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This paper characterizes the cycle structure of a completely random net. Variables such as 
number of cycles of a specified length, number of cycles, number of cyclic states and length 
of cycle are studied. A square array of indicator variables enables convenient study of 
moment structure. Additionally, exact and asymptotic distributional results are presented. 

1. Introduction. Random switching net models have been employed in 
various contexts to aid in understanding and simulating aspects of the 
behavior of biological systems. Two of the most notable examples are 
neural net models and genetic net models. The former model components 
of the central nervous system and are typically developed from formal, in 
the sense of McCulloch and Pitts (1943), neurons. Discussions are given 
in Griffith (1971) and in Arbib (1972). The latter model the genetic 
structure of cells and have been presented in a series of papers by 
Kauffman (1969a, 1969b, 1970, 1971, 1974). Recently, Cavender (1977) has 
noted that switching net models can provide behavioral agreement with 
that of a wide range of biological organisms. 

As Sherlock (1979) notes, analytical limitations rather than lack of 
biological relevance have generally tended to hinder the impact of this 
type of modelling enterprise. However,  for one instance, that of a com- 
pletely random switching net, virtually complete mathematical descrip- 
tion can be provided. While completely random networks are not in 
themselves benchmarks which demonstrate the need to exercise struc- 
tural and/or functional control over the net models. That is, from know- 
ledge of the behavior of very large completely random switching nets, we 
learn how to formulate restricted net models exhibiting more (real world) 
plausible behavior. The utilization of "threshold levels" for neurons in a 
neural net or of "forcing inputs" to genes in a genetic net are illustrations 
of the imposition of such control. The intent of this article is to present a 
concise, accessible behavioral summary of the completely random situa- 
tion. While some of the results in the sequel have been discussed by 
others, the primary objectives here are to unify, clarify and simplify. 

A switching net consists of a set of N elements having an associated 
interconnectance structure. Each element has binary response to input 
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information and at any instant in time the net is in one of 2 N distinct 
states. The net operates on discrete (clock) time such that its state at time 
t uniquely determines its state at time t + 1. For a completely random net 
the choice of successor state to a state is made via an equally likely 
selection from all 2 N possible net states. 

Since the number of net states is finite and the net is deterministic, 
given an arbitrary initial state, the sequence of states arising from this 
initial one must necessarily encounter a state it has previously been in. 
Thereafter, it must repeat this intermediate sequence of states. Such a 
sequence of states is called a cycle. The number of distinct states in the 
cycle is called the cycle length. For a given net, some (at least one) 
elements will be cyclic but others may be transient occurring during a 
run-in prior to cycling. For a given net there may be an assortment of 
cycles of varying lengths. Thus, each net creates a cycle structure (or 
space) which, for small N, is typically depicted through a state diagram. 

Any net may be described in terms of its transition matrix. That is, 
placing net states in one-to-one correspondence with the integers from 1 
through 2 N we can form a 2 N x 2 N matrix T, whose entries T~j are such 
that 

{~ if state i is successor to state j 
T~j = if otherwise. 

The transition matrix representation of a net shows that any net may be 
viewed as a transformation from a set of n = 2 N elements into itself. This 
description suffices for examination of the cycle structure of a net but 
sacrifices the binary character of the net. However,  in the completely 
random net the binary aspect is immaterial and thus in the sequel, we 
study the mathematically equivalent form of the problem, the charac- 
terization of the cycle space of a random transformation on a finite set. 
Griffith recognizes this equivalence (sec. 8.2.3.) in offering several 
behavorial results. Kauffman does as well (1970), in discussing the results 
of simulations of completely random nets. Amongst the important 
mathematical efforts on this problem are the papers of Rubin and 
Sitgreaves (1954), Harris (1960), Katz (1955), Kruskal (1954), Folkert 
(1955), Cull (1971, 1978) and Gontcharoff (1944). Chapter 4 of the book 
by Riordan (1958) on cycles of permutations is directly relevant. As 
noted earlier, the reader may find some of the ensuing results across 
these references. 

In concluding this section, we return to the transition matrix T. By 
definition, T has exactly one "1" per column. Suppose T results in a 
cycle structure with k transient elements and m cycles of length 
rl, rE, r3 . . . . .  r,, respectively. Then Cull (1978) shows that the charac- 
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teristic polynomial of T, I T - A I  I, where operations are performed in the 
real field, will have the form 

+Ak~l (a~' - 1). 
i=1 

Clearly, Tr(T) gives the number of elements on cycles of length 1 and 
more generally, Tr(T m) yields the number of states on cycles whose 
length divides m. Hence,  Tr(T n~) equals the number of states on cycles 
and n -  Tr(T";) equals the number of transient states. How may we 
obtain a matrix Hm from T such that Tr(Hm) equals the number of states 
on cycles whose length is exactly m? Let C,, ={primes-< m which 
appear in the prime representation of m} (i.e. appear with a power--- 1) 
and let N,, ---number of elements in C,,. The number of subsets of N,, is 
2 Nm and the number of subsets of size k is (~m) = N,,k- At a given k let j 
index the subsets of size k so that the 2 Nm subsets may be denoted by Ckj, 
k =0,1,2 . . . . .  N,,, ] =  1,2 . . . . .  Nmk. Let gki equal m divided by the 
product of all the elements in Ck~. Then 

THEOREM. For each m, m = 1,2 . . . . .  n, let 

Nm Nmk 
H , . : E ( - - 1 ) k 2  T gk~. 

k=O j = l  

Then Tr(H,,) = number of states on cycles whose length is exactly m. 

Proo[. A direct inclusion-exclusion argument. 

2. Random Transformations and Cycle Structure Random Variables. 
The selection of a random (equally likely) transformation T is con- 

veniently accomplished as a sequence of n independent multinomial 
trials where the j,h trial chooses the successor to state j in an equiprob- 
able fashion from amongst the n elements. Then, with respect to cycles 
of length l, Tr(T) is distributed binomially (n, (l/n)) with limiting dis- 
tribution Poisson (1). But what about longer cycles or, more generally, 
the nature of the cycle structure of such a random transformation? We 
will examine the distributions of: 

(i) the number of cycles of a specified length 
(ii) the number of cycles 
(iii) the number of cyclic states 
(iv) the length of a cycle. 

These issues are not easily pursued through the matrices T" and H,,. 
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We may  readily s tudy the moments  of the random variables in (i)-(iii) 
through the n x n array of random variables.  

D~'l . . . . . . .  D~',, 

where  

Le t  

and 

D~l . . . . . . .  D~,, 

(1) 

D r / =  
if state xi is on  a cycle  of  length r 
if otherwise.  

An,r = ~ D~i = number  of states on a cycle  of length r, 
i = l  

(2) 

B.,r = r-~A.,, = number  of cycles  of length r, (3) 

-- , ' :  -- {'o i, state x, c clic 
~=l if transient,  (4) 

U,, = ~ A.,~ = ~ C'~ = number  of cyclic states 
i = l  i = 1  

(5) 

Vn = ~ Bn,r = n u m b e r  of  cycles. (6) 
r = l  

For  any fixed r the joint distr ibution of  D ~  . . . . .  D'~. or of any subse t  
will be that of  a collection of  dependent  interchangeable random vari- 
ables. The marginal distr ibution of any D~i is directly 

P(D~ = 1) = r -  1)! n -r = n-t '+~ (7) 

where  (n)r is the falling factorial  of  r terms starting at n. Immediate ly ,  
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then  (with ~ indicat ing n ~ oo) 

E(A,,.r) = n-r(n)r ~ 1, (8) 

E(B.,~) = r-'n-r(n)~ ~ r-',  (9) 

E(CT) = n-'  ~ n-r(n)~ ~O, (10) 
r=l 

E(U.)  = ~ n - ~ ( n ) r ~  (11) 
r=l 

E(V . )  = ~ r - ~ n - r ( n ) ~ .  (12) 
r = l  

The  limits imply that  with increasing n u m b e r  of e lements  the prob-  
ability of any part icular  e l ement  being cyclic tends  to 0, but  the expec ted  
number  of cyclic states and of cycles tends to ~. 

To get m o m e n t s  of order  m, we need  the joint  dis tr ibut ion of any 
subset  of size m of the D~i. For  any pair, D"~g, DTi, we have three cases:  
(i) r ~  s, i ~  j ;  (ii) r = s, i ~  j ;  and (iii) r e  s, i = j. For  (i) we have 

. = = f n  -~+~+" -1) - ' (n) r+s ,  r + s < n  P(Dr, 1,D"~j 1) = [ 0  (n 
' r + s > n ;  

for  (ii) 

P(D" 1 D" 1) r i  = = = , r j  

for  (iii) 

n-<~+'(n - 1)-~(r - 1)(n)r + n-<Zr+'(n - 1)- '(n)2.  
r <- n/2 
n- '+~(n-1)- ' ( r -1) (n)r ;  n /2<r<_n;  
0 r > n  

P(D"~i = 1) = O. 

In each case,  using the marginal ,  (7), we may  comple te  the joint  dis- 
tr ibution. Thus ,  covar iances  be tween  any pair of D~i may  be obta ined 
and var iances  and covar iances  for  the variables in (2)-(6) 
as well. In part icular ,  A.,r and A.,s (also B.,r and B.,s) are negat ively 
corre la ted  but  asymptot ica l ly  uncorre la ted .  Also,  as n ~ ~ var (A . j )  ~ r, var 
(B . . r )~r  -~ and var ( C 7 ) ~ 0 .  Var ( U . ) ~  and var ( V . ) ~ ,  but  these  are 
mos t  easily shown  using results  in Sect ion  4. 

As to the joint  dis t r ibut ion of any subset  of size m of the D~i, suppose  
first that  all m variables are in the same row of (1). Taking mr <_ n, and 
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using the interchangeabil i ty of the variables, we require 

P ,  .... - P(s ta tes  a,  . . . .  , am, each on a cycle of length r) 
- - P ( D "  = 1  D" = 1  D" = 1  r c q  ~ r o t  2 , �9 �9 �9 ~ r o t  n �9 

Consider  all possible partitions of m with no part  greater  than r. If a 
given partition has parts ml . . . . .  mj, let n(m~ . . . . .  m~) be the number  of 
ways  to allocate m distinct objects  into ] like cells with mi in cell i 
(~=~ m~-- m). Also associate with m~,m2 . . . . .  m~ the event  
E,r(m~ . . . . .  ms) defined by {states a ~ , . . . ,  a,,, on the same cycle of length 
r, states a,,,+~ . . . .  , am,+,,~ on the same cycle of length r, etc.}. If ~,, is the 
set of all partitions of m, and ~e,,,~ is the set of all partitions of m with no 
part  greater  than r, then 

P . . . . .  = ~, n(ml . . . . .  ms)P[E,,,.(ml . . . . .  mi)], 
5Pra , r  

where  

[. ]1 
P(E.r(.., . . . . . .  i)) = [(n).~]-'(n)~n-J~[( r -  1)!] j J ( r -  mi)! �9 

i 

U s i n g  Pn.m-l.r, we may  complete  the joint distribution of the mD~,.  
Suppose that the m D~i are all in the same column of (1), say 
D~,i, D~2i . . . . .  D~m~. Then  their joint distribution will be multinomial with 
associated P~ = n-~+l)(n)a~, j = 1 , 2 , . . . ,  n. Combining the above ideas, we 
may  obtain the joint distribution of any subset  of size m of the D~. We 
omit the details. 

3. Exact  Distributions. The exact  distribution of U, can be obtained 
following ideas given by Rubin and Sitgreaves (1954). Given T, for any  
state x, let S(x)  be the set of all successors  to x, i.e. 

S(x)  = {x': Trx = x' for some r -> 0}. 

Then,  with k -> + 1, 
P ( x  has k successors ,  S(x)  has cycle of length r, x is not c y c l i c ) =  
P ( T x ~  x; T2X7 ~ Tx, T2x~ x; T3x7 ~ T2x, T 3 x ~  Tx, T 3 x ~  x; Tk-lx7 ~ Tk-2x, 
. . . .  T k - l x ~  X; Tkx = Tk-rx) 
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Thus, 

P ( S ( x )  has cycle of length r, x is not cyclic) 

= ~,  n-(k+')(n)k. (13) 
k ~ r + l  

But 

P ( S ( x )  has cycle of length r, x is not cyclic) 

= ~ P ( S ( x )  has cycle of length r, x is not cyclic, U. = u) 
u ~ r  

= ~ P ( S ( x )  has cycle of length rlx is not cyclic, U. = u) P ( x  is not cyclic 

I l l ,  = u)  P ( U ,  = u) (14) 

- - ( F - -  

= ~_, n - U p ( u ,  = u). 

u = r Irl U 

=u) 

Since (13) and (14) are equal for all r, 

n-(k+')(n)k - ~ n-(k+')(n)k, 
k = r + l  k = r + 2  

= (.u)-'(. - = 

u = r  u = r ~ l  
(nu)-~(n  - u ) P ( U ,  = u),  

whence 

P ( U ,  = u)  = n-("+l~ln ' ) ,u,  u = 1 , 2 , . . . ,  n. (15) 

From (15), P ( U ,  = n ) =  n - "n  !. This is seen directly by noting that U, = n 
iff T is l - 1  and that there are n! such T. Harris (1960) offers an 
alternative development of (15) by decomposing the cycle space of T and 
employing a convenient identity from Katz (1955). Using (15), we have 
the identity 

~_, n - " ( n ) u u  = n. 
U = l  
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Using (11) and (15), we have 

E(U. )  = nE(U. ) - ' .  

Similarly, we can develop identities for higher moments of U,, e.g. 

E ( U  2) = 2n - E(U,) .  

The exact distributions of V, and B,,r may be obtained through their 
conditional distributions, given U,. Such events as v cycles resulting 
from u cyclic states or k cycles of length r resulting from u cyclic states 
may be viewed in terms of cycle classes of permutations of u distinct 
objects. Riordan (1958), Chap. 4, is helpful here, e.g. from pp. 70-72 we 
have 

a(u, v )=  P(  V, = v lU . = u) =(-l)U+Vs(u, v)(u!) -1, (16) 

where s(u, v) are Stirling numbers of the first kind. From the familiar 
recurrence relationship for such numbers (Riordan, 1958, p. 33), we 
obtain 

a(u, v) = u- ' (u  - 1 ) a ( u -  1, v) + u - ' a (u  - 1, v -  1). 

From(16) 

P(V. = v) = ~ a(u, v)n-("+~(n).u. (17) 

This distribution is derived in a more complicated form by Folkert 
(1955), employing the aforementioned Katz identity. Using (12) and (17), 
we may create an identity for E(V,) .  Similar identities can be developed 
for higher moments of V,. Using a generating function argument (Riot- 
dan, 1958: p. 71), the w th factorial moments of V,, given U,, can be 
derived: 

f l a w [ t ( t + l ) ) . . . ( t + u - 1 ) ]  I , w < u  
E [ ( V . ) ~ [ U .  = u] = u!  ~ U  .t=, 

0 , w > u .  

At w = l  

r=l  r~ 
(18) 
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whence the conditional mean of V., given U~, behaves like log U, when 
U, is large. 

Similar computation reveals that the conditional variance of V., given 
U,, also behaves like log tam when U. is large. 

For the exact distribution of B,,~ (equivalently, A,,r), let 

[3(u, r, k )  - P(Bo,~ = k I Un = u) .  (19) 

It is straightforward to show that 

[3(u, r, k )  = r - k ( k ! ) - ' [ 3 ( u  - kr, r, 0). 

[w/r] 
Since [3(w, r , O ) =  1 -  E [3(w, r, k )  ([ ] indicates greater integer in) and 

since /3(w, r, 0) = 1 when w < r, [3(u, r, k )  can be computed recursively. 
Thus, from (19) 

tl 

P(B , ,~  = k)  = , ~ � 9  [3(u, r, k )n - ( "§  ". (20) 

From Riordan (1958, pp. 82-84) we may show that the W th factorial 
moment of B .... given U n = u ,  is 

E ( ( B ~ r ) w I U ,  = u)  - I r - W '  w <-[u/r] 
' - I . 0  , w > [ w / r ] .  

(21) 

At w = 1, E(Bn,rl  U~ = u )  = r -~, r <- u, and summing both sides, 1 - r - u 
again yields (18). V a r  (Vn,rl U~ = u )  = r - '  as well, if 2 r -  u. 

In concluding this section, we examine the expected length of a cycle 
denoted by E C L .  We first compute the likelihood of any particular cycle 
structure under a random T. Let mt be the number of cycles of length l, 
l = 1,2 . . . . .  n, and let mo= n - E m i l  = the number of transient states. 
Then for 1~m~l <_ n, 

P ( m  cycles of length l, l = 1,2 . . . .  , n, and mo transient states) 
= P ( m o ,  ml  . . . . .  m . )  
= P ( m l , . . . ,  m.lUn = n - m o ) P ( U n  = n - rno) 

1~=1 mr! Im' n-~-"~+') (n)~-mo(n - mo) 
l = 1  

= m~! I m' n ! n - ("-m~247  - too) .  
l I = l  

(Note: Sherlock (1979) considers the conditional distribution above at 
greater length.) 
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For the cycle structure (mo, mt . . . . .  m.) the average cycle length will 
be (Y~m;)-~Emll, whence 

ECL = ~, (Zmt)-'(Zmtl)P(mo, ml . . . . .  m.), (22) 

where the outer sum is over the set {(m0, m~ . . . .  , m,): m~ >- O, Emil <- n}. 
More directly, since Zmjl is a value of U, and Zmj is a value of V,, 

ECL = E[(V,,) -~ (.7,]. 

It is important to note that in determining ECL we have, for a 
particular net, defined "average cycle length" assuming cycles to be 
equally likely, e.g. if a net has 3 cycles of lengths 10, 5 and 3 we obtain an 

average length= 10(1) + 5 ( 1 ) +  3 ( ~ ) =  6. Average cycle length for a par- 

ticular net may also be defined assuming equally likely selection of a 
cyclic state. For the above example we would then obtain an average (1o) 
cycle length = 10 ]-g +5  + 3 = 7.4. Kauffman (1969a) and Cull 

(1978) studied ECL under this latter definition. 

4. Asymptotic Results. Using Harris' idea (1960, p. 1047), we obtain the 
asymptotic probability density of U,. Letting W, = U,/X/n and using 
(15), we may show that IV, converges in distribution to a random 
variable W having a Rayleigh distribution, i.e. 

fw(w)  = w e -~/2, w > O. 

P 

Hence U. ~ .  Since E ( W  r) = T/ZF(r + 2/2), r > -  2, we have the asymp- 
totic behavior of all moments of U., i.e. E(U~) = O(n':2). 

From remarks after (18), E(V. )  behaves like E(log U.) and var ( V . ) =  
var E(V . IU . )+  E var(V.[U.)  behaves like var(log U.)+ E(log U.). 
Since by simple expansions E(log U.) = O(log n) and var (log U.) = O(1), 
we have E(V. )  and var (V.) both O(log n). 

For ECL, a bivariate expansion of ( V : I ) u .  reveals that the 
[E(V.)]-IE(U.) term dominates and, thus, that ECL = O[(log n)-tX/n]. 

Finally, we show that the asymptotic distribution of B.,. is Poisson 
(r-Z). The well-known fact that if X is distributed Poisson (A), then the 
w 'h factorial moment of X is A ~ (see, e.g. Johnson and Kotz, 1969: p. 90) 
means we only need show that lira E[(T.:)w] = r -w, w = 1,2 . . . . .  Using 

t l  ---~oo 
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P 

(21) and the fac t  that U, ~ ,  we have 

lim E[(Bn.r)w] = lim E[E(Bn.,)wl Un] 
n ---~oo tl ___~oo 

= lim r-~P[(U, /r )  > _ w] 
n ~  

r - w "  

5. Summary.  We summarize  the results of  the previous  sect ions by  
returning to the comple te ly  random net, setting n = 2N: 

(i) the expec ted  number  of  cyclic  states is of the order  2 N/2 
(ii) the expec ted  number  of  transient  states is of  the order  2 N 
(iii) the expec ted  number  of  cycles  is of  the order  N 
(iv) the likelihood that any particular state is cyclic  is of the order  2 -N/2 
(v) the expec ted  number  of  cycles  of length r converges  to 1/r 
(vi) the expec ted  number  of  states on cycles  of  length r converges  to 1 
(vii) the expec ted  cycle  length is of  the order  (N- l )2  N/2. 
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