, then with i = 3, prints a 3, then execution
finishes.

Make sense? If not, please go back and make sure. It was a bit complicated, but
we have to start moving in to some more “serious” code now.

?

The final condition operator is ? No, not a mystery, actually a question mark. It
is not commonly used, but can be very effective. Here’s the format:

x = (a > b) ? a : b;

This statement says x = something. What does it equal? That depends. The
statement reads: if a is greater than b, the x = a, if not it equals b. The first part is
the condition to evaluate. After the ?, we have the results. The first is the result
if condition is true, the second is the false (or ‘else’!).

A few more examples:

int Halfop_mode(long mode)
{
 aCtab *tab = &cFlagTab[0];

 while (tab->mode != 0x0)
 {
 if (tab->mode == mode)
 return (tab->halfop == 1 ? TRUE : FALSE);
 tab++;
 }
 return TRUE;
}

This is an excerpt from the unreal irc daemon, version 3.2.1. The line in bold
returns a value. If tab->halfop is 1, then it returns TRUE, otherwise it returns
FALSE.

Here are some more conditional examples:

From time.c in the Linux 2.6 kernel:

if (unlikely(time_adjust < 0)) {
 max_ntp_tick = (USEC_PER_SE C / HZ) - tickadj;
 usec = min(usec, max_ntp_ti ck);

 if (lost)
 usec += lost * max_ ntp_tick;
 }
 else if (unlikely(lost))
 usec += lost * (USEC_PER_SE C / HZ);

From spybot:

if (infile == NULL) {
 sprintf(sendbuf,"No such file");
 break;
 }

From ircbot:

if (recvlen != SOCKET_ERROR)
 {
 tempbuff[recvlen] = '\0';
 if (parse(tempbuff) == true)
 return true;
 else
 return false;
 }
 else
 {
 debug("socket read error", "ircbot::read");
 return false;
 }

Conclusion:

With the tools learned to date, we are now armed with enough to create some
simple programs. Try some of the challenges in the exercises section.

Next: Part V - Functions

Exercises:

1. Write a program to perform as a simple calculator. Take two numbers

(floats) and one character as input. Based on the character (+, -, / *)
perform the math and output the answer. Continue getting input until the
operator is ‘q’ (quit).

2. Write a program that takes 10 integers as input. Print out the square of
each one, except the square of element 4. For example, if your int array
was x[10]. Print squares for every element except x[4].

3. Modify the code from #2 above so that each element is read, but the
square is only displayed if the integer in the element is an odd number.
Skip the even ones.

War Industries Presents:

An Introduction to Programming for Hackers
Part V - Functions

By Lovepump, 2004

Visit:

www.warindustries.com

Goals:

At the end of Part IV, you should be able to competently code with functions.

Review:

Please ensure you understand the following terms:

 If
 Else
 Switch / Case
 The ? operator

If you are unsure of any of these terms, go back and review Part IV now.

Functions:

Functions in C are an integral part of coding. They allow a programmer to code
a routine once, and use it often. Why not look at an example. Don’t worry about
the details yet, just peek at the idea:

#include <stdio.h>

float average(float x, float y) {
 float z;
 z = (x + y) / 2; /* The average */
 return z;
}

int main() {

 float a, b, c;
 a = 1;
 b = 3;
 c = average(a, b);
 printf("The average of %f and %f is %f.\n", a, b, c);

 a = 6;
 b = 34;
 c = average(a, b);
 printf("The average of %f and %f is %f.\n", a, b, c);

}

Copy / type and compile the code above. The main program calculates two
averages of the floats a & b. It uses a function called average() (original name, I
know) to calculate the average of two floats. It returns the average.

Here is the format of a function, called the declaration:

return_type function_name(argument types and names)

return_type - This is the type that the function will return. Our function above
returned a float.

function_name - Just like it sounds. Make a name for your function. Ours above
was “average”.

argument types and names - These are the pieces of information, or arguments,
that our function will use to do its tasks.

After the declaration, the function code is enclosed in braces. A function is a set
of commands and instructions designed to perform as task, or tasks. Functions
can be given information and can return information.

Here’s some examples and how to read them:

int foo(char bar);

A function named ‘foo’ takes a variable of type ‘char’ as an argument. The char
is called ‘bar’. Foo returns an integer.

float me(int love, int pump);

A function named ‘me’ takes two integers as arguments; love & pump. It returns
a float.

unsigned char* jimbo(char* string, int *number);

A function named jimbo takes a pointer to a character and a pointer to a number
as arguments and returns a pointer to an unsigned character. (Phew - Don’t
worry about the “pointers” and things yet. Just wanted to show that the list can
be comprehensive).

For now, understand how to read the function declaration. Go and read again to
make sure.

Here’s an interesting one:

int main(int argc, char *argv[]);

Looks familiar. A function named main takes an integer and a pointer to an
array of characters as arguments and returns an integer. Wait a sec? Main is a
function?

Yes, main() is a function like any other, however it has one special property. It is
the function called by the Operating System when your code is executed. Above
is the proper prototype for main. We have been “lazy” in our code so far just
using:

int main()

We will not be so lazy from now forward.

int main(int argc, char *argv[])

Function Use:

So now that we can read a declaration, how do we use the thing. Lets refer back
to the code example from the beginning and our lowly function:

float average(float x, float y) {
 float z;
 z = (x + y) / 2; /* The average */
 return z;
}

We can now read the first line. A function named ‘average’ takes two floats as
arguments; x & y and returns a float. x & y are passed to us by the code that
calls the function.

The first thing our function does is declare a new float, z. The next line does the
math. Add our two floats, x & y together and divides by 2. That’s the average,
and it’s assigned to our new float z. The final line says:

return z;

We said earlier our function “returns a float”. Well this is where that happens.
the value of z is passed back to the calling section of code. Consider it a
conversation between two pieces of code. You tell me x and y. I’ll tell you the
average.

If we look in the “calling” code from our example above, we see the function is
used in this line:

 c = average(a, b);

c equals the return value of function average with arguments a and b. So the
value of z gets returned and c gets the value. Notice that a & b don’t require
types in front of them. The compiler already knows that average gets two floats.
If you modify the code to change ‘b’ to a ‘char’, you will see the compilers
reaction to a “type mismatch”.

So if we return z and use c = average…, why can’t we just do this in main:

average(a,b);
printf(“Average %f”, z);

Should work right? We created a float ‘z’ in our function, so why can’t we just
use it if it already has the answer in it? If you wish, try the code above and see.
It won’t work.

Why won’t it work? Because of a very important concept in C. Scope.

Scope:

No, not the mouthwash. It means:

The area covered by a given activity or subject. Synonym: Range.

So what does scope, or range, mean in terms of variables in C. Variables in C are
not automatically available everywhere in your code once you declare them.
This is a good thing. We could soon run out of variables if we couldn’t use the
same ones in different code (Think of our famous counter ‘i’. It is everywhere).

Variables have the scope of the section of code in which they were created.
Yikes. That’s a mouthful. As you have seen so far, sections of code in C are
broken up, or delimited, by curvy braces { }. Even ‘main’ is enclosed in curvy
braces (have a look). When you declare a variable it is only “in scope” within the
braces it was declared within. Maybe an example can help:

#include <stdio.h>
int main(int argc, char *argv[]) { /* Opening brac es for main */
 int x, y;
 x = 0;
 y = 2;
 while(x < 5)
 { /* New braces for while */
 int z;
 z = x + y;
 printf("z = %d \n", z);
 x++;
 } /* Close braces for while * /
} /* Close of main */

After a careful read of the code, we see that it will loop while x is less than five,
printing out z every time. z will equal x + y (or x + 2) every time. The output is
not surprising to us:

-sh-2.05b$ make scope
cc scope.c -o scope
-sh-2.05b$./scope
z = 2
z = 3
z = 4
z = 5
z = 6

Lets change it slightly to see what ‘z’ equals after the while loop. It should be 6
right?

#include <stdio.h>
int main(int argc, char *argv[]) { /* Opening brace s for main */

 int x, y;
 x = 0;
 y = 2;
 while(x < 5)
 { /* New braces for while */
 int z;
 z = x + y;
 printf("z = %d \n", z);
 x++;
 } /* Close braces for while * /
 printf("After while, z = %d \n", z);

} /* Close of main */

The new code is in bold. We added a printf to show us the value of ‘z’ after the
while loop. Let’s compile it:

-sh-2.05b$ gcc scope.c -o scope
scope.c: In function `main':
scope.c:16: error: `z' undeclared (first use in thi s function)
scope.c:16: error: (Each undeclared identifier is r eported only
once
scope.c:16: error: for each function it appears in.)

We have an error in line 16. ‘z’ is undeclared? But we declared it, didn’t we?
Yes we did, but after we go outside the closing braces for while, our ‘z’ goes “out
of scope”. This is a very important concept in C. (Note - main was referred to as a
‘function’ by the compiler in the error message above).

‘x’ and ‘y’ have scope over all of main(). ‘z’ only is in scope in the while loop.

Back to our function example, ‘z’ is in scope only inside the function average().
Outside of average, that ‘z’ doesn’t exist. The ‘value’ of z is passed back to our
calling code by the ‘return z;’ statement.

Scope has another important impact on function use. You notice in our code
above that we put the function above main(). You will not usually see this. I
(and a lot of people) consider it good form to put main as the first piece of code.
Let’s make the change:

#include <stdio.h>

int main() {
 float a, b, c;
 a = 1;
 b = 3;
 c = average(a, b);
 printf("The average of %f and %f is %f.\n", a, b, c);

 a = 6;
 b = 34;
 c = average(a, b);
 printf("The average of %f and %f is %f.\n", a, b, c);

}

float average(float x, float y) {

 float z;
 z = (x + y) / 2; /* The average */
 return z;
}

Compile it and…

-sh-2.05b$ gcc average.c -o average
average.c:18: warning: type mismatch with previous implicit declaration
average.c:8: warning: previous implicit declaration of `average'
average.c:18: warning: `average' was previously imp licitly declared to
return `int'

Yuck. What happened. It depends on your compiler. The function average is
undefined in main because while in main(), the compiler has yet to see it.
Remember, it’s now at the end of our code. In this case, gcc has made some
assumptions about arguments and return values of average, but when it reached
line 18 (our function) it found the assumptions to be wrong. How do we avoid
this? Function prototyping is the answer. Add the following line after your
#include, but before your main:

float average(float x, float y);

This line is called a function prototype. It tells the compiler (and coders for that
matter) the interface to the function. It has no function body (code). A prototype
can be recognized by the ; right after the arguments. It tells the compiler that
there is a function called argument defined somewhere else in our code. In this
case, it is found later in average.c

In larger compilations, the function prototypes are put in header files. Header
files have an .h extension. If we wanted to publish our uber function and allow
others to include it, we could create a file called average.h:

float average(float x, float y);

Now, with some compiling beyond the scope of this section, we could distribute
our cool application around the world! Well, maybe not. This is an important
point to understand. If we look at our average code, we use the line:

#include <stdio.h>

Now we can discuss why. The prototypes for the functions printf and scanf
(among others) can be found in stdio.h. It tells the compiler to look in stdio.h for
functions we are using in our code! Opening stdio.h, we find this:

extern int printf (__const char *__restrict __forma t, ...);

There it is, the prototype for printf. Cool. Some of the argument types are
advanced, so don’t get frightened. Just an example of a function prototype.

Function Flow:

An important concept to a hacker is program flow in function calls and returns.
We will modify (shorten) our code slightly and draw some flow type charts to
see the method of execution:

#include <stdio.h>

float average(float x, float y);

int main() {

 float a, b, c;
 a = 1;
 b = 3;
 c = average(a, b);
 printf("The average of %f and %f is %f.\n", a, b, c);
}

float average(float x, float y) {

 float z;
 z = (x + y) / 2; /* The average */
 return z;
}

If we look at the code, executions continues until we reach the function call. At
that point execution is handed to the function. Function executes, then returns
execution back to the calling code.

That seems easy, but as a hacker it’s important that we know what’s really
happening. The execution jump and passing of data back and forth is of great
importance to the hacker. It is the essence of the buffer overflow exploit. Let’s
dig in.

Take a look at a section of the generated assembly code of our program (The full
portion of important executable is listed in Appendix A):

0x08048390 <main+32>: sub $0x8,%esp
0x08048393 <main+35>: pushl 0xfffffff8(%ebp)
0x08048396 <main+38>: pushl 0xfffffffc(%ebp)
0x08048399 <main+41>: call 0x80483d4 <average>

Recall the operation of the EIP register. The Extended Instruction Pointer. It
points at the memory to be executed by the CPU. Our code snippet above starts
at memory address 8048390. The command there subtracts 8 from the ESP
register:

0x08048390 <main+32>: sub $0x8,%esp

In Part I we learned that the ESP register is the Stack Pointer. Let’s refresh that
topic (re-read the section in Part I on The Stack). ESP points to the “top” of your

stack of papers. In the x86 architecture, the stack builds down, so it points to the
“bottom” of the stack. If we subtract 8, we make room for 8 bytes (two words)
on the stack. Funny enough this is enough room for our 2 floats, x & y. The next
two lines of code are:

0x08048393 <main+35>: pushl 0xfffffff8(%ebp)
0x08048396 <main+38>: pushl 0xfffffffc(%ebp)

pushl pushes a word on to the stack. Here, it pushes two words. The two
words are our variables, x & y. They get pushed on to the stack.

The next line is:

0x08048399 <main+41>: call 0x80483d4 <average>

This is the actual function call to ‘average’ (see the symbolic name). Our function
is located at memory address 80483d4. If we recap, the CPU did the following:

1. Made room on the stack for the function arguments.
2. Pushed the arguments on to the stack.
3. Called our function (transfer execution to 80483d4).

To transfer execution, the CPU loads the memory address in the ‘call’ into EIP.
But how does it remember where it called from? When the function returns, we
need to know where to come back to. ‘Call’ actually does something in the
background. It pushes the value in EIP on to the stack before it transfers
execution. Understand this concept. It does it “silently” in the background prior
to loading EIP with the new value. If we look at the code again, and include a
little more:

0x08048390 <main+32>: sub $0x8,%esp
0x08048393 <main+35>: pushl 0xfffffff8(%ebp)
0x08048396 <main+38>: pushl 0xfffffffc(%ebp)
0x08048399 <main+41>: call 0x80483d4 <average>
0x0804839e <main+46>: add $0x10,%esp

After the call, the next command is at memory address 804839e. That is the value
that will be pushed on the stack, so the CPU can “remember” where it came
from.

Lets take a snapshot of the stack right as we enter our function average:

Relative Address Size Bytes (Words) Info

ESP 4 (1) Return address, 804839e

ESP + 4 4 (1) Float b, 3

ESP + 8 4 (1) Float a, 1

The stack pointer is used regularly by the code in our program. The CPU also
keeps a “baseline” of where the stack started. This is called EBP or the Base
Pointer. It is used in sections of code to keep track of the beginning of the stack.

When we enter our function, the first thing that happens is this:

0x080483d4 <average+0>: push %ebp
0x080483d5 <average+1>: mov %esp,%ebp
0x080483d7 <average+3>: sub $0x8,%esp

The base pointer used in main is pushed on to the stack. ESP is copied into EBP.
The value in ESP becomes our Base Pointer for the function average. Now, the
beginning of average’s stack is right at the old Base Pointer. Lets see the stack
again now:

Relative Address Size Bytes (Words) Info

ESP 4 (1) Old Base Pointer

ESP + 4 4 (1) Return address, 804839e

ESP + 8 4 (1) Float b, 3

ESP + 12 4 (1) Float a, 1

The function performs it’s floating point magic and encounters this code:

0x080483f4 <average+32>: leave
0x080483f5 <average+33>: ret

The leave command moves the Base Pointer in to the Stack Pointer, then “pops”
the old Base Pointer from the stack. The next command, ‘ret’ pops the return
address from the stack and loads it into EIP. That causes execution to return to
where we left main above.

So, why this long, assembly riddled explanation of functions. {Play evil music
here}. Look at this code:

#include <stdio.h>

int oops() {
 char buf[4];
 gets(buf);
 return 1;
}

int main(int argc, char *argv[]) {

 if(oops())
 {
 printf("Buf done OK.\n");
 return 0;
 }
 printf("This should never print\n");
}

The code is self explanatory. Main calls the function ‘oops’ from an if statement.
The if will always be ‘true’ because oops always returns ‘1’, therefore the last
printf should never execute. Oops creates a char array called ‘buf’, then takes
input from gets (Get string) into buf. No problem, right?

Let’s analyze the stack as we run this program and see what happens when we
call oops. Here is ‘main’ in assembly:

0x080483c0 <main+0>: push %ebp
0x080483c1 <main+1>: mov %esp,%ebp
0x080483c3 <main+3>: sub $0x8,%esp
0x080483c6 <main+6>: and $0xfffffff0,%esp
0x080483c9 <main+9>: mov $0x0,%eax
0x080483ce <main+14>: sub %eax,%esp
0x080483d0 <main+16>: call 0x80483a4 <oops>
0x080483d5 <main+21>: test %eax,%eax
0x080483d7 <main+23>: je 0x80483f2 <main+50>
0x080483d9 <main+25>: sub $0xc,%esp
0x080483dc <main+28>: push $0x80484dc
0x080483e1 <main+33>: call 0x80482e4 <_init+72>
0x080483e6 <main+38>: add $0x10,%esp
0x080483e9 <main+41>: movl $0x0,0xfffffffc(%ebp)
0x080483f0 <main+48>: jmp 0x8048402 <main+66>
0x080483f2 <main+50>: sub $0xc,%esp
0x080483f5 <main+53>: push $0x80484ea
0x080483fa <main+58>: call 0x80482e4 <_init+72>
0x080483ff <main+63>: add $0x10,%esp
0x08048402 <main+66>: mov 0xfffffffc(%ebp),%ea x
0x08048405 <main+69>: leave
0x08048406 <main+70>: ret

So when we reach our call at <main+16>, there are no arguments for our
function, so we just execute the call. ‘Call’ pushes the return address to the stack,
then transfers control to oops (at 80483a4).

Relative
Address

Size Bytes
(Words)

Info

ESP 4 (1) Return address, 0x080483d5 <main+21>

Now we enter ‘oops’.

0x080483db <spill+0>: push %ebp << push old base pointer
0x080483dc <spill+1>: mov %esp,%ebp << set new base pointer
0x080483de <spill+3>: sub $0x8,%esp << make room for our buf

…

The first thing that happens always happens. The old Base Pointer is pushed on
to the stack. The new Base Pointer is set to the current Stack Pointer. Then some
room is made for some local variables (sub $0x8, %esp). Our ‘buf’ will be in
there (the first 4 bytes).

So here’s the stack now:

Relative
Address

Size Bytes
(Words)

Info

ESP 4 (1) Our buf[4]

ESP + 4 4 (1) Old Base Pointer

ESP + 8 4 (1) Return address, 0x080483d5 <main+21>

So, it appears that we have everything in order. Compile the code above. You
will get a warning about gets() being dangerous and we are about to see why.
Run the code. When the prompt comes up, enter AAA.

-sh-2.05b$./buf
AAA
Buf done OK.

Looks Ok. Try entering 5 A’s.

-sh-2.05b$./buf
AAAAA
Buf done OK.
Segmentation fault

Hmm. That’s not good. A segmentation fault is your code “barfing”. Lets try
and see what’s happening with our trusty debugger gdb.

AAAAA
Buf done OK.

Program received signal SIGSEGV, Segmentation fault .
0x080483e9 in main ()
(gdb) inf reg
eax 0xd 13
ecx 0xb0a680 11576960
edx 0xd 13
ebx 0xb09ffc 11575292
esp 0xfef06be0 0xfef06be0
ebp 0xfef00041 0xfef00041
esi 0x1 1
edi 0xb0c0fc 11583740
eip 0x80483e9 0x80483e9
eflags 0x10282 66178
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Here is the output after typing 5 A’s in the debugger. Something interesting in
ebp register. Lets try 6 A’s:

AAAAAA
Buf done OK.

Program received signal SIGSEGV, Segmentation fault .
0x080483e9 in main ()
(gdb) inf reg
eax 0xd 13
ecx 0xb0a680 11576960
edx 0xd 13
ebx 0xb09ffc 11575292
esp 0xfee633c0 0xfee633c0
ebp 0xfe004141 0xfe004141
esi 0x1 1
edi 0xb0c0fc 11583740
eip 0x80483e9 0x80483e9
eflags 0x10286 66182
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Look at ebp again. Above, the last two digits were 41. Now the last four digits
are 4141. Hmm. Did you know that 41 is the hex ASCII code for ‘A’. Lets try 8
A’s

AAAAAAAA

Program received signal SIGSEGV, Segmentation fault .
0x08048301 in _start ()
(gdb) inf reg
eax 0x1 1
ecx 0x0 0
edx 0xb0b714 11581204
ebx 0xb09ffc 11575292
esp 0xfef2795c 0xfef2795c
ebp 0x41414141 0x41414141
esi 0x1 1
edi 0xb0c0fc 11583740
eip 0x8048301 0x8048301
eflags 0x10286 66182
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Look at the Base Pointer - 41414141. Our A’s have smashed over the ebp. What
happened? Look at our stack map again:

Relative
Address

Size Bytes
(Words)

Info

ESP 4 (1) Our buf[4]

ESP + 4 4 (1) Old Base Pointer

ESP + 8 4 (1) Return address, 0x080483d5 <main+21>

Our char buf is only 4 characters long. gets does not check bounds, and will take
any input you give to it. In the last case it wrote 8 A’s to our buf starting at the
ESP. Well, as you can see, 8 bytes also writes right over top of the saved “Old
Base Pointer”.

What if we wrote more than 8 bytes into the buf? We could overwrite the next
stack entry, which is our saved return address. If we did that, we could return
anywhere we wanted! Hmmm. We can’t type the address at the prompt. We
need something else. What if we made a program to output our desired return
address, then redirected the output to our program?

Take a look:

int main(int argc, char *argv[]) {

 int i = 0;
 char buf[12];
 for (i = 0;i <= 8; i+=4)
 *(long *) &buf[i] = 0x80483f2;
 puts(buf);
}

This code creates a buffer and fills it with hex 0x80483f2 repeating. It outputs
this string. Compile and run it. The output will be garbage, as these characters
cannot be displayed properly. Why are we using 0x80483f2? By looking at the
assembly code from main above, I know from experience that the second printf
call (The one that will never run) starts there (Note - this may be different on
your machine - Look at the command at 80483f2. Find it in your code and
substitute the number). If we are successful in our little experiment here, the
input to our function oops should not only overwrite the ebp, it should overwrite
the return value as well. When the code goes to return, it should return to our
“This should never print” printf. Lets do it!

Here’s my result of piping the output of one (trick) into buf:

-sh-2.05b$ (./trick;cat)|./buf
This should never print

Segmentation fault

It should never print, but it did. That is a buffer overflow, and we exploited it.

That’s a lot for now. As an exercise, browse the source code you have available
and on the net to see function usage. Look at some of the headers in
/usr/include for header files.

Next:

Pointers and Structures

Appendix A, Important Sections of “Average” Assembly Code.

08048370 <main>:
 8048370: 55 push %ebp
 8048371: 89 e5 mov %esp ,%ebp
 8048373: 83 ec 18 sub $0x1 8,%esp
 8048376: 83 e4 f0 and $0xf ffffff0,%esp
 8048379: b8 00 00 00 00 mov $0x0 ,%eax
 804837e: 29 c4 sub %eax ,%esp
 8048380: b8 00 00 80 3f mov $0x3 f800000,%eax
 8048385: 89 45 fc mov %eax ,0xfffffffc(%ebp)
 8048388: b8 00 00 40 40 mov $0x4 0400000,%eax
 804838d: 89 45 f8 mov %eax ,0xfffffff8(%ebp)
 8048390: 83 ec 08 sub $0x8 ,%esp
 8048393: ff 75 f8 pushl 0xff fffff8(%ebp)
 8048396: ff 75 fc pushl 0xff fffffc(%ebp)
 8048399: e8 36 00 00 00 call 8048 3d4 <average>
 804839e: 83 c4 10 add $0x1 0,%esp
 80483a1: d9 5d f4 fstps 0xff fffff4(%ebp)
 80483a4: 83 ec 04 sub $0x4 ,%esp
 80483a7: d9 45 f4 flds 0xff fffff4(%ebp)
 80483aa: 8d 64 24 f8 lea 0xff fffff8(%esp),%esp
 80483ae: dd 1c 24 fstpl (%es p)
 80483b1: d9 45 f8 flds 0xff fffff8(%ebp)
 80483b4: 8d 64 24 f8 lea 0xff fffff8(%esp),%esp
 80483b8: dd 1c 24 fstpl (%es p)
 80483bb: d9 45 fc flds 0xff fffffc(%ebp)
 80483be: 8d 64 24 f8 lea 0xff fffff8(%esp),%esp
 80483c2: dd 1c 24 fstpl (%es p)
 80483c5: 68 cc 84 04 08 push $0x8 0484cc
 80483ca: e8 e1 fe ff ff call 8048 2b0 <printf@plt>
 80483cf: 83 c4 20 add $0x2 0,%esp
 80483d2: c9 leave
 80483d3: c3 ret

080483d4 <average>:
 80483d4: 55 push %ebp
 80483d5: 89 e5 mov %esp ,%ebp
 80483d7: 83 ec 08 sub $0x8 ,%esp
 80483da: d9 45 08 flds 0x8(%ebp)
 80483dd: d8 45 0c fadds 0xc(%ebp)
 80483e0: d9 05 f0 84 04 08 flds 0x80 484f0
 80483e6: de f9 fdivrp %st, %st(1)
 80483e8: d9 5d fc fstps 0xff fffffc(%ebp)
 80483eb: 8b 45 fc mov 0xff fffffc(%ebp),%eax
 80483ee: 89 45 f8 mov %eax ,0xfffffff8(%ebp)
 80483f1: d9 45 f8 flds 0xff fffff8(%ebp)
 80483f4: c9 leave
 80483f5: c3 ret
 80483f6: 90 nop
 80483f7: 90 nop

