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Introduction

Imagine a personal software agent engaging in electronic commerce on your behalf.
Say the task of this agent is to track goods available for sale in various online
venues over time, and to purchase some of them on your behalf for an attractive
price. In order to be successful, your agent will need to embody your preferences
for products, your budget, and in general your knowledge about the environment
in which it will operate. Moreover, the agent will need to embody your knowledge
of other similar agents with which it will interact (e.g., agents who might compete
with it in an auction, or agents representing store owners)—including their own
preferences and knowledge. A collection of such agents forms a multiagent system.
The goal of this book is to bring under one roof a variety of ideas and techniques
that provide foundations for modeling, reasoning about, and building multiagent
systems.

Somewhat strangely for a book that purports to be rigorous, we will not give
a precise definition of a multiagent system. The reason is that many competing,
mutually inconsistent answers have been offered in the past. Indeed, even the
seemingly simpler question—What is a (single) agent?—has resisted a definitive
answer. For our purposes, the following loose definition will suffice: Multiagent
systems are those systems that include multiple autonomous entities with either
diverging information or diverging interests, or both.

Scope of the book

The motivation for studying multiagent systems often stems from interest in ar-
tificial (software or hardware) agents, for example software agents living on the
Internet. Indeed, the Internet can be viewed as the ultimate platform for interac-
tion among self-interested, distributed computational entities. Such agents can be
trading agents of the sort discussed above, “interface agents” that facilitate the in-
teraction between the user and various computational resources (including other
interface agents), game-playing agents that assist (or replace) human players in a
multiplayer game, or autonomous robots in a multi-robot setting. However, while
the material is written by computer scientists with computational sensibilities, it is
quite interdisciplinary and the material is in general fairly abstract. Many of the
ideas apply to—and indeed are often taken from—inquiries about human individu-
als and institutions.



Xiv Introduction

The material spans disciplines as diverse as computer science (including arti-
ficial intelligence, theory, and distributed systems), economics (chiefly microe-
conomic theory), operations research, analytic philosophy, and linguistics. The
technical material includes logic, probability theory, game theory, and optimiza-
tion. Each of the topics covered easily supports multiple independent books and
courses, and this book does not aim to replace them. Rather, the goal has been
to gather the most important elements from each discipline and weave them to-
gether into a balanced and accurate introduction to this broad field. The intended
reader is a graduate student or an advanced undergraduate, prototypically, but not
necessarily, in computer science.

Since the umbrella of multiagent systems is so broad, the questions of what to
include in any book on the topic and how to organize the selected material are
crucial. To begin with, this book concentrates on foundational topics rather than
surface applications. Although we will occasionally make reference to real-world
applications, we will do so primarily to clarify the concepts involved,; this is despite
the practical motivations professed earlier. And so this is the wrong text for the
reader interested in a practical guide into building this or that sort of software. The
emphasis is rather on important concepts and the essential mathematics behind
them. The intention is to delve in enough detail into each topic to be able to tackle
some technical material, and then to point the reader in the right directions for
further education on particular topics.

Our decision was thus to include predominantly established, rigorous material
that is likely to withstand the test of time, and to emphasize computational perspec-
tives where appropriate. This still left us with vast material from which to choose.
In understanding the selection made here, it is useful to keep in mind the following
keywords:coordination competition algorithms game theoryandlogic. These
terms will help frame the chapter overview that follows.

Overview of the chapters

Starting with issues of coordination, we beginGhapter 1 andChapter 2 with
distributed problem solving. In these multiagent settings there is no question of
agents’ individual preferences; there is some global problem to be solved, but
for one reason or another it is either necessary or advantageous to distribute the
task among multiple agents, whose actions may require coordination. These chap-
ters are thus strongly algorithmic. The first one looks at distributed constraint-
satisfaction problems. The latter addresses distributed optimization and specifically
examines four algorithmic methods: distributed dynamic programming, action se-
lection in distributed MDPs, auction-like optimization procedures for linear and
integer programming, and social laws.

We then begin to embrace issues of competition as well as coordination. While
the area of multiagent systems is not synonymous with game theory, there is no
guestion that game theory is a key tool to master within the field, and so we devote
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XV

several chapters to iChapters 3, 5 and6 constitute a crash course in noncooper-
ative game theory. They cover, respectively, the normal form, the extensive form,
and a host of other game representations. In these chapters, as in others which draw
on game theory, we culled the material that in our judgmentis needed in order to be
a knowledgeable consumer of modern-day game theory. Unlike traditional game
theory texts, we also include discussion of algorithmic considerations. In the con-
text of the normal-form representation that material is sufficiently substantial to
warrant its own chapte€hapter 4.

We then switch to two specialized topics in multiagent system<CHapter 7
we cover multiagent learning. The topic is interesting for several reasons. First,
it is a key facet of multiagent systems. Second, the very problems addressed in
the area are diverse and sometimes ill understood. Finally, the techniques used,
which draw equally on computer science and game theory (as well as some other
disciplines), are not straightforward extensions of learning in the single-agent case.

In Chapter 8 we cover another element unique to multiagent systems, com-
munication. We cover communication in a game-theoretic setting, as well as in
cooperative settings traditionally considered by linguists and philosophers (except
that we see that there too a game-theoretic perspective can creep in).

Next is a three-chapter sequence that might be called “protocols for groups."
Chapters 9covers social-choice theory, including voting methods. This is a non-
strategic theory, in that it assumes that the preferences of agents are known, and
the only question is how to aggregate them prope@iapter 10 covers mecha-
nism design, which looks at how such preferences can be aggregated by a central
designer even when agermie strategic. FinallyChapter 11 looks at the special
case of auctions.

Chapter 12 covers coalitional game theory, in recent times somewhat neglected
within game theory and certainly underappreciated in computer science.

The material in Chapters 1-12 is mostly Bayesian and/or algorithmic in nature.
And thus the tools used in them include probability theory, utility theory, algo-
rithms, Markov decision problems (MDPs), and linear/integer programming. We
conclude with two chapters on logical theories in multiagent system€&hhap-
ter 13 we cover modal logic of knowledge and belief. This material hails from
philosophy and computer science, but it turns out to dovetail very nicely with the
discussion of Bayesian games in Chapter 6. Finallgmapter 14 we extend the
discussion in several directions—we discuss how beliefs change over time, on log-
ical models of games, and how one might begin to use logic to model motivational
attitudes (such as “intention”) in addition to the informational ones (knowledge,
belief).

Required background

The book is rigorous and requires mathematical thinking, but only basic back-
ground knowledge. In much of the book we assume knowledge of basic computer
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science (algorithms, complexity) and basic probability theory. In more technical
parts we assume familiarity with Markov decision problems (MDPs), mathemati-
cal programming (specifically, linear and integer programming), and classical logic.
All of these (except basic computer science) are covered briefigpendices but

those are meant as refreshers and to establish notation, not as a substitute for back-
ground in those subjects. (This is true in particular of probability theory.) However,
above all, a prerequisite is a capacity for clear thinking.

How to teach (and learn) from this book

There are partial dependencies among the 13 chapters. To understand them, it is
useful to think of the book as consisting of the following “blocks".

Block 1, Chapters 1-2: Distributed problem solving
Block 2, Chapters 3—6: Noncooperative game theory
Block 3, Chapter 7: Learning

Block 4, Chapter 8: Communication

Block 5, Chapters 9—11: Protocols for groups

Block 6, Chapter 12: Coalitional game theory

Block 7, Chapters 13—-14: Logical theories

Within every block there is a sequential dependence (except within Block 1,
in which the sections are largely independent of each other). Among the blocks,
however, there is only one strong dependence: Blocks 3, 4, and 5 each depend on
some elements of noncooperative game theory and thus on block 2 (though none
requires the entire block). Otherwise there are some interesting local pairwise
connections between blocks, but none that requires that both blocks be covered,
whether sequentially or in parallel.

Given this weak dependence among the chapters, there are many ways to craft
a course out of the material, depending on the background of the students, their
interests, and the time available. The book’s Web site

http://ww. masfoundati ons. org
contains several specific syllabi that have been used by us and other colleagues, as
well as additional resources for both students and instructors.

On pronouns and gender

We use male pronouns to refer to agents throughout the book. We debated this
between us, not being happy with any of the alternatives. In the end we reluctantly
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settled on the “standard” male convention rather than the reverse female convention
or the grammatically dubious “they.” We urge the reader not to read patriarchal
intentions into our choice.
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sensor network

Distributed Constraint Satisfaction

In this chapter and the next we discuss cooperative situations in which agents col-
laborate to achieve a common goal. This goal can be viewed as shared between
the agents or, alternatively, as the goal of a central designer who is designing the
various agents. Of course, if such a designer exists, a natural question is why it
matters that there are multiple agents; they can be viewed merely as end sensors
and effectors for executing the plan devised by the designer. However, there exist
situations in which a problem needs to be solved in a distributed fashion, either
because a central controller is not feasible or because one wants to make good
use of the distributed resources. A good example is provideskhgor networks

Such networks consist of multiple processing units, each with local sensor capabil-
ities, limited processing power, limited power supply, and limited communication
bandwidth. Despite these limitations, these networks aim to provide some global
service. Figure 1.1 shows an example of a fielded sensor network used for mon-
itoring environmental quantities like humidity, temperature and pressure in an of-
fice environment. Each sensor can monitor only its local area and, similarly, can
communicate only with other sensors in its local vicinity. The question is what al-
gorithm the individual sensors should run so that the center can still piece together
a reliable global picture.

Distributed algorithms have been widely studied in computer science. We con-
centrate on distributed problem-solving algorithms of the sort studied in artificial
intelligence. We divide the discussion into two parts. In this chapter we cover
distributed constraint satisfaction, where agents attempt in a distributed fashion to
find a feasible solution to a problem with global constraints. In the next chapter
we look at agents who try not only to satisfy constraints, but also to optimize some
objective function subject to these constraints.

Later in this book we will encounter additional examples of distributed problem
solving. Each of them requires specific background, however, which is why they
are not discussed here. Two of them stand out in particular.

« In Chapter 7 we encounter a family of techniques that involve learning, some
of them targeted at purely cooperative situations. In these situations the agents
learn through repeated interactions how to coordinate a choice of action. This
material requires some discussion of noncooperative game theory (discussed in
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Figure 1.1: Part of a real sensor network used for indoor environmental monitoring.

Chapter 3) as well as general discussion of multiagent learning (discussed in
Chapter 7).

* In Chapter 13 we discuss the use of logics of knowledge (introduced in that
chapter) to establish the knowledge conditions required for coordination, in-
cluding an application to distributed control of multiple robots.

Defining distributed constraint satisfaction problems

A constraint satisfaction problem (CSR)defined by a set of variables, domains

for each of the variables, and constraints on the values that the variables might take
on simultaneously. The role of constraint satisfaction algorithms is to assign values
to the variables in a way that is consistent with all the constraints, or to determine
that no such assignment exists.

Constraint satisfaction techniques have been applied in diverse domains, includ-
ing machine vision, natural language processing, theorem proving, and planning
and scheduling, to name but a few. Here is a simple example taken from the do-
main of sensor networks. Figure 1.2 depicts a three-sensor snippet from the sce-
nario illustrated in Figure 1.1. Each of the sensors has a certain radius that, in
combination with the obstacles in the environment, gives rise to a particular cover-
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1.1 Defining distributed constraint satisfaction problems 3

age area. These coverage areas are shown as ellipses in Figure 1.2. As you can see,
some of the coverage areas overlap. We consider a specific problem in this setting.
Suppose that each sensor can choose one of three possible radio frequencies. All
the frequencies work equally well so long as no two sensors with overlapping cov-
erage areas use the same frequency. The question is which algorithms the sensors
should employ to select their frequencies, assuming that this decision cannot be
made centrally.

//
S

Figure 1.2: A simple sensor net problem.

The essence of this problem can be captured as a graph-coloring problem. Fig-
ure 1.3 shows such a graph, corresponding to the sensor network CSP above. The
nodes represent the individual units; the different frequencies are represented by
colors; and two nodes are connected by an undirected edge if and only if the cov-
erage areas of the corresponding sensors overlap. The goal of graph coloring is to
choose one color for each node so that no two adjacent nodes have the same color.

{red, blue, green}

{red, blue, green} 7 {red, blue, green}
Figure 1.3: A graph-coloring problem equivalent to the sengd problem of Fig-
ure 1.2.

Formally speaking, a CSP consists of a finite set of variakles { X, ..., X},
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a domainD; for each variableX;, and a set of constraint’y,...,C,,}. Al-
though in general CSPs allow infinite domains, we assume here that all the domains
are finite. In the graph-coloring example above there were three variables, and they
each had the same domaimed, green, blue}. Each constraint is a predicate on
some subset of the variables, s&;,, ..., X;,; the predicate defines a relation

that is a subset of the Cartesian prodiigt x --- x D; . Each such constraint
restricts the values that may be simultaneously assigned to the variables participat-
ing in the constraint. In this chapter we restrict the discussiduirtary constraints,

each of which constrains exactly two variables. For example, in the map-coloring
case, each “not-equal” constraint applied to two nodes.

Given a subsef of the variables, amnstantiation ofS is an assignment of a
unique domain value for each variable i it is legalif it does not violate any
constraint that mentions only variables $h A solution to a network is a legal
instantiation of all variables. Typical tasks associated with constraint networks are
to determine whether a solution exists, to find one or all solutions, to determine
whether a legal instantiation of some of the variables can be extended to a solution,
and so on. We will concentrate on the most common task, which is to find one
solution to a CSP, or to prove that none exists.

In a distributed CSP, each variable is owned by a different agent. The goal is
still to find a global variable assignment that meets the constraints, but each agent
decides on the value of his own variable with relative autonomy. While he does
not have a global view, each agent can communicate with his neighbors in the
constraint graph. A distributed algorithm for solving a CSP has each agent engage
in some protocol that combines local computation with communication with his
neighbors. A good algorithm ensures that such a process terminates with a legal
solution (or with a realization that no legal solution exists) and does so quickly.

We discuss two types of algorithms. Algorithms of the first kind embody a least-
commitment approach and attempt to rule out impossible variable values without
losing any possible solutions. Algorithms of the second kind embody a more adven-
turous spirit and select tentative variable values, backtracking when those choices
prove unsuccessful. In both cases we assume that the communication between
neighboring nodes is perfect, but nothing about its timing; messages can take more
or less time without rhyme or reason. We do assume, however, that ifirsahels
multiple messages to nogethose messages arrive in the order in which they were
sent.

Domain-pruning algorithms

Under domain-pruning algorithms, nodes communicate with their neighbors in or-
der to eliminate values from their domains. We consider two such algorithms. In
the first, thefiltering algorithm each node communicates its domain to its neigh-
bors, eliminates from its domain the values that are not consistent with the values
received from the neighbors, and the process repeats. Specifically, each;node
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1.2 Domain-pruning algorithms 5

with domainD; repeatedly executes the procedRevis€z;, x;) for each neigh-
borz;.

procedure Revise(z, z,)
forall v; € D; do

if there is no valuey; € D; such thatv; is consistent withy; then
| deletev; from D;

arc consistency The process, known also under the general tarmconsistencyterminates
when no further elimination takes place, or when one of the domains becomes
empty (in which case the problem has no solution). If the process terminates with
one value in each domain, that set of values constitutes a solution. If it terminates
with multiple values in each domain, the result is inconclusive; the problem might
or might not have a solution.

Clearly, the algorithm is guaranteed to terminate, and furthermore it is sound (in
thatif it announces a solution, or announces that no solution exists, it is correct), but
it is not complete (i.e., it may fail to pronounce a verdict). Consider, for example,
the family of very simple graph-coloring problems shown in Figure 1.4. (Note that
problem (d) is identical to the problem in Figure 1.3.)

{red} {red}

X3
lue} 7 {red, blue, green}

{red, blue} {red, blue, green}

(d)

X5 X3
{red, blue, green}7’é {red, blue, green}

Figure 1.4: A family of graph coloring problems

In this family of CSPs the three variables (i.e., nodes) are fixed, as are the “not-
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equal’ constraints between them. What are not fixed are the domains of the vari-
ables. Consider the four instances of Figure 1.4.

(a) Initially, as the nodes communicate with one another, anlg messages
result in any change. Specifically, when eithgror x5 receivex,’'s message
they removered from their domains, ending up with, = {blue} andD3; =
{blue, green}. Then, when:, communicates his new domaintg, =3 further
reduces his domain tiyreen}. At this point no further changes take place and
the algorithm terminates with a correct solution.

(b) The algorithm starts as before, but ongeand x3 receiver;’s message they
each reduce their domains {dlue}. Now, when they update each other on
their new domains, they each reduce their domairg tahe empty set. At this
point the algorithm terminates and correctly announces that no solution exists.

(c) In this case the initial set of messages yields no reduction in any domain. The
algorithm terminates, but all the nodes have multiple values remaining. And so
the algorithm is not able to show that the problem is overconstrained and has no
solution.

(d) Filtering can also fail when a solution exists. For similar reasons as in instance
(c), the algorithm is unable to show that in this case the prolileeshave a
solution.

In general, filtering is a very weak method and, at best, is used as a preprocess-
ing step for more sophisticated methods. The algorithm is directly based on the
unit resolution notion ofunit resolutionfrom propositional logic. Unit resolution is the following
inference rule:

Ay

Ay A A A

To see how the filtering algorithm corresponds to unit resmhitwe must first
Nogood write the constraints as forbidden value combinations, céllegoods For exam-
ple, the constraint that, and 2, cannot both take the value “red” would give rise
to the propositional sentene€z; = red A xo = red), which we write as the No-
good{z,, x> }. Ininstance (b) of Figure 1.4, ageR% updated his domain based
on agentX;’s announcement tha = red and the Nogoodz, = red,z, =
red}.

r1 = red
—(z; = red A\ zy = red)

(9 = red)
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1.2 Domain-pruning algorithms 7

Unit resolution is a weak inference rule, and so it is not surprising that the filter-
hyper-resolution  ing algorithm is weak as wellHyper-resolutionis a generalization of unit resolu-
tion and has the following form:

A VA V--- VA,

_'(Al /\Al,l /\ALQ /\ )
_‘(Ag /\Ag,l /\A272 /\ )

(A A Aps A Apg A---)

Ay A NAg A N A A )

Hyper-resolution is both sound and complete for proposititogic, and indeed
it gives rise to a complete distributed CSP algorithm. In this algorithm, each agent
repeatedly generates new constraints for his neighbors, notifies them of these new
constraints, and prunes his own domain based on new constraints passed to him by
his neighbors. Specifically, he executes the following algorithm, wh&kk is the
set of all Nogoods of which agentis aware andVG; is a set of new Nogoods
communicated from agernjtto agent.

procedure ReviseHRN G;, NG7)
repeat
let NG denote the set of new Nogoods thatan derive fromVG; and
his domain using hyper-resolution
if NG} is nonemptyhen

NG; — NG;|JNG?

send the Nogood#&/ GG to all neighbors of

if {} € NG} then

| stop

until there is no change iils set of Nogood#V G

The algorithm is guaranteed to converge in the sense that after sending and re-
ceiving a finite number of messages, each agent will stop sending messages and
generating Nogoods. Furthermore, the algorithm is complete. The problem has
a solution iff, on completion, no agent has generated the empty Nogood. (Obvi-
ously, every superset of a Nogood is also forbidden, and thus if a single node ever
generates an empty Nogood then the problem has no solution.)

Consider again instance (c) of the CSP problem in Figure 1.4. In contrast to
the filtering algorithm, the hyper-resolution-based algorithm proceeds as follows.
Initially, z; maintains four Nogoods—{z, = red, z, = red}, {x, = red,z3 =
red},

{z; = blue, x5 = blue},{x, = blue,x3 = blue} —which are derived directly
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from the constraints involving,. Furthermoreg,; must adopt one of the values in
his domain, sac; = red V x; = blue. Using hyper-resolution;; can reason:

x; =redV x, = blue
—(zy =red A xy = red)
—(zy = blue A x3 = blue)

—(zy = red A x3 = blue)

Thus,z; constructs the new Nogoodr, = red, x3 = blue}; in a similar way
he can also construct the Nogodd, = blue,z3 = red}. x; then sends both
Nogoods to his neighbors, and z3. Using his domain, an existing Nogood and
one of these new Nogoods; can reason:

Ty = redV x9 = blue
—(zy = red A x3 = blue)
—(xzy = blue A x3 = blue)

= (x5 = blue)

Using the other new Nogood from, z, can also construct the Nogodd; =
red}. These two singleton Nogoods are communicatedst@nd allow him to
generate the empty Nogood. This proves that the problem does not have a solution.

This example, while demonstrating the greater power of the hyper-resolution-
based algorithm relative to the filtering algorithm, also exposes its weakness; the
number of Nogoods generated can grow to be unmanageably large. (Indeed, we
only described the minimal number of Nogoods needed to derive the empty No-
good; many others would be created as all the agents processed each other's mes-
sages in parallel. Can you find an example?) Thus, the situation in which we find
ourselves is that we have one algorithm that is too weak and another that is im-
practical. The problem lies in the least-commitment nature of these algorithms;
they are restricted to removing only provably impossible value combinations. The
alternative to such “safe” procedures is to explore a subset of the space, making
tentative value selections for variables, and backtracking when necessary. This is
the topic of the next section. However, the algorithms we have just described are
not irrelevant; the filtering algorithm is an effective preprocessing step, and the
algorithm we discuss next is based on the hyper-resolution-based algorithm.

Heuristic search algorithms

A straightforwardcentralizedtrial-and-error solution to a CSP is to first order the

variables (e.g., alphabetically). Then, given the ordeningr,, ..., z,, invoke

the procedure ChooseValug(#% }). The procedure ChooseValue is defined recur-
sively as follows, wherd vy, vo, ..., v;_; } is the set of values assigned to variables
Ti1yeeeyLj_1-
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procedure ChooseValue(z {vy, va, ..., v;_1})
v; < value from the domain of; that is consistent withv,, vy, ..., v;_1}
if no such value existithen

| backtrack

else if 1 = n then
| stop

else
| ChooseValue(g 1, {v1,vs,...,0;})

This exhaustive search of the space of assignments has the advantage of com-
pleteness. But it is “distributed” only in the uninteresting sense that the different
agents execute sequentially, mimicking the execution of a centralized algorithm.

The following attempt at a distributed algorithm has the opposite properties; it
allows the agents to execute in parallel and asynchronously, is sound, but is not
complete. Consider the following naive procedure, executed by all agents in paral-
lel and asynchronously.

select a value from your domain

repeat
if your current value is consistent with the current values of your

neighbors, or if none of the values in your domain are consistent with them
then
| do nothing

else
L select a value in your domain that is consistent with those of your

neighbors and notify your neighbors of your new value
until there is no change in your value

Clearly, when the algorithm terminates because no constraint violations have
occurred, a solution has been found. But in all other cases, all bets are off. If the
algorithm terminates because no agent can find a value consistent with those of his
neighbors, there might still be a consistent global assignment. And the algorithm
may never terminate even if there is a solution. For example, consider example (d)
of Figure 1.4: if every agent cycles sequentially between red, green, and blue, the
algorithm will never terminate.

We have given these two straw-man algorithms for two reasons. Our first rea-
son is to show that reconciling true parallelism and asynchrony with soundness
and completeness is likely to require somewhat complex algorithms. And second,

1. There are various ways to implement the backtracking in this procedure. The most straightforward way
is to undo the choices made thus far in reverse chronological order, a procedure knomoredogical
backtracking It is well known that more sophisticated backtracking procedures can be more efficient, but
that does not concern us here.
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the fundamental heuristic algorithm for distributed CSPs—the asynchronous back-
tracking (or ABT) algorithm—shares much with the two algorithms. From the first
algorithm it borrows the notion of a global total ordering on the agents. From the
second it borrows a message-passing protocol, albeit a more complex one, which
relies on the global ordering. We will describe the ABT in its simplest form. After
demonstrating it on an extended example, we will point to ways in which it can be
improved upon.

The asynchronous backtracking algorithm

As we said, the asynchronous backtracking (ABT) algoritheuaees a total order-

ing (the “priority order") on the agents. Each binary constraint is known to both
the constrained agents and is checked in the algorithm by the agent with the lower
priority between the two. A link in the constraint network is always directed from
an agent with higher priority to an agent with lower priority.

Agents instantiate their variables concurrently and send their assigned values to
the agents that are connected to them by outgoing links. All agents wait for and
respond to messages. After each update of his assignment, an agent sends his new
assignment along all outgoing links. An agent who receives an assignment (from
the higher-priority agent of the link), tries to find an assignment for his variable
that does not violate a constraint with the assignment he received.

ok? messages are messages carrying an agent’s variable assignment. When an
agentA; receives arok? message from ageunt;, A, places the received assign-
ment in a data structure callegent_view, which holds the last assignmeat
received from higher-priority neighbors such4s Next, A; checks if his current
assignment is still consistent with higjent_view. If it is consistent,A; does
nothing. If not, then4; searches his domain for a new consistent value. If he finds
one, he assigns his variable that value and sek@snessages to all lower-priority
agents linked to him informing them of this value. Otherwide backtracks.

The backtrack operation is executed by sending a Nogood message. Recall
that a Nogood is simply an inconsistent partial assignment, that is, assignments of
specific values to some of the variables that together violate the constraints on those
variables. In this case, the Nogood consistsigk agent_view.? The Nogood is
sent to the agent with the lowest priority among the agents whose assignments are
included in the inconsistent tuple in the Nogood. Agdntwho sends a Nogood
message to agemt; assumes tha#l; will change his assignment. Thereforé;
removes from hisigent_view the assignment ofl; and makes an attempt to find
an assignment fad,;’s variable that is consistent with the updatg@nt_view.

Because of its reliance on building up a set of Nogoods, the ABT algorithm
can be seen as a greedy version of the hyper-resolution algorithm of the previous
section. In the latter, all possible Nogoods are generated by each agent and commu-
nicated to all neighbors, even though the vast majority of these messages are not

2. We later discuss schemes that achieve better performance by avoiding always sending this entire set.
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useful. Here, agents make tentative choices of a value for their variables, only gen-
erate Nogoods that incorporate values already generated by the agents above them
in the order, and—importantly—communicate new values only to some agents and
new Nogoods to only one agent.

Below is the pseudocode of the ABT algorithm, specifying the protocol for agent
Ai-

whenreceived (Ok?(4;, d;)) do
add (4;, d;) to agent_view
| check_agent_view
whenreceived (Nogooghogood do
addnogoodto Nogood list
forall (A, d;) € nogoodif A, is not a neighbor ofi; do
add (4, d,) to agent_view
L requestd,, to addA; as a neighbor
| check_agent_view

procedure check_agent_view
when agent_viewand current_valuare inconsistentio

if no value inD; is consistent witlagent_viewhen
| backtrack

else
selectd € D; consistent withagent_view
current_value— d
send (&?, (A4;, d)) to lower-priority neighbors

procedure backtrack

nogood«— some inconsistent set, using hyper-resolution or similacgdure
if nogoodis the empty sahen

broadcast to other agents that there is no solution

terminate this algorithm

else

select(A;, d;) € nogoodwhereA; has the lowest priority imogood
send (Nogoognogood to A,

remove(A;, d;) from agent_view

check _agent_view

Notice a certain wrinkle in the pseudocode, having to do with the addition of
edges. Since the Nogood can include assignments of somegavitich A; was
not previously constrained with, after addidg’s assignment to itsgent_view
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A; sends a message t#; asking it to addA; to its list of outgoing links. Further-
more, after adding the link4; sends arok? message tol; each time it reassigns

its variable. After storing the Nogood,; checks if its assignment is still consistent.

If it is, a message is sent to the agent the Nogood was received from. This resend-
ing of the assignment is crucial since, as mentioned earlier, the agent sending a
Nogood assumes that the receiver of the Nogood replaces its assignment. There-
fore it needs to know that the assignment is still valid. If the old assignment that
was forbidden by the Nogood is inconsistedt, tries to find a new assignment
similarly to the case when ark? message is received.

A simple example

In Section 1.3.3 we give a more elaborate example, but herebigehillustra-
tion of the operation of the ABT algorithm on one of the simple problems en-
countered earlier. Consider again the instance (c) of the CSP in Figure 1.4, and
assume the agents are ordered alphabeticallyt,, x3. They initially select val-
ues at random; suppose they all seldete. x, notifiesx, and x5 of his choice,
andz, notifies xz. x,'s local view is thus{xz; = blue}, andzs’s local view is
{z, = blue, x5 = blue}. x5 and x3 must check for consistency of their local
views with their own valuesr, detects the conflict, changes his own valuedd,
and notifiesz3. In the meantimeg; aso checks for consistency and similarly
changes his value teed; he, however, notifies no one. Thep receives a second
message from:,, and updates his local view o, = blue, z, = red}. At this
point he cannot find a value from his domain consistent with his local view, and,
using hyper resolution, generates the Nog¢og = blue, z, = red}. He com-
municates this Nogood to,, the lowest ranked agent participating in the Nogood.
xo now cannot find a value consistent with his local view, generates the Nogood
{x; = blue}, and communicates it to,. =, detects the inconsistency with his
current value, changes his valuerted, and communicates the new valueatg
and z3. The process now continues as befarg,changes his value back tdue,
x5 finds no consistent value and generates the Nogoed= red, x> = blue},
and thenxz, generates the Nogood:; = red}. At this pointz; has the Nogood
{z; = blue} as well as the Nogooflz, = red}, and using hyper-resolution he
generates the Nogodd, and the algorithm terminates having determined that the
problem has no solution.

The need for the addition of new edges is seen in a slightly modified example,
shown in Figure 1.5.

As in the previous example, here toggenerates the Nogodd:; = blue, xy =
red} and notifiesz,. x5 is not able to regain consistency by changing his own
value. Howevery, is not a neighbor of,, and sox, does not have the value
x1 = blue in his local view and is not able to send the Nogdad = blue} to
x1. SOz, Sends a request to, to addz, to his list of neighbors and to sead his
current value. From there onward the algorithm proceeds as before.

Uncorrected manuscript dfultiagent System®ublished by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.



1.3.3

1.3 Heuristic search algorithms 13

/new val( X5, 2))
ocal_view

X1> X27

(new_val(X,,1

ocal_view

{(X1, 1)}
(NOgOOd’{(Xb 1)7 (X27 2)})

Figure 1.5: Asynchronous bac(lgt)racking with dynamic link addition.

An extended example: the four queens problem

In order to gain additional feeling for the ABT algorithm beytthe didactic exam-

ple in the previous section, let us look at one of the canonical CSP problems: the
n-queens problem. More specifically, we will consider the fqueens problem,
which asks how four queens can be placed dna4 chessboard so that no queen
can (immediately) attack any other. We will describe ABT’s behavior in terms of
cycles of computation, which we somewhat artificially define to be the receiving
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Figure 1.6: Cycle 1 of ABT for four Figure 1.7: Cycle 2 of ABT for four

gueens. All agents are active. queens.A,, A; and A, are active. The
Nogood message id; = 1 A Ay =

of messages, the computations triggered by received messages, and the sending of
messages due to these computations.

In the first cycle (Figure 1.6) all agents select values for their variables, which
represent the positions of their queens along their respective rows. Arbitrarily, we
assume that each begins by positioning his queen at the first square of his row. Each
agent 1, 2, and 3 send&? messages to the agents ordered after him:sends
three messages!, sends two, and agem; sends a single message. Agehf
does not have any agent after him, so he sends no messages. All agents are active
in this first cycle of the algorithm’s run.

In the second cycle (Figure 1.7) agedts A3, andA, receive theok? messages
sent to them and proceed to assign consistent values to their variables. Agent
assigns the value 4 that is consistent with the assignments @ihd A, that he
receives. Agen#l, has no value consistent with the assignment4 gfA,, andAs,
and so he sends & ogood containing these three assignmentsitpand removes
the assignment afi; from hisAgent_View. Then, he assigns the value 2 which
is consistent with the assignments that he received figrand A, (having erased
the assignment ofi;, assuming that it will be replaced because of the Nogood
message). The active agents in this cycle dse A3, and A,. Agent A, acts
according to his information about,’s position and moves to square 3, sending
two ok? messages to inform his successors about his value. As can be seen in
Figure 1.7, A5 has moved to square 4 after receiving th& messages of agents
and A,. Note that agen#; thinks that these agents are still in the first column of
their respective rows. This is a manifestation of concurrency that causes each agent
to act at all times in a form that is based only onAgent_ViewTheAgent_View
of agentA; includes thak? messages he received.

The third cycle is described in Figure 1.8; ol is active. After receiving
the assignment of agent,, A; sends back a Nogood message to agént He
then erases the assignment of agépntrom his Agent_View and validates that
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Figure 1.8: Cycle 3. Only; is active. Figure 1.9: Cycles 4 and H,, A3 and
The Nogood message i4; = 1 — A, are active. The Nogood message is
A2§£3 A1=1/\A2=4—>A3§£4

his current assignment (the value 4) is consistent with the assignment of 4gent
AgentsA; and A, continue to be idle, having received no messages that were sent
in cycle 2. The same is true for agefif. Agent A; also receives the Nogood sent
by A, in cycle 2 but ignores it since it includes an invalid assignmentp(i.e.,
(2,1) and not the currently corre¢2, 4)).

Cycles 4 and 5 are depicted in Figure 1.9. In cycle 4 agknmoves to square
4 because of the Nogood message he received. His former value was ruled out and
the new value is the next valid one. He informs his succesdgrand A, of his
new position by sending twok? messages. In cycle 5 ageAg receives agent
A,'s new paosition and selects the only value that is compatible with the positions
of his two predecessors, square 2. He sends a message to his successor informing
him about this new value. Agemt, is now left with no valid value to assign and
sends a Nogood messagedgthat includes all his conflicts. The Nogood message
appears at the bottom of Figure 1.9. Note that the Nogood message is no longer
valid. AgentA,, however, assumes thdt will change his position and moves to
his only valid position (giverd;’s anticipated move)—column 3.

Consider now cycle 6. Agem, receives the new assignment of agdntand
sends him a Nogood message. Having erased the assignméntfier sending
the Nogood message, he then decides to stay at his current assignment (column 3),
since it is compatible with the positions of agerdtsand A,. AgentA; isidle in
cycle 6, since he receives no messages from either abeot agentA4, (who are
idle too). So,A4, is the only active agent at cycle 6 (see Figure 1.10).

In each of cycles 7 and 8, one Nogood is sent. Both are depicted in Figure 1.11.
First, agentAs, after receiving the Nogood message frohy, finds that he has
no valid values left and sends a Nogood4g. Next, in cycle 8, agen#l, also
discovers that his domain of values is exhausted and sends a Nogood message
to A;. Both sending agents erase the values of their successors (to whom the
Nogood messages were sent) from thejent_views and therefore remain in
their positions, which are now conflict free.
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Figure 1.10: Cycle 6. Only, is active. Figure 1.11: Cycles 7 and &4; is ac-

The Nogood messageif, = 1A A, = tive in the first cycle and, is active in

4 — Az # 2. the second. The Nogood messages are
Al = 1—>A27é4andA1 ?é 1.

Figure 1.12: Cycle 9. Only, is active. Figure 1.13: Cycle 10. Only; is ac-
tive.

Cycle 9 involves only agem ;, who receives the Nogood message frdmand
S0 moves to his next value—square 2. Next, he sek@smessages to his three
successors.

The final cycle is cycle 10. Agem; receives theok? message ofd; and so
moves to a consistent value—square 1 of his row. Agéntand A, check their
Agent_Views after receiving the samek? messages from agent; and find
that their current values are consistent with the new positiod of Agent Az
sends amk? message to his successéy, informing of his move, butd, finds
no reason to move. His value is consistent with all value assignments of all his
predecessors. After cycle 10 all agents remain idle, having no constraint violations
with assignments on theirgent_views. Thus, this is a final state of the ABT
agorithm in which it finds a solution.
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Beyond the ABT algorithm

The ABT algorithm is the backbone of modern approaches taldiséd constraint
satisfaction, but it admits many extensions and modifications.

A major modification has to do with which inconsistent partial assignment (i.e.,
Nogood) is sent in the backtrack message. In the version presented earlier, which
is the early version of ABT, the fulbgent_view is sent. However, the full
agent_view is in many cases not a minimal Nogood; a strict subset of it nt&y a
be inconsistent. In general, shorter Nogoods can lead to a more efficient search
process, since they permit backjumping further up the search tree.

Here is an example. Consider an agdgtholding an inconsistentgent_view
with the assignments of agents, A,, A;, A, and A5. If we assume thatlg
is only constrained by the current assignmentsipfand A, sending a Nogood
message td;5 that contains all the assignments in thgent_view seems to be
awaste. After sending the Nogood th;, As will remove his assignment from
the agent_view and make another attempt to assign his variable, which will be
followed by an additional Nogood sent ty, and the removal ofd,’s assignment
from the agent_view. These attempts will continue until a minimal subset is
sent as a Nogood. In this example, it is the Nogood sem 40 The assignment
with the lower priority in the minimal inconsistent subset is removed from the
agent_view and a consistent assignment can now be found. In this exahmple t
computation ended by sending a Nogood to the culprit agent, which would have
been the outcome if the agent computed a minimal subset.

The solution to this inefficiency, however, is not straightforward, since finding a
minimal Nogood is in general intractable (specifically, NP-hard). And so various
heuristics are needed to cut down on the size of the Nogood, without sacrificing
correctness.

A related issue is the number of Nogoods stored by each agent. In the preceding
ABT version, each Nogood is recorded by the receiving agent. Since the number of
inconsistent subsets can be exponential, constraint lists with exponential size will
be created, and a search through such lists requires exponential time in the worst
case. Various proposals have been made to cut down on this number while preserv-
ing correctness. One proposal is that agents keep only Nogoods consistent with
their agent_view. While this prunes some of the Nogoods, in the worst case it
till leaves a number of Nogoods that is exponential in the size aigleat_view.

A further improvement is to store only Nogoods that are consistent with both the
agent'sagent_view and his current assignment. This approach, which is con-
sidered by some the best implementation of the ABT algorithm, ensures that the
number of Nogoods stored by any single agent is no larger than the size of the
domain.

Finally, there are approaches to distributed constraint satisfaction that do not
follow the ABT scheme, includingsynchronous forward checkimgdconcurrent
dynamic backtrackingDiscussion of them is beyond the scope of this book, but
the references point to further reading on the topic.
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History and references

Distributed constraint satisfaction is discussed in detail in Yokoo [2001], and re-
viewed in Yokoo and Hirayama [2000]. The ABT algorithm was initially intro-
duced in Yokoo [1994]. More comprehensive treatments, including the latest in-
sights into distributed CSPs, appear in Meisels [2008] and Faltings [2006]. The
sensor net figure is due to Carlos Guestrin.
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Distributed Optimization

In the previous chapter we looked at distributed ways of meeting global constraints.
Here we up the ante; we ask how agents can, in a distributed fashion, optimize a
global objective function. Specifically, we consider four families of techniques and
associated sample problems. They are, in order:

« Distributed dynamic programming (as applied to path-planning problems).
« Distributed solutions to Markov Decision Problems (MDPs).

« Optimization algorithms with an economic flavor (as applied to matching and
scheduling problems).

« Coordination via social laws and conventions, and the example of traffic rules.

2.1 Distributed dynamic programming for path planning

Like graph coloring, path planning constitutes another common abstract problem-
solving framework. A path-planning problem consists of a weighted directed graph
with a set ofn nodes, directed linksL, a weight functionv : L — R™, and two
nodess,t € N. The goalis to find a directed path fronto ¢ having minimal total
weight. More generally, we consider a set of goal ndfles N, and are interested

in the shortest path fromto any of the goal nodese T'.

This abstract framework applies in many domains. Certainly it applies when
there is some concrete network at hand (e.g., a transportation or telecommunication
network). But it also applies in more roundabout ways. For example, in a planning
problem the nodes can be states of the world, the arcs actions available to the agent,
and the weights the cost (or, alternatively, time) of each action.

2.1.1  Asynchronous dynamic programming

Path planning is a well-studied problem in computer sciemak @perations re-
search. We are interested in distributed solutions, in which each node performs a
local computation, with access only to the state of its neighbors. Underlying our
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20 2 Distributed Optimization

solutions will be theprinciple of optimality if nodex lies on a shortest path from
tot, then the portion of the path frosto x (or, respectively, fromx to t) must also
be the shortest paths betweeandx (resp.,z andt). This allows an incremental
divide-and-conquer procedure, also knowrdgeamic programming

Let us represent the shortest distance from any riomethe goalt ash*(i).
Thus the shortest distance froimto ¢ via a nodej neighboring: is given by
f*(i,5) = w(i,j) + h*(j), andh*(i) = min; f*(4,7). Based on these facts,
the AsyNCHDP algorithm has each node repeatedly perform the following proce-
dure. In this procedure, given in Figure 2.1, each noghintains a variablé (i),
which is an estimate di* (7).

procedure ASYNCHDP (node:)
if 7 is a goal nodeghen
| h(i) <0
else
| initialize h(¢) arbitrarily (e.qg., taco or 0)
repeat

forall neighbors;j do

L () — w(i,j) + ()

h(i) < min; f(j)

Figure 2.1: The asynchronous dynamic programming algorithm.

Figure 2.2 shows this algorithm in action. Thealues are initialized too, and
incrementally decrease to their correct values. The figure shows three iterations;
note that after the first iteration, not all finitevalues are correct; in particular, the
value 3 in nodef still overestimates the true distance, which is correctethén
next iteration.

One can prove that the#¥NCHDP procedure is guaranteed to converge to the
true values, that ish will converge toh*. Specifically, convergence will require
one step for each node in the shortest path, meaning that in the worst case con-
vergence will requirer iterations. However, for realistic problems this is of éttl
comfort. Not only can convergence be slow, but this procedure assumes a process
(or agent) for each node. In typical search spaces one cannot effectively enumer-
ate all nodes, let alone allocate them each a process. (For example, chess has
approximatelyl0'?° board positions, whereas there are fewer that atoms in
the universe and there have only bé6A° nanoseconds since the Big Bang.) So to
be practical we turn to heuristic versions of the procedure, which require a smaller
number of agents. Let us start by considering the opposite extreme in which we
have only one agent.

Learning real-time A*

In thelearning real-time A, or LRTA, algorithm, the agent starts at a given node,
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Figure 2.2: Asynchronous dynamic programming in action

performs an operation similar to that of asynchronous dynamic programming, and
then moves to the neighboring node with the shortest estimated distance to the goal,
and repeats. The procedure is given in Figure 2.3.

procedure LRTA*
1§ /l the start node
while 7 is not a goal nodelo

foreachneighborj do

L f() —w(@i,g) + h(5)

i «— argmin; f(j) Il breaking ties at random

h(i) < max(h(i), f ("))

R

Figure 2.3: The learning real-time*Algorithm.

As earlier, we assume that the set of nodes is finite and that all weidhtg)
are positive and finite. Note that this procedure uses a gieemigtic function
h(-) that serves as the initial value for each newly encounteref:.nd-or our
purposes it is not important what the precise function is. However, to guarantee
admissible certain properties of LRTA we must assume that is admissible This means
heuristic thath never overestimates the distance to the goal, that(ig, < h*(i). Because
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weights are nonnegative we can ensure admissibility by sétiinig= 0 for all 7,
athough less conservative admissible heuristic functions (built using knowledge of
the problem domain) can speed up the convergence to the optimal solution. Finally,
we must assume that there exists some path from every node in the graph to a goal
node. With these assumptions, LRTAas the following properties:

* Theh-values never decrease, and remain admissible.

« LRTA* terminates; the complete execution from the start node to termination at
the goal node is calledtaal.

« If LRTA* is repeated while maintaining tiievalues from one trial to the next,
it eventually discovers the shortest path from the start to a goal node.

« If LRTA* find the same path on two sequential trials, this is the shortest path.
(However, this path may also be found in one or more previous trials before it
is found twice in a row. Do you see why?)

Figure 2.4 shows four trials of LRTA Do you see why admissibility of the
heuristic is necessary?

LRTA* is a centralized procedure. However, we note that rather than have a
single agent execute this procedure, one can have multiple agents execute it. The
properties of the algorithm (call it LRTAn), with n agents) are not altered, but
the convergence to the shortest path can be sped up dramatically. First, if the
agents each break ties differently, some will reach the goal much faster than others.
Furthermore, if they all have access to a shdradlue table, the learning of one
agent can teach the others. Specifically, after every round and for eviety) =
max; h;(i), whereh; (i) is agentj’s updated value foh(i). Figure 2.5 shows an
execution of LRTA (2)—that is, LRTA with two agents—starting from the same
initial state as in Figure 2.4. (The hollow arrows show paths traversed by a single
agent, while the dark arrows show paths traversed by both agents.)

Action selection in multiagent MDPs

In this section we discuss the problem of optimal action selection in multiagent
MDPs! Recall that in a single-agent MDP the optimal policyis characterized
by the mutually-recursive Bellman equations:

Q™ (s,a) =r(s,a) + 3 ZP(S, a,3)V™ ()
V™ (s) = max Q™ (s,a)

Furthermore, these equations turn into an algorithm—spgadifj the dynamic-
programming-stylealue iteration algorithra—by replacing the equality signs="

1. The basics of single-agent MDPs are covered in Appendix C.
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Figure 2.4: Four trials of LRTA

with assignment operators=" and iterating repeatedly through those assignments.
However, in real-world applications the situation is not that simple. For example,
the MDP may not be known by the planning agent and thus may have to be learned.
This case is discussed in Chapter 7. But more basically, the MDP may simply be
too large to iterate over all instances of the equations. In this case, one approach
is to exploit independence properties of the MDP. One case where this arises is
when the states can be described by feature vectors; each feature can take on many
values, and thus the number of states is exponential in the number of features. One
would ideally like to solve the MDP in time polynomial in the number of features
rather than the number of states, and indeed techniques have been developed to
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Figure 2.5: Three trials of LRTA(2)

tackle such MDPs with factored state spaces.
We do not address that problem here, but instead on a similar one that has to
multiagent MDP  do with the modularity of actions rather than of states. mwdtiagent MDPany
(global) actionu is really a vector of local action@y, . .., a, ), one by each of.
agents. The assumption here is that the reward is commones®ithno issue of
competition among the agents. There is not even a problem of coordination; we
have the luxury of a central planner (but see discussion at the end of this section
of parallelizability). The only problem is that the number of global actions is ex-
ponential in the number of agents. Can we somehow solve the MDP other than by
enumerating all possible action combinations?

We will not address this problem, which is quite involved, in full generality. In-
stead we will focus on an easier subproblem. Suppose thd® thalues for the
optimal policy have already been computed. How hard is it to decide on which
action each agent should take? Since we are assuming away the problem of coordi-
nation by positing a central planner, on the face of it the problem is straightforward.
In Appendix C we state that once the optimal (or close to optirja)alues are
computed, the optimal policy is “easily” recovered; the optimal action in state
is arg max, Q™ (s,a). But of course ifa ranges over an exponential number of
choices by all agents, “easy” becomes “hard.” Can we do better than naively enu-
merating over all action combinations by the agents?
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In general the answer is no, but in practice, the interaction among the agents’
actions can be quite limited, which can be exploited both in the representation of
the@ function and in the maximization process. Specifically, ims@ases we can
associate an individud), function with each agerit and express th€ function
(either precisely or approximately) as a linear sum of the individyal

Q(s,a) = Z Qi(s,a).

The maximization problem now becomes

arg max Z Qi(s,a).

=1

This in and of itself is not very useful, as one still needs wklat the set of all
global actionsz, which is exponential im, the number of agents. However, it is
often also the case that each individda| depends only on a small subset of the
variables.

For example, imagine a metal-reprocessing plant with four locations, each with a
distinct function: one for loading contaminated material and unloading reprocessed
material; one for cleaning the incoming material; one for reprocessing the cleaned
material; and one for eliminating the waste. The material flow among them is
depicted in Figure 2.6.

out
. Station 1: Station 2:
In Load and Unload Clean
Station 4: Station 3;
Eliminate Waste Process

Figure 2.6: A metal-reprocessing plant

Each station can be in one of several states, depending on the load at that time.
The operator of the station has two actions available: “pass material to next station
in process,” and “suspend flow.” The state of the plant is a function of the state of
each of the stations; the higher the utilization of existing capacity the better, but
exceeding full capacity is detrimental. Clearly, in any given global state of the
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system, the optimal action of each local station depends only on the action of the
station directly “upstream” from it. Thus in our example the glo§afunction
becomes

Q(a1,az,a3,as) = Q1(a1,az) + Qa(asz, as) + Qs(ar, az) + Qu(as, as)

and we wish to compute

(arg max) Qi(ar, az) + Q2(az, as) + Qs(ar, as) + Qu(as, as).
a1,a2,a3,a4
Note that in the preceding expressions we omit the state agymince that is
being held fixed; we are looking at optimal action selection at a given state.

In this case we can employwariable eliminationalgorithm, which optimizes
the choice for the agents one at a time. We explain the operation of the algorithm
via our example. Let us begin our optimization with agent 4. To optimize
functions, and Q5 are irrelevant. Hence, we obtain

a?}g?fl% Q1 (a1, az) + Qs(ay,a3) + H}SX[Qz(CLz, as) + Qa(as, as)].

We see that to make the optimal choice owgr the values ofa, and a3 must
be known. Thus, what must be computed for ageig a conditional strategy
with a (possibly) different action choice for each action choice of agents 2 and 3.
The value that agent 4 brings to the system in the different circumstances can be
summarized using a new functien(A,, A;) whose value at the point,, a; is
the value of the internahax expression

es(az, as) = H}laX[Qz(am ay) + Q4(as, ay))].
Agent4 has now been “eliminated,” and our problem now reduces to cdingp

max Qq(a1,as2) + Qs(ai,as) + es(as, az),

ap,az,as

having one fewer agent involved in the maximization. Nex&,¢hoice for agent 3
is made, giving
max Q1 (ay, az) + ez(ar, as).

ai,az

wherees(ay, as) = max,, [@Q3(a1, az) + e4(az, az)] Next, the choice for agent 2
is made:

ez(ar) = H}laX[Ql(abaz) + es(ay, az))].
The remaining decision for agent 1 is now the following maxiation:

e; = maxey(ay).
a1

The resulte; is simply a number, the required maximization ougr. .., ay.
Note that although this expression is short, there is no free lunch; in order to per-
form this optimization, one needs to iterate not only over all actionaf the first
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agent, but also over the action of the other agents as needed to unwind the inter-
nal maximizations. However, in general the total number of combinations will be
smaller than the full exponential combination of agent actfons.

We can recover the maximizing set of actions by performing the process in re-
verse. The maximizing choice fe; defines the action] for agent 1:

a; = argmaxes(ay).
ai

To fulfill its commitment to agent 1, agent 2 must choose thaeaj that yielded
e2(ay),
ay = argmax[Q(aj, as) + e3z(aj, az)].

az

This, in turn, forces agent 3 and then agent 4 to select thedarecappropriately:

ay = argmax|Qs(aj, az) + es(as, az)l;

as

ay = arg max[Qs (a3, as) + Qa(az, as)].
ag
The actual implementation of this procedure allows sevezedions. Here are a
few of them:

A quick-down, slow-up two-pass sequential implementation: This follows the
example in that variables are eliminated symbolically one at a time starting with
a,. This is done inO(n) time. When up ta1; the actual maximization starts;
all values ofa; are tried, alongside all values of the variables appearing in the
unwinding of the expression. This phase requipé™) time in the worst case,
wherek is the bound on domain sizes.

A slow-down, quick-up two-phase sequential implementation: A similar proce-
dure, except here the actual best-response table is built as variables are elimi-
nated. This require® (k™) time in the worst case. The payoff is in the second
phase, where the optimization requires a simple table-lookup for each value of
the variable, resulting in a complexity 6f(kn).

Asynchronous versions: The full linear pass in both directions is not necessary,
given only partial dependence among variables. Thus in the down phase vari-
ables need await a signal from the higher-indexed variables with which they
interact (as opposed to all higher-indexed variables) before computing their best-
response functions, and similarly in the pass up they need await the signal from
only the lower-indexed variables with which they interact.

2. Full discussion of this point is beyond the scope of this book, but for the record, the complexity of the
algorithm is exponential in the tree width of theordination graph this is the graph whose nodes are the
agents and whose edges connect agents wiogalues share one or more arguments. The tree width is
also the maximum clique size minus one in the triangulation of the graph; each triangulation essentially
corresponds to one of the variable elimination orders. Unfortunately, it is NP-hard to compute the optimal
ordering. The notes at the end of the chapter provide additional references on the topic.
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One final comment. We have discussed variable elimination in the particular con-
text of multiagent MDPs, but it is relevant in any context in which multiple agents
wish to perform a distributed optimization of an factorable objective function.

Negotiation, auctions and optimization

In this section we consider distributed problem solving that has a certain economic
flavor. In the first section below we will informally give the general philosophy
and background; in the following two sections we will be more precise.

From contract nets to auction-like optimization

Contract netswere one of the earliest proposals for such an economic approach.
Contract nets are not a specific algorithm, but a framework, a protocol for imple-
menting specific algorithms. In a contract net the global problem is broken down
into subtasks, and these are distributed among a set of agents. Each agent has differ-
ent capabilities; for each ageithere is a functiom; such that for any set of tasks

T, ¢;(T) is the cost for agentto achieve all the tasks ifi. Each agent starts out

with some initial set of tasks, but in general this assignment is not optimal, in the
sense that the sum of all agents’ costs is not minimal. The agents then enter into a
negotiation process which improves on the assignment and, hopefully, culminates
in an optimal assignment, that is, one with minimal cost. Furthermore, the process
can have a so-calleanytime propertyeven if it is interrupted prior to achieving
optimality, it can achieve significant improvements over the initial allocation.

The negotiation consists of agents repeatedly contracting out assignments among
themselves, each contract involving the exchange of tasks as well as money. The
question is how the bidding process takes place and what contracts hold based on
this bidding. The general contract-net protocol is open on these issues. One partic-
ular approach has each agent bid for each set of tasks the agent’s marginal cost for
the task, that is, the agent’s additional cost for adding that task to its current set. The
tasks are allocated to the lowest bidders, and the process repeats. It can be shown
that there always exists a sequence of contracts that result in the optimal allocation.
If one is restricted to basic contract types in which one agent contracts a single
task to another agent, and receives from him some money in return, then in gen-
eral achieving optimality requires that agents enter into “money-losing" contracts
in the process. However, there exist more complex contracts—which involve con-
tracting for a bundle of tasks luster contracty, or a swap of tasks among two
agents (Swap contracty, or simultaneous transfers among many agentsuti-
agent contract§—whose combination allows for a sequence of contracts that are
not money losing and which culminate in the optimal solution.

At this point several questions may naturally occur to the reader.

* We start with some global problem to be solved, but then speak about minimiz-
ing the total cost to the agents. What is the connection between the two?
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« When exactly do agents make offers, and what is the precise method by which
the contracts are decided on?

« Since we are in a cooperative setting, why does it matter whether agents “lose
money" or not on a given contract?

We will provide an answer to the first question in the next section. We will see
that, in certain settings (specifically, those of linear programming and integer pro-
gramming), finding an optimal solution is closely related to the individual utilities
of the agents.

Regarding the second question, indeed one can provide several instantiations
of even the specific, marginal-cost version of the contract-net protocol. In the next
two sections we will be much more specific. We will look at a particular class of ne-
gotiation schemes, namely (specific kinds of) auctions. Every negotiation scheme
consists of three elements: (1) permissible ways of making offers (bidding rules
(2) definition of the outcome based on the offers (market clearing yuéexl (3)
the information made available to the agents throughout the process (information
dissemination rulgs Auctions are a structured way of settling each of these di-
mensions, and we will look at auctions that do so in specific ways. It should be
mentioned, however, that this specificity is not without a price. While convergence
to optimality in contract nets depends on particular sequences of contracts taking
place, and thus on some coordinating hand, the process is inherently distributed.
The auction algorithms we will study include an auctioneer, an explicit centralized
component.

The last of our questions deserves particular attention. As we said, we start with
some problem to be solved. We then proceed to define an auction-like process for
solving it in a distributed fashion. However it is no accident that this section pre-
cedes our (rather detailed) discussion of auctions in Chapter 11. As we see there,
auctions are a way to allocate scarce resources aselfiqterestecdgents. Auc-
tion theory thus belongs to the realm of game theory. In this chapter we also speak
about auctions, but the discussion has little to do with game theory. In the spirit
of the contract-net paradigm, in our auctions agents will engage in a series of bids
for resources, and at the end of the auction the assignment of the resources to the
“winners” of the auction will constitute an optimal (or near optimal, in some cases)
solution. However, in the standard treatment of auctions (and thus in Chapter 11)
the bidders are assumed to bid in a way that maximizes their personal payoff. Here
there is no question of the agents deviating from the prescribed bidding protocol
for personal gain. For this reason, despite the surface similarity, the discussion of
these auction-like methods makes no reference to game theory or mechanism de-
sign. In particular, while these methods have some nice properties—for example,
they are intuitive, provably correct, naturally parallelizable, appropriate for deploy-
ment in distributed systems settings, and tend to be robust to slight perturbations of
the problem specification—no claim is made about their usefulness in adversarial
situations. For this reason it is indeed something of a red herring, in this coopera-
tive setting, to focus on questions such as whether a given contract is profitable for
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a given agent. In noncooperative settings, where contract nets are also sometimes
pressed into service, the situation is of course different.

In the next two sections we will be looking at two classical optimization prob-
lems, one representable as a linear program (LP) and one only as an integer pro-
gram (IP) (for a brief review of LPs and IPs, see Appendix B). There exists a vast
literature on how to solve LPs and IPs, and it is not our aim in this chapter (or in
the appendix) to capture this broad literature. Our more limited aim here is to look
at the auction-style solutions for them. First we will look at an LP problem—the
problem ofweighted matching in a bipartite graphlso known as thassignment
problem We will then look at a more complex, IP problem—thatsacheduling
As we shall see, since the LP problem is relatively easy (specifically, solvable in
polynomial time), it admits an auction-like procedure with tight guarantees. The IP
problem is NP-complete, and so it is not surprising that the auction-like procedure
does not come with such guarantees.

The assignment problem and linear programming
The problem and its LP formulation

The problem ofveighted matching in a bipartite grapbtherwise known as the
assignment problenis defined as follows.

Definition 2.3.1 (Assignment problem)
A (symmetric) assignment probletonsists of

« A setN of n agents,
* A setX of n objects,
e AsetM C N x X of possible assignment pairs, and

« Afunctionv : M — R giving the value of each assignment pair.

An assignment is a set of paifs C M such that each agernit € N and each
objectj € X isin at most one pair irt. Afeasible assignmeid one in which all
agents are assigned an object. A feasible assignifiésioptimal if it maximizes

Z(i,j)es (i, 7).

An example of an assignment problem is the following (in thiareple, X =
{fL’l, T, x3} andN = {1, 2, 3})

i v(,x1) v(i,x2) v(ix
2 4 0
1 5 0
1 3 2

WN P
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In this small example it is not hard to see tiiatz, ), (2, z2), (3, z3) is an opti-
mal assignment. In larger problems, however, the solution is not obvious, and the
question is how to compute it algorithmically.

We first note that an assignment problem can be encoded as a linear program.
Given a general assignment problem as defined earlier, we introduce the indicator
matrixx; x; ; = 1 indicates that the pail, j) is selected, and; ; = 0 otherwise.

Then we express the linear program as follows.

maximize Z v(i,7)xi;

(i,j)EM
subjectto > z;; <1 Vie N
il 5)eM
> o<1 Vje X
il(i,5)eM

On the face of it the LP formulation is inappropriate sincdlawas for fractional
matches (i.e., fob < z; ; < 1). But as it turns out this LP has integral solutions.

Lemma 2.3.2The LP encoding of the assignment problem has a solution such
that for everyi, j it is the case that; ; = 0 or z; ; = 1. Furthermore, any opti-
mal fractional solution can be converted in polynomial time to an optimal integral
solution.

Since any LP can be solved in polynomial time, we have the following.
Corollary 2.3.3 The assignment problem can be solved in polynomial time.

This corollary might suggest that we are done. However, there are a number of
reasons to not stop there. First, the polynomial-time solution to the LP problem is
of complexity roughlyO(n?), which may be too high in some cases. Furthermore,
the solution is not obviously parallelizable, and is not particularly robust to changes
in the problem specification (if one of the input parameters changes, the program
must essentially be solved from scratch). One solution that suffers less from these
shortcomings is based on the economic notion of competitive equilibrium, which
we explore next.

The assignment problem and competitive equilibrium

Imagine that each of the objects & has an associated price; the price vector
isp = (p1,...,pn), Wherep; is the price of objecf. Given an assignment

S C M and a price vectop, define the “utility” from an assignmentto agent
iasu(i,j) = v(i,7) — p;. An assignment and a set of prices areampetitive
equilibriumwhen each agent is assigned the object that maximizes his utility given
the current prices. More formally, we have the following.
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Definition 2.3.4 (Competitive equilibrium) A feasible assignmeist and a price
vectorp are in competitive equilibriumwhen for every pairindi, j) € S itis the
case thatvk, u(i,j) > u(i, k).

It might seem strange to drag an economic notion into a discussion of combina-
torial optimization, but as the following theorem shows there are good reasons for
doing so.

Theorem 2.3.51f a feasible assignmerff and a price vectop satisfy the com-
petitive equilibrium condition thei' is an optimal assignment. Furthermore, for
any optimal solutionS, there exists a price vectgrsuch thatp and S satisfy the
competitive equilibrium condition.

For example, in the previous example, it is not hard to see that the optimal as-
signment(1, z4), (2, z2), (3, z3) is a competitive equilibrium given the price vec-
tor (2,4, 1); the “utilities” of the agents ar@, 1, and1, respectively, and none of
them can increase their profit by bidding for one of the other objects at the current
prices. We outline the proof of a more general form of the theorem in the next
section.

This last theorem means that one way to search for solutions of the LP is to
search the space of competitive equilibria. And a natural way to search that space
involves auction-like procedures, in which the individual agents “bid” for the dif-
ferent resources in a prespecified way. We will look at open outcry, ascending
auction-like procedures, resembling the English auction discussed in Chapter 11.
Before that, however, we take a slightly closer look at the connection between
optimization problems and competitive equilibrium.

Competitive equilibrium and primal-dual problems

Theorem 2.3.5 may seem at first almost magical; why would an economic notion
prove relevant to an optimization problem? However, a slightly closer look re-

moves some of the mystery. Rather than looking at the specific LP corresponding
to the assignment problem, consider the general (“primal”) form of an LP.

n
maximize Z Cix;
=1

SUbjeCt to Zaijl'i < bj \V/] S {1, ce ,m}
=1

Note that this formulation makes reverse usethand> signs as compared to
the formulation in Appendix B. As we remark there, this is simply a matter of the
signs of the constants used.
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The primal problem has a natural economic interpretation, regardless of its actual
origin. Imagine goroduction economyin which you have a set of resources and
a set of products. Each product consumes a certain amount of each resource, and
each product is sold at a certain price. Interprets the amount of produat
produced, and; as the price of product. Then the optimization problem can
be interpreted as profit maximization. Of course, this must be done within the
constraints of available resources. If we interpreis the available amount of
resourcg anda;; as the amount of resourgeneeded to produce a unit of produgct
then the constraint_, a,;2; < b; appropriately captures the limitation on resource

7]
Now consider the dual problem.

m
minimize Z by
=1

subject to Zaijyl- > ¢ Vie{l,...,n}
=1
(T Vie{l,...,m}

It turns out thaty; can also be given a meaningful economic interpretation,
namely, as thenarginal valueof resource, also known as itshadow price The
shadow price captures the sensitivity of the optimal solution to a small change in
the availability of that particular resource, holding everything else constant. A high
shadow price means that increasing its availability would have a large impact on
the optimal solution, and vice versa.

This helps explain why the economic perspective on optimization, at least in the
context of linear programming, is not that odd. Indeed, armed with these intuitions,
one can look at traditional algorithms such as the Simplex method and give them
an economic interpretation. In the next section we look at a specific auction-like
algorithm, which is overtly economic in nature.

A naive auction algorithm

We start with a naive auction-like procedure which is “almost” right; it contains
the main ideas, but has a major flaw. In the next section we will fix that flaw. The
naive procedure begins with no objects allocated, and terminates once it has found
a feasible solution. We define the naive auction algorithm formally as follows.

It is not hard to verify that the following is true of the algorithm.

Theorem 2.3.6 The naive algorithm terminates only at a competitive equilibrium.

3. To be precise, the shadow price is the value of the Lagrange multiplier at the optimal solution.
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Naive Auction Algorithm
/I Initialization:
S—10
forall j € X do
L pj 0
repeat
// Bidding Step:
letz € N be an unassigned agent
/I Find an objecj € X that offersi maximal value at current prices:
J € argmaxy; pyenr (Vi k) — pr)
/l Computei’s bid increment foy:
bi — (v(i,7) — pj) — maxp|ryerrnz; (V(i, k) — i)
// which is the difference between the value w@f the best and second-best objects at
current prices (note thas bid will be the current price plus this bid increment).
I/l Assignment Step:
add the paifi, j) to the assignmerfi
if there is another paifi’, j) then
| remove it from the assignmeft
increase the pricg; by the incremenb;,
until S is feasible /l that is, it contains an assignment foralt N

Here, for example, is a possible execution of the algorithm on our current exam-
ple. The following table shows each round of bidding. In this execution we pick
the unassigned agents in order, round-robin style.

preferred  bid current
round pi1 p2 ps bidder object incr. assignment
0 0 0 0 1 X2 2 (1, x’g)
1 0 2 0 2 T2 2 (2,z2)
2 0 4 0 3 I3 1 (2,$2), (3,:63)
3 0 4 1 1 T1 2 (27$2),(3,$3),(1,I1)

At first agents 1 and 2 compete fog, but quickly z, becomes too expensive for
agent 1, who opts far;. By the time agent 3 gets to bid he is priced out of his
preferred itemg,, and settles for;.

Thus when the procedure terminates we have our solution. The problem, though,
is that it may not terminate. This can occur when more than one object offers
maximal value for a given agent; in this case the agent’s bid increment will be
zero. If these two items also happen to be the best items for another agent, they
will enter into an infinite bidding war in which the price never rises. Consider a
moadification of our previous example, in which the value function is given by the
following table.
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i v(,x1) v(,x2) v(,

X
1 1
1 1
1 1

WN P

The naive auction protocol would proceed as follows.

preferred  bid current
round pi pz ps bidder object incr. assignment
0 0 0 0 1 1 0 (1,z1)
1 0 0 0 2 X2 0 (1,$1),(2,I2)
2 0 0 0 3 1 0 (3,21), (2, z2)
3 0 0 0 1 T2 0 (3,z1), (1, z2)
4 0 0 0 2 T1 0 (2,$1) (1,I2)

Clearly, in this example the naive algorithm will have the three agents forever fight
over the two desired objects.

A terminating auction algorithm

To remedy the flaw exposed previously, we must ensure that prices continue to
increase when objects are contested by a group of agents. The extension is quite
straightforward: we add a small amount to the bidding increment. Thus we calcu-
late the bid increment of agen N as follows.

b =u(i,j) — max  u(i, k) +e

k|(i,k) € M;k#j
Otherwise, the algorithm is as stated earlier.
Consider again the problematic assignment problem on which the naive algo-
rithm did not terminate. The terminating auction protocol would proceed as fol-
lows.

preferred  bid current

round pi1 p2 ps bidder object incr. assignment
0 € 0 0 1 1 € (1,z1)

1 e 2 O 2 T2 2¢  (1,z1),(2,z2)

2 3¢ 2 O 3 z1 2¢  (3,z1), (2, x2)

3 3¢ 4e O 1 Z2 2¢  (3,z1), (1, z2)

4 5¢ 4e¢ O 2 z1 2¢  (2,z1), (1, z2)

Note that at each iteration, the price for the preferred item increases by at.least
This gives us some hope that we will avoid nontermination. We must first though
make sure that, if we terminate, we terminate with the “right” results.

First, because the prices must increase by at keasevery round, the compet-
itive equilibrium property is no longer preserved over the iteration. Agents may
“overbid” on some objects. For this reason we will need to define a notion of
e-competitive equilibrium
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Definition 2.3.7 (ecompetitive equilibrium) S andp satisfye-competitive equi-
librium when for eachi € N, if there exists a paifi, j) € S thenVk, u(i,j) +
e > u(i, k).

In other words, in ar-equilibrium no agent can profit more tharby bidding
for an object other than his assigned one, given current prices.

Theorem 2.3.8 A feasible assignmest with n goods that forms as-competitive
equilibrium with some price vector is withine of optimal.

Corollary 2.3.9 Consider a feasible assignment problem with an integer valuation
functionv : M — Z. If ¢ < % then any feasible assignment found by the
terminating auction algorithm will be optimal.

This leaves the question of whether the algorithm indeed terminates, and if so,
how quickly. To see why the algorithm must terminate, note that if an object re-
ceives a bid irk iterations, its price must exceed its initial price by at téas Thus,
for sufficiently largek, the object will become expensive enough to be judged infe-
rior to some object that has not received a bid so far. The total number of iterations
in which an object receives a bid must be no more than

max; ;) v(i, j) — ming ;) v(i, j)

c .

Once all objects receive at least one bid, the auction tetesn@o you see
why?). If each iteration involves a bid by a single agent, the total number of itera-
tions is no more than times the preceding quantity. Thus, since each bid requires
O(n) operations, the running time of the algorithm($n* max; ;) M) Ob-
serve thatife = O(1/n) (as discussed in Corollary 2.3.9), the algorithm’s running
time isO(n?k), wherek is a constant that does not dependrgryielding worst-
case performance similar to linear programming.

2.3.3 The scheduling problem and integer programming

The problem and its integer program

scheduling Thescheduling problermvolves a set of time slots and a set of agents. Each agent

problem requires some number of time slots and has a deadline. Intuitively, the agents each
have a task that requires the use of a shared resource, and that task lasts a certain
number of hours and has a certain deadline. Each agent also has some value for
completing the task by the deadline. Formally, we have the following definition.

Definition 2.3.10 (Scheduling problem)A scheduling problem consists of a tuple
C = (N,X,q,v), where

* N is a set ofh agents

* X is a set ofmn discrete and consecutive time slots
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* ¢=(q1,-..,qn) is areserve price vector, whete is a reserve value for time
slotz;; g can be thought of as the value for the slot of the owner of theurese,
the value he could get for it by allocating it other than to one ofiiregents.

e v = (vy,...,v,), Wherev;, the valuation function of agerit is a function
over possible allocations of time slots that is parameterized by two arguments:
d;, the deadlines of agetit and \;, the required number of time slots required
by agent.. Thus for an allocatiorf; C 2%, we have that

(F) = w; if F} includes); hours befored;;
VB =00 otherwise.

A solution to a scheduling problem is a vecter= (Fy, F},..., F,), where

F; is the set of time slots assigned to agergnd Fj; is the time slots that are not
assigned. The value of a solution is defined as

VE) = Y g+ ().

jIIjEF@ i€EN

A solution is optimal if no other solution has a higher value.

Here is an example, involving scheduling jobs on a busy processor. The proces-
sor has several discrete time slots for the day—specifically, eight one-hour time
slots from 9:00x.m.to 5:00P.M.. Its operating costs force it to have a reserve price
of $3 per hour. There are four jobs, each with its own length, deadline, and worth.
They are shown in the following table.

job length (\) deadlined) worth (w)

1 2 hours 1:.0P.m. $10.00
2  2hours 12:.0.Mm.  $16.00
3  1hours 12:.0.Mm. $6.00

4 4hours 5:.0.mM. $14.50

Even in this small example it takes a moment to see that an optimal solution is
to allocate the machines as follows.

timeslot  agent

9:00A.M.
10:00A.M.
11:00A.M.
12:00P.M.
13:00pP.M.
14:00P.M.
15:00P.M.
16:00pP.M.

AP PFRPEDNDDN

The question is again how to find the optimal schedule algorithmically. The
scheduling problem is inherently more complex than the assignment problem. The
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reason is that the dependence of agents’ valuation functions on the job length and
deadline exhibits botbtomplementaritandsubstitutability For example, for agent
1 any two blocks of two hours prior to 1:00 are perfect substitutes. On the other
hand, any two single time slots before the deadline are strongly complementary;
alone they are worth nothing, but together they are worth the full $10. This makes
for a more complex search space than in the case of the assignment problem, and
whereas the assignment problem is polynomial, the scheduling problem is NP-
complete. Indeed, the scheduling application is merely an instance of the general
set packing problerf

The complex nature of the scheduling problem has many ramifications. Among
other things, this means that we cannot hope to find a polynomial LP encoding
of the problem (since linear programming has a polynomial-time solution). We
can, however, encode it as an integer program. In the following, for every subset
S C X, the boolean variable; s will represent the fact that agentwas allocated
the bundleS, andv;(S) his valuation for that bundle.

maximize Z v;(S)zi s

SCX,ieN
subject to Z ;9 <1 Vie N
SCX
Y oms<l1 VjeX
SCX:jeSieN
z;s € {0,1} VSCX,ieN

In general, the length of the optimized quantity is exporaitiithe size ofX . In
practice, many of the terms can be assumed to be zero, and thus dropped. However,
even whenthe IP is small, our problems are not over. IPs are notin general solvable
in polynomial time, so we cannot hope for easy answers. However, it turns out that
a generalization of the auction-like procedure can be applied in this case too. The
price we will pay for the higher complexity of the problem is that the generalized
algorithm will not come with the same guarantees that we had in the case of the
assignment problem.

A more general form of competitive equilibrium

We start by revisiting the notion aompetitive equilibrium The definition really
does not change, but rather is generalized to apply to assignments of bundles of
time slots rather than single objects.

4. Even the scheduling problem can be defined much more broadly. It could involve earliest start times
as well as deadlines, could require contiguous blocks of time for a given agent (this turns out that this
requirement does not matter in our current formulation), could involve more than one resource, and so on.
But the current problem formulation is rich enough for our purposes.
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Definition 2.3.11 (Competitive equilibrium, generalized form) Given a schedul-
ing problem, a solutiorF’ is in competitive equilibriumat pricesp if and only if

« Foralli € N itis the case that; = arg maxyc x (v;(T) — X, . p;) (the
set of time slots allocated to ageihtaximizes his surplus at price$;

» For all j such thatz; € Fj it is the case thap, = ¢, (the price of all
unallocated time slots is the reserve price); and

 Forall j suchthatr; ¢ Fjitis the case that; > g; (the price of all allocated
time slots is greater than the reserve price).

As was the case in the assignment problem, a solution that is in competitive
equilibrium is guaranteed to be optimal.

Theorem 2.3.12If a solution F' to a scheduling problend’ is in equilibrium at
pricesp, thenF' is also optimal forC'.

We give an informal proof to facilitate understanding of the theorem. Assume
thatF is in equilibrium at priceg; we would like to show that the total value 6f
is higher than the total value of any other solutibh Starting with the definition
of the total value of the solutiof’, the following equations show this inequality
for an arbitraryF”.

V(F) = Z qg“i‘zvi(Fi)

jlzs€Fy ieN
= Z pj"i'zvi(Fi)
jlz,€F, iEN
= > pi+y |uFE)- D p
jlz;eX i€EN L jlz; EF;
> Y iy |ulE)= D pi| =V(F)
jlzjex iEN | jlejeF]

The last line comes from the definition of a competitive eduiilim, for each agent

i, there does not exist another allocatibfthat would yield a larger profit at the
current prices (formallyyi, £/ v;(Fi) — 321, cp Pj = 0i(F]) = D5, e P))-
Applying this condition to all agents, it follows that there exists no alternative

allocationF” with a higher total value.
Consider our sample scheduling problem. A competitive equilibrium for that
problem is shown in the following table.
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time slot agent price

9:00A.M. 2 $6.25
10:00A.M. 2 $6.25

11:00A.M. 1 $6.25
12:00P.M. 1 $3.25
13:00P.M. 4 $3.25
14:00P.M. 4 $3.25
15:00P.M. 4 $3.25
16:00P.M. 4 $3.25

Note that the price of all allocated time slots is higher than the reserve prices of
$3.00. Also note that the allocation of time slots to each agent maximizes his
surplus at the priceg. Finally, also notice that the solution is stable, in that no
agent can profit by making an offer for an alternative bundle at the current prices.
Even before we ask how we might find such a competitive equilibrium, we
should note that one does not always exist. Consider a modified version of our
scheduling example, in which the processor has two one-hour time slots, at 9:00
A.M.and at 10:0x.M., and there are two jobs as in Table 2.1. The reserve price

job length (\) deadlined) worth (w)

1 2 hours 11:0\.M. $10.00
2 1 hour 11:00a.M. $6.00

Table 2.1: A problematic scheduling example.

is $3 per hour. We show that no competitive equilibrium exists by case analysis.
Clearly, if agent 1 is allocated a slot he must be allocated both slots. But then their
combined price cannot exceed $10, and thus for at least one of those hours the
price must not exceed $5. However, agent 2 is willing to pay as much as $6 for that
hour, and thus we are out of equilibrium. Similarly, if agent 2 is allocated at least
one of the two slots, their combined price cannot exceed $6, his value. But then
agent 1 would happily pay more and get both slots. Finally, we cannot have both
slots unallocated, since in this case their combined price would be $6, the sum of
the reserve prices, in which case both agents would have the incentive to buy.

This instability arises from the fact that the agents’ utility functions are superad-
ditive (or, equivalently, that there are complementary goods). This suggest some
restrictive conditions under which we are guaranteed the existence of a competitive
equilibrium solution. The first theorem captures the essential connection to linear
programming.

Theorem 2.3.13A scheduling problem has a competitive equilibrium solution if
and only if the LP relaxation of the associated integer program has a integer solu-
tion.
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The following theorem captures weaker sufficient conditions for the existence of
a competitive equilibrium solution.

Theorem 2.3.14A scheduling problem has a competitive equilibrium solution if
any one of the following conditions hold:

» For all agentsi € N, there exists a time slat € X such that for alll’ C X,
v;(T) = v;({z}) (each agent desires only a single time slot, which must be the
first one in the current formulation)

* Forallagents € N,andforallR,T C X, suchthatRNT = (), v;(RUT) =
v;(R) 4+ v;(T) (the utility functions are additive)

« Time slots are gross substitutes; demand for one time slot does not decrease if
the price of another time slot increases

An auction algorithm

Perhaps the best-known distributed protocol for finding a competitive equilibrium
is the so-calledscending-auction algorithnin this protocol, the center advertises
anask price and the agents bid the ask price for bundles of time slots that maximize
their surplus at the given ask prices. This process repeats until there is no change.

Letb = (by,...,b,,) be the bid price vector, whefg is the highest bid so far
fortime slotx; € X. Let F' = (F7,..., F,) be the set of allocated slots for each
agent. Finally, lete be the price increment. The ascending-auction algorithm is
given in Figure 2.7.

The ascending-auction algorithm is very similar to the assignment problem auc-
tion presented in the previous section, with one notable difference. Instead of cal-
culating a bid increment from the difference between the surplus gained from the
best and second-best objects, the bid increment here is always constant.

Let us consider a possible execution of the algorithm to the sample scheduling
problem discussed earlier. We use an increment of $0.25 for this execution of the
algorithm.

round bidder slotsbidon F = (F1,F2,F3,F4) b
0 1 (9,10) ({9, 10}, {0}, {0}, {0}) (3.25,3.25,3,3,3,3,3,3)
1 2 (10,11) ({9}, {10,11},{0}, {0}) (3.25,3.5,3.25,3,3,3,3,3)
2 3 ) ({0}, {10,11},{9},{0})  (3.5,3.5,3.25,3,3,3,3,3)
24 1 0 ({11,12},{9,10}, {0},  (6.25,6.25,6.25,3.25,

{12,13,14,15}) 3.25,3.25,3.25,3.25)

At this point, no agent has a profitable bid, and the algorithm terminates. How-
ever, this convergence depended on our choice of the increment. Let us consider
what happens if we select an increment of $1.
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foreachslotz; do

bj — g
// Set the initial bids to be the reserve price

foreachagenti do
L Fi0
repeat
foreachagent; = 1 ton do
foreachslotx; do
if x; € F; then
| pj—b;
else
L pj b +e
I/ Agents assume that they will get slots they are currently the high bidder on
at that price, while they must increment the biddip get any other slot.

S* « arg maXgscx|soF, (vi(S) — ZjGS ;)
// Find the best subset of slots, given your current outstanbids
/I Agent: becomes the high bidder for all slots$ \ ;.
foreachslotz; € S* \ F; do
bj —b;+e€
if there exists an ageitt # 7 such thatc; € F}, then
L SetFk — Fk \ {xj}
/l Update the bidding price and current allocations of the other bidders.
L Fi < 5"
until ' does not change

Figure 2.7: The ascending-auction algorithm.

round bidder slotsbidon F = (F1,F2,F3,Fy) b

0 1 (9,10) ({9, 10}, {0}, {0}, {0}) (4,4,3,3,3,3,3,3)

1 2 (10,11) ({9}, {10,113}, {0}, {0}) (4,5,4,3,3,3,3,3)

2 3 9) ({0}, {10,11}, {9}, {0}) (5,5,4,3,3,3,3,3)

3 4 (12,13,14,15) ({0}, {10,11},{9}, (5,5,4,4,4,4,4,3)
{12,13, 14, 15})

4 1 (11,12) ({11,123}, {10}, {9}, (5,5,5,5,4,4,4,3)
{13, 14, 15})

5 2 (9,10) ({11,12}, {9, 10}, {0}, (6,6,5,5,4,4,4,3)
{13,14,15})

6 3 (12) ({12}, {9, 10}, {11}, (6,6,6,5,4,4,4,3)
{13, 14, 15})

7 4 0 ({12},4{9, 10}, {11}, (6,6,6,5,4,4,4,3)
{13, 14, 15})

8 1 0 ({12}, {9, 10}, {11}, (6,6,6,5,4,4,4,3)
{13,14,15})
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Unfortunately, this bidding process does not reach the competitive equilibrium
because the bidding increment is not small enough.

Itis also possible for the ascending-auction algorithm to not converge to an equi-
librium independently of how small the increment is. Consider another problem of
scheduling jobs on a busy processor. The processor has three one-hour time slots,
at 9:00A.M., 10:00A.M., and 11:000.M., and there are three jobs as shown in the
following table. The reserve price is $0 per hour.

job length (\) deadlined) worth (w)

1 1 hour 11:00a.M. $2.00
2 2hours 12:0.M. $20.00
3  2hours 12:0P.M. $8.00

Here an equilibrium exists, but the ascending auction can miss it, if agent 2 bids up
the 11:00a.M.slot.

Despite a lack of a guarantee of convergence, we might still like to be able to
claim that if we do converge then we converge to an optimal solution. Unfortu-
nately, not only can we not do that, we cannot even bound how far the solution is
from optimal. Consider the following problem. The processor has two one-hour
time slots, at 9:00\.M.and 10:00a.M.(with reserve prices of $1 and $9, respec-
tively), and there are two jobs as shown in the following table.

job length (\) deadlined) worth (w)

1 1 hour 10:00a.M. $3.00
2 2hours 11:00n.M. $11.00

The ascending-auction algorithm will stop with the first slot allocated to agent
1 and the second to agent 2. By adjusting the value to agent 2 and the reserve
price of the 11:00:.m.time slot, we can create examples in which the allocation is
arbitrarily far from optimal.

One property we can guarantee, however, is termination. We show this by con-
tradiction. Assume that the algorithm does not converge. It must be the case that
at each round at least one agent bids on at least one time slot, causing the price
of that slot to increase. After some finite number of bids on bundles that include
a particular time slot, it must be the case that the price on this slot is so high that
every agent prefers the empty bundle to all bundles that include this slot. Even-
tually, this condition will hold for all time slots, and thus no agent will bid on a
nonempty bundle, contradicting the assumption that the algorithm does not con-
verge. In the worst case, in each iteration only one ofittegents bids, and this
bid is on a single slot. Once the sum of the prices exceeds the maximum total value

for the agents, the algorithm must terminate, giving us the worst-case running time

O(n maxp, @)
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Social laws and conventions

Consider the task of a city transportation official who wishes to optimize traffic
flow in the city. While he cannot redesign cars or create new roads, he can impose
traffic rules A traffic rule is a form of asocial law a restriction on the given
strategies of the agents. A typical traffic rule prohibits people from driving on the
left side of the road or through red lights. For a given agent, a social law presents a
tradeoff; he suffers from loss of freedom, but can benefit from the fact that others
lose some freedom. A good social law is designed to benefit all agents.

One natural formal view of social laws is from the perspective of game theory.
We discuss game theory in detail starting in Chapter 3, but here we need very little
of that material. For our purposes here, suffice it to say that in a game each agent
has a number of possible strategies (in our traffic example, driving plans), and
depending on the strategies selected by each agent, each agent receives a certain
payoff. In general, agents are free to choose their own strategies, which they will
do based on their guesses about the strategies of other agents. Sometimes the
interests of the agents are at odds with each other, but sometimes they are not. In
the extreme case the interests are perfectly aligned, and the only problem is that of
coordination among the agents. Again, traffic presents the perfect example; agents
are equally happy driving on the left or on the right, provided everyone does the
same.

A social law simply eliminates from a given game certain strategies for each of
the agents, and thus induces a subgame. When the subgame consists of a single
strategy for each agent, we call itsacial conventionIn many cases the setting
is naturally symmetric (the game is symmetric, as are the restrictions), but it need
not be that way. A social law is good if the induced subgame is “preferred" to the
original one. There can be different notions of preference here; we will discuss
this further after we discuss the notionsaflution concepts Chapter 3. For now
we leave the notion of preference at the intuitive level; intuitively, a world where
everyone (say) drives on the right and stops at red lights is preferable to one in
which drivers cannot rely on such laws and must constantly coordinate with each
other.

This leaves the question of how one might find such a good social law or so-
cial convention. In Chapter 7 we adopt a democratic perspective; we look at how
conventions can emerge dynamically as a result of a learning process within the
population. Here we adopt a more autocratic perspective, and imagine a social
planner imposing a good social law (or even a single convention). The question is
how such a benign dictator arrives at such a good social law. In general the prob-
lem is hard; specifically, when formally defined, the general problem of finding a
good social law (under an appropriate notion of “good”) can be shown to be NP-
hard. However, the news is not all bad. First, there exist restrictions that render
the problem polynomial. Furthermore, in specific situations, one can simply hand
craft good social laws.

Indeed, traffic rules provide an excellent example. Consider a setrobbots
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2.4 Social laws and conventions 45

{0,1,...,k— 1} belonging to Deliverobot, Inc., who must navigate a roadesyst
connecting seven locations as depicted in Figure 2.8.

Figure 2.8: Seven locations in a transportation domain

Assume thesé robots are the only vehicles using the road, and their maikh cha
lenge is to avoid collisions among themselves. Assume further that they all start at
point s, the company'’s depot, at the start of the day. We assume atlistiodel
of time, and that each robot requires one unit of time to traverse any given edge,
though the robots can also travel more slowly if they wish. At each of thekfirst
time steps one robot is assigned initial tasks and sent oraigswith robot; sent at
time: (: = 0,1,...,k — 1). Thereafter they are in continuous motion; as soon as
they arrive at their current destination they are assigned a new task, and off they go.
A collision is defined as two robots occupying the same location at the same time.
How can collisions be avoided without the company constantly planning routes for
the robots, and without the robots constantly having to negotiate with each other?
The tools they have at their disposal are the speed with which they traverse each
edge and the common clock they implicitly share with the other robots.

Here is one simple solution: Each robot drives so that traversing each link takes
exactly k time units. In this case, at any tintethe only robot who will arrive
at a node—any node—is = ¢ mod k. This is an example of a simple social
convention that is useful, but that comes at a price. Each robot is free to travel
along the shortest path, but will traverse this pattimes more slowly than he
would without this particular social law.

Here is a more efficient convention. Assign each vertex an arbitrary label be-
tween0 and k — 1, and define the time to traverse an edge between vertices
labeledz andy to be (y — ) mod k if (y — ) mod £ > 0, andk oth-
erwise. Observe that the difference in this expression will sometimes be nega-
tive; this is not a problem because the modulo nevertheless returns a nonnega-
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tive value. To consider an example, if agerfbllows the sequence of nodes la-
beleds, z1, x5, 23 then its travel times arer; — s) mod k, (z2 —z;) mod k,

(x3 — x3) mod k, presuming that none of these expressions evaluated to zero.
Adding these travel times to the start time we see thraiches node; at time
t=i+x+ (xg—x1)+ (x3—22) = z3+7 mod k. In general, we have that at
time ¢ agent will always either be on an edge or waiting at a node labéled i)

mod k, and thus there will be no collisions.

A final commentis in order. In the discussion so far we have assumed that once a
social law is imposed (or agreed upon) it is adhered to. This is of course a tenuous
assumption when applied to fallible and self-interested agents. In Chapter 10 (and
specifically in Section 10.7) we return to this topic.

History and references

Distributed dynamic programming is discussed in detail in Bertsekas [1982]. LRTA*
is introduced in Korf[1990], and our section follows that material, as well as Yokoo
and Ishida [1999].

Distributed solutions to Markov Decision Problems are discussed in detail in
Guestrin [2003]; the discussion there goes far beyond the specific problem of joint
action selection covered here. Additional discussion specifically on the issue of
problem selection in distributed MDPs can be found in Vlassis et al. [2004].

Contract nets were introduced in Smith [1980], and Davis and Smith [1983] is
perhaps the most influential publication on the topic. The marginal-cost interpreta-
tion of contract nets was introduced in Sandholm [1993], and the discussion of the
capabilities and limitations of the various contract types (O, C, S, and M) followed
in Sandholm [1998]. Auction algorithms for linear programming are discussed
broadly in Bertsekas [1991]. The specific algorithm for the matching problem is
taken from Bertsekas [1992]. Its extension to the combinatorial setting is discussed
in Parkes and Ungar [2000]. Auction algorithms for combinatorial problems in gen-
eral are introduced in Wellman [1993], and the specific auction algorithms for the
scheduling problem appear in Wellman et al. [2001].

Social laws and conventions, and the example of traffic laws, were introduced
in Shoham and Tennenholtz [1995]. The treatment there includes many additional
tweaks on the basic traffic grid discussed here, as well as an algorithmic analysis
of the problem in general.
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Introduction to Noncooperative Game
Theory: Games in Normal Form

Game theory is the mathematical study of interaction among independent, self-
interested agents. It has been applied to disciplines as diverse as economics (histori-
cally, its main area of application), political science, biology, psychology, linguistics—
and computer science. In this chapter we will concentrate on what has become the
dominant branch of game theory, calledncooperativggame theory, and specifi-

cally on normal-form games, a canonical representation in this discipline.

As an aside, the name “noncooperative game theory” could be misleading, since
it may suggest that the theory applies exclusively to situations in which the interests
of different agents conflict. This is not the case, although it is fair to say that the
theory is most interesting in such situations. By the same token, in Chapter 12 we
will see thatcoalitional game theoryalso known asooperative game theorgoes
not apply only in situations in which the interests of the agents align with each other.
The essential difference between the two branches is that in noncooperative game
theory the basic modeling unit is the individual (including his beliefs, preferences,
and possible actions) while in coalitional game theory the basic modeling unit is
the group. We will return to that later in Chapter 12, but for now let us proceed
with the individualistic approach.

Self-interested agents

What does it mean to say that agents are self-interested? It does not necessarily
mean that they want to cause harm to each other, or even that they care only about
themselves. Instead, it means that each agent has his own description of which
states of the world he likes—which can include good things happening to other
agents—and that he acts in an attempt to bring about these states of the world. In
this section we will consider how to model such interests.

The dominant approach to modeling an agent’s intereatsilisy theory. This
theoretical approach aims to quantify an agent’'s degree of preference across a set
of available alternatives. The theory also aims to understand how these preferences
change when an agent faces uncertainty about which alternative he will receive.
When we refer to an agentidility function, as we will do throughout much of
this book, we will be making an implicit assumption that the agent has desires
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about how to act that are consistent with utility-theoretic assumptions. Thus, before
we discuss game theory (and thus interactions betwmadtiple utility-theoretic
agents), we should examine some key properties of utility functions and explain
why they are believed to form a solid basis for a theory of preference and rational
action.

A utility function is a mapping from states of the world to real numbers. These
numbers are interpreted as measures of an agent’s level of happiness in the given
states. When the agent is uncertain about which state of the world he faces, his
utility is defined as the expected value of his utility function with respect to the
appropriate probability distribution over states.

Example: friends and enemies

We begin with a simple example of how utility functions can lsedias a basis for
making decisions. Consider an agent Alice, who has three options: going to the
club (9, going to a movie (), or watching a video at home YAlIf she is on her

own, Alice has a utility ofLl 00 for ¢, 50 for m, and50 for h. However, Alice is also
interested in the activities of two other agents, Bob and Carol, who frequent both
the club and the movie theater. Bob is Alice’s nemesis; he is downright painful to
be around. If Alice runs into Bob at the movies, she can try to ignore him and only
suffers a disutility of40; however, if she sees him at the club he will pester her
endlessly, yielding her a disutility d0. Unfortunately, Bob prefers the club: he

is there 60% of the time, spending the rest of his time at the movie theater. Carol,
on the other hand, is Alice’s friend. She makes everything more fun. Specifically,
Carol increases Alice’s utility for either activity by a factoriob (after taking into
account the possible disutility of running into Bob). Carol can be found at the club
25% of the time, and the movie theater 75% of the time.

It will be easier to determine Alice’s best course of action if we list Alice’s utility
for each possible state of the world. There are 12 outcomes that can occur: Bob
and Carol can each be in either the club or the movie theater, and Alice can be in
the club, the movie theater, or at home. Alice has a baseline level of utility for
each of her three actions, and this baseline is adjusted if either Bob, Carol, or both
are present. Following the description of our example, we see that Alice’s utility
is always50 when she stays home, and for her other two activities it isrgiwe
Figure 3.1.

So how should Alice choose among her three activities? To answer this question
we need to combine her utility function with her knowledge of Bob and Carol's
randomized entertainment habits. Alice’s expected utility for going to the club can
be calculated a8.25(0.6 - 15+ 0.4 - 150) 4+ 0.75(0.6 - 10 + 0.4 - 100) = 51.75.

In the same way, we can calculate her expected utility for going to the movies as
0.25(0.6 - 50 + 0.4 - 10) + 0.75(0.6(75) + 0.4(15)) = 46.75. Of course, Alice

gets an expected utility 030 for staying home. Thus, Alice prefers to go to the
club (even though Bob is often there and Carol rarely is) and prefers staying home
to going to the movies (even though Bob is usually not at the movies and Carol
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B=c B=m B=c¢c B=m
C=c 15 150 C=c 50 10
C=m 10 100 C=m 75 15
A=c A=m

Figure 3.1: Alice’s utility for the actions andm.

amost always is).

Preferences and utility

Because the idea of utility is so pervasive, it may be hardeondey anyone would
argue with the claim that it provides a sensible formal model for reasoning about an
agent’s happiness in different situations. However, when considered more carefully
this claim turns out to be substantive, and hence requires justification. For example,
why should a single-dimensional function be enough to explain preferences over an
arbitrarily complicated set of alternatives (rather than, say, a function that maps to
a point in a three-dimensional space, or to a point in a space whose dimensionality
depends on the number of alternatives being considered)? And why should an
agent’s response to uncertainty be captured purely by the expected value of his
utility function, rather than also depending on other properties of the distribution
such as its standard deviation or number of modes?

Utility theorists respond to such questions by showing that the idea of utility can
be grounded in a more basic conceptpoéferences The most influential such
theory is due to von Neumann and Morgenstern, and thus the utility functions are
sometimes called von Neumann—Morgenstern utility functions to distinguish them
from other varieties. We present that theory here.

Let O denote a finite set of outcomes. For any paifo, € O, leto; = o,
denote the proposition that the agent weakly prefert o,. Let o, ~ o0, denote
the proposition that the agent is indifferent betweeand o,. Finally, byo; > o,,
denote the proposition that the agent strictly prefarso o,. Note that while the
second two relations are notationally convenient, the first relatiaa the only
one we actually need. This is because we can define o, as “0, = 0, and not
(] >~ 01 ,” and 01 ~ 09 &S “01 >~ 02 and 02 >~ 01.”

We need a way to talk about how preferences interact with uncertainty about
which outcome will be selected. In utility theory this is achieved through the con-
cept oflotteries A lottery is the random selection of one of a set of outcomes
according to specified probabilities. Formally, a lottery is a probability distribution
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over outcomes writtefp; : o1, ..., p; : 0], where eacl; € O, eachp; > 0 and
Zle p; = 1. Let L denote the set of all lotteries. We will extend theelation to
apply to the elements of as well as to the elements ©f, effectively considering
lotteries over outcomes to be outcomes themselves.

We are now able to begin stating the axioms of utility theory. These are con-
straints on the- relation which, we will argue, make it consistent with ourade
of how preferences should behave.

Axiom 3.1.1 (CompletenessyVoi, 05, 01 > 05 OF 03 > 01 OF 01 ~ 0s.

The completeness axiom states thattheelation induces an ordering over the
outcomes, allowing ties. For every pair of outcomes, either the agent prefers one
to the other or he is indifferent between them.

Axiom 3.1.2 (Transitivity) If o; = 0y ando, = o3, theno; = os.

There is good reason to feel that every agent should have transitive preferences.
If an agent’s preferences were nontransitive, then there would exist some triple of
outcomesn, 0o, andos for whicho; > o0,, 0 = 03, ando; > 0;. We can
show that such an agent would be willing to engage in behavior that is hard to call
rational. Consider a world in which,, o,, and o; correspond to owning three
different items, and an agent who currently owns the itgm Sinceo, = o3,
there must be some nonnegative amount of money that the agent would be willing
to pay in order to exchange; for o,. (If oo > o3 then this amount would be
strictly positive; ifo, ~ o3, then it would be zero.) Similarly, the agent would
pay a nonnegative amount of money to exchamgéor o,. However, from non-
transitivity (o3 > o1) the agent wouldlsopay a strictly positive amount of money
to exchange,; for o3. The agent would thus be willing to pay a strictly positive
sum to exchange; for o5 in three steps. Such an agent could quickly be separated
from any amount of money, which is why such a scheme is known asaey

pump

Axiom 3.1.3 (Substitutability) If o; ~ o9, then for all sequences of one or more
outcomess, . . . , 0, and sets of probabilitiep, ps, . . . , P forwhichng—Zf:3 p; =
L[p:on,ps:os,...,pk:0k] ~[p:02,p3: 03, .. Pkt O]

Let P,(o;) denote the probability that outconagis selected by lottery. For
example, if¢ = [0.3 : 01;0.7 : [0.8 : 02;0.2 : 04]], thenPy(o;) = 0.44 and
Pg(Og) = 0.

Axiom 3.1.4 (Decomposability)If Vo, € O, Py, (0;) = Py, (0;) thent; ~ /.

These axioms describe the way preferences change when lotteries are introduced.
Substitutability states that if an agent is indifferent between two outcomes, he is
also indifferent between two lotteries that differ only in which of these outcomes
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Up) > 02 e {(p) = 09

02 ~ £(p) 4 02 ~ {(p) 1

0y = U(p)4 — 02 = £(p)

T T
0 Plow Phigh 1 0 p 1

Figure 3.2: Relationship between and /(p).

is offered. Decomposability states that an agent is always indifferent between lot-
teries that induce the same probabilities over outcomes, no matter whether these
probabilities are expressed through a single lottery or nested in a lottery over lot-
teries. For exampldp : 01,1 —p : [q: 02,1 —q : 03]] ~ [p:01,(1 —p)g:

02, (1 —p)(1 — ¢q) : 03]. Decomposability is sometimes called th@fun in gam-

bling axiom because it implies that, all else being equal, the number of times an
agent “rolls dice” has no affect on his preferences.

Axiom 3.1.5 (Monotonicity) If o, > o, andp > gthen[p: 0,,1—p:0y] = [q:
01,1 —q: 0y

The monotonicity axiom says that agents prefer more of a good thing. When an
agent prefers; to o, and considers two lotteries over these outcomes, he prefers
the lottery that assigns the larger probabilityoto This property is called mono-
tonicity because it does not depend on the numerical values of the probabilities—
the more weighb, receives, the happier the agent will be.

Lemma 3.1.6 If a preference relation- satisfies the axioms completeness, transi-
tivity, decomposability, and monotonicity, anaif = o, and o, = o3, then there
exists some probability such that for allpy’ < p, 05 > [p’ : 01; (1 —p’) : 03], and
forall p” > p, [p” : 01;(1 —p”) : 03] > 02.

Proof. Denote the lotteryp : o;; (1 — p) : 03] asf(p). Consider some;,,,
forwhichoy > £(p;o.). Such ap;,,, must exist since, >~ os; for example, by
decomposability;,,, = 0 satisfies this condition. By monotonicit{p;,.,) >
L(p') forany0 < p’ < prow, and so by transitivitW'p’ < piow, 02 = £(p').
Consider somey,;,;, for which ¢(py;,n) > 0.. By monotonicity, £(p") >
C(phign) foranyl > p" > pp,.n, and so by transitivit}'p’ > prign, £(p') >
02. We thus know the relationship betweéfp) and o, for all values ofp
except those on the interv@h,.,, Prign)- Thisis illustrated in Figure 3.2 (left).
Considerp* = (Piow + Prign)/2, the midpoint of our interval. By com-
pletenessp, > {(p*) or £(p*) = o0y Or 05 ~ {(p*). First consider the case
0y ~ £(p*). It cannot be that there is also another pgiht# p* for which
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02 ~ £(p'): this would entaill(p*) ~ £(p’) by transitivity, and since; > os,
this would violate monotonicity. For aff’ # p*, then, it must be that either
0y = L(p') or£(p') > o0,. By the arguments earlier, if there was a point
p’ > p* for whicho, > £(p'), thenVp” < p’, oy > £(p"), contradicting
0o ~ {(p*). Similarly there cannot be a poipt < p* for which{(p’) > o,.
The relationship that must therefore hold betweg@and ¢(p) is illustrated in
Figure 3.2 (right). Thus, in the casg ~ ¢(p*), we have our result.

Otherwise, ifo, > ¢(p*), then by the argument given earligr - ¢(p’) for
al p’ < p*. Thus we can redefing,,,—the lower bound of the interval of
values for which we do not know the relationship betwegand ¢(p)—to be
p*. Likewise, if £(p*) > o, then we can redefing,;,, = p*. Either way, our
interval (piow, Phign) 1S halved. We can continue to iterate the above argument,
examining the midpoint of the updated interv@,.,, pri,n). Either we will
encounter g@* for whicho, ~ £(p*), or in the limitp,,,, will approach some
p from below, andp,,; 4, will approach thap from above. [ |

Something our axioms do not tell us is what preference relation holds between
0, and the lottery|p : o;; (1 —p) : 03]. It could be that the agent strictly prefers
in this case, that the agent strictly prefers the lottery, or that the agent is indifferent.
Our final axiom says that the third alternative—depicted in Figure 3.2 (right)—
always holds.

Axiom 3.1.7 (Continuity) If o; > 0, and o, = o3, thendp € [0, 1] such that
09~ [p:o, 1 —p:os.

If we accept Axioms 3.1.1, 3.1.2, 3.1.4, 3.1.5, and 3.1.7, it turns out that we
have no choice but to accept the existence of single-dimensional utility functions
whose expected values agents want to maximize. (And if weadavant to reach
this conclusion, we must therefore give up at least one of the axioms.) This fact is
stated as the following theorem.

Theorem 3.1.8 (von Neumann and Morgenstern, 1944If a preference relation
> satisfies the axioms completeness, transitivity, subetitiity, decomposability,
monotonicity, and continuity, then there exists a function — [0, 1] with the
properties that

1. u(oy) > u(oy) iff 0; = 0y, and

2. u([py: 01,y Pk Ok]) = Zlepiu(oi).

Proof. If the agent is indifferent among all outcomes, then forale O set

u(o;) = 0 and for alll € L setu(¢) = 0. In this case Part 1 follows trivially

(both sides of the implication are always true) and Part 2 is immediate.
Otherwise, there must be a set of one or more most-preferred outcomes and

a disjoint set of one or more least-preferred outcomes. (There may of course
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be other outcomes belonging to neither set.) Label one of the most-preferred
outcomes as and one of the least-preferred outcomesg.asor any outcome

0;, defineu(o;) to be the numbep, such thato; ~ [p; : 0, (1 — p;) : o]. By
continuity such a number exists; by Lemma 3.1.6 it is unique.

Part 1: u(o;) > u(oq) iff 0, = 0s.

We know thato; ~ [u(oy) : 9;1 — u(oy) : o]; denote this lottery;.
Likewise,0, ~ [u(02) : 0;1 — u(0;) : o; denote this lottery,. First, we
show thatu(o;) > u(0y) = 01 = 09. If u(oy) > u(o02) then, since > o we
can conclude that, > ¢/, by monotonicity. Thus, we hawg ~ ¢, = {5 ~ 0o;
by transitivity and completeness, this giv@s> o0,. If u(0;) = u(0,), thet,
and /, are identical lotteries; thusy, ~ £, = ¢, ~ 04, and transitivity gives
01 ~ 09.

Now we must show that; > 0; = u(01) > u(02). It suffices to prove
the contrapositive of this statemento;) # u(os) = 01 # 0., which can be
rewritten asu(oz) > u(01) = 02 > 0; by completeness. This statement was
already proved earlier (with the labels and 0, swapped).

Part2: u([py : 01,...,pr : 0]) = Zle piu(0;).

Letu* = w([p1 : 01,...,pk : 0x)). From the construction of we know
thato, ~ [u(o;) : 9,(1 — u(o;)) : o]. By substitutability, we can replace
eacho; in the definition ofu* by the lottery [u(o;) : o, (1 — u(0;)) : o),
giving usu* = u([p; : [u(o1) : 9,(1 —wu(o1)) : 0],...,pr : [u(ox) :

0, (1 — u(ox)) : o]]). This nested lottery only selects between the two out-
comeso ando. This means that we can use decomposability to conclude

ut = u ([(Zle piu(oi)> 10,1 — (Zle piu(oi)> : Q]). By our defini-

tion of u, u* = Zle piu(0;). u

One might wonder why we do not use money to express the real-valued quantity
that rational agents want to maximize, rather than inventing the new concept of
utility. The reason is that while it is reasonable to assume that all agents get happier
the more money they have, it is often not reasonable to assume that agents care
only about theexpected valuesf their bank balances. For example, consider a
situation in which an agent is offered a gamble between a payoff of two million
and a payoff of zero, with even odds. When the outcomes are measured in units of
utility (“utils”) then Theorem 3.1.8 tells us that the agent would prefer this gamble
to a sure payoff of 999,999 utils. However, if the outcomes were measured in
money, few of us would prefer to gamble—most people would prefer a guaranteed
payment of nearly a million dollars to a double-or-nothing bet. This is not to say
that utility-theoretic reasoning goes out the window when money is involved. It
simply points out that utility and money are often not linearly related. This issue
is discussed in more detail in Section 10.3.1.

What if we want a utility function that is not confined to the ran@el], such as
the one we had in our friends and enemies example? Luckily, Theorem 3.1.8 does
notrequirethat every utility function maps to this range; it simply shows that one
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such utility function must exist for every set of preferences that satisfy the required
axioms. Indeed, von Neumann and Morgenstern also showed that the absolute
magnitudes of the utility function evaluated at different outcomes are unimportant.
Instead, every positive affine transformation of a utility function yields another util-
ity function for the same agent (in the sense that it will also satisfy both properties
of Theorem 3.1.8). In other words, if(0) is a utility function for a given agent
thenu/ (o) = au(o) + b is also a utility function for the same agent, as long.as
andb are constants andis positive.

3.2 Gamesin normal form

We have seen that under reasonable assumptions about preferences, agents will
always have utility functions whose expected values they want to maximize. This
suggests that acting optimally in an uncertain environmentis conceptually straightforward—
at least as long as the outcomes and their probabilities are known to the agent and
can be succinctly represented. Agents simply need to choose the course of action
that maximizes expected utility. However, things can get considerably more com-
plicated when the world contaimso or moreutility-maximizing agents whose ac-

tions can affect each other’s utilities. (To augment our example from Section 3.1.1,
what if Bob hates Alice and wants to avoid her too, while Carol is indifferent to
seeing Alice and has a crush on Bob? In this case, we might want to revisit our
previous assumption that Bob and Carol will act randomly without caring about
what the other two agents do.) To study such settings, we turn to game theory.

3.2.1 Example: the TCP user's game

Let us begin with a simpler example to provide some intuitibniwd the type of
phenomena we would like to study. Imagine that you and another colleague are
the only people using the internet. Internet traffic is governed by the TCP protocol.
One feature of TCP is thieackoff mechanism; if the rates at which you and your
colleague send information packets into the network causes congestion, you each
back off and reduce the rate for a while until the congestion subsides. This is
how a correct implementation works. A defective one, however, will not back off
when congestion occurs. You have two possible strate@igg$or using a correct
implementation) and (for using a defective one). If both you and your colleague
adoptC' then your average packet delay is 1 ms. If you both adohe delay is
3 ms, because of additional overhead at the network router. Finally, if one of you
adoptsD and the other adopts' then theD adopter will experience no delay at

TCP user’s all, but theC' adopter will experience a delay of 4 ms.

game These consequences are shown in Figure 3.3. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents

Prisoner's your payoff (or, the negative of your delay) and the second number represents your

Dilemma game
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colleague’s payoft.

C|-1,-1| —4,0

D | 0,4 -3,-3

Figure 3.3: The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you addptor D? Does it depend on what
you think your colleague will do? Furthermore, from the perspective of the network
operator, what kind of behavior can he expect from the two users? Will any two
users behave the same when presented with this scenario? Will the behavior change
if the network operator allows the users to communicate with each other before
making a decision? Under what changes to the delays would the users’ decisions
still be the same? How would the users behave if they have the opportunity to face
this same decision with the same counterpart multiple times? Do answers to these
questions depend on how rational the agents are and how they view each other’s
rationality?

Game theory gives answers to many of these questions. It tells us that any ratio-
nal user, when presented with this scenario once, will afleptregardless of what
the other user does. It tells us that allowing the users to communicate beforehand
will not change the outcome. It tells us that for perfectly rational agents, the deci-
sion will remain the same even if they play multiple times; however, if the number
of times that the agents will play is infinite, or even uncertain, we may see them
adoptC'.

Definition of games in normal form

The normal form, also known as the strategic form, is the nastilfar representa-

tion of strategic interactions in game theory. A game written in this way amounts
to a representation of every player’s utility for every state of the world, in the spe-
cial case where states of the world depend only on the players’ combined actions.
Consideration of this special case may seem uninteresting. However, it turns out
that settings in which the state of the world also depends on randomness in the
environment—called Bayesian games and introduced in Section 6.3—can be re-
duced to (much larger) normal-form games. Indeed, there also exist normal-form
reductions for other game representations, such as games that involve an element
of time (extensive-form games, introduced in Chapter 5). Because most other rep-

1. A more standard name for this game is the Prisoner’'s Dilemma; we return to this in Section 3.2.3.
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resentations of interest can be reduced to it, the normal-form representation is ar-
guably the most fundamental in game theory.

Definition 3.2.1 (Normal-form game) A (finite, n-person)normal-form games
atuple(N, A, u), where:

« N is afinite set oh players, indexed by,

« A=A, x---x A,, whereA, is a finite set ofactionsavailable to playetr.
Each vectow = (ay,...,a,) € Ais called anaction profile

eu = (uy,...,u,) whereu; : A — R is a real-valuedutility (or payoff)
functionfor players.

Note that we previously argued that utility functions should map from the set
of outcomesnot the set ofictions Here we make the implicit assumption that
0= A.

A natural way to represent games is viaradimensional matrix. We already
saw a two-dimensional example in Figure 3.3. In general, each row corresponds
to a possible action for player 1, each column corresponds to a possible action for
player 2, and each cell corresponds to one possible outcome. Each player’s utility
for an outcome is written in the cell corresponding to that outcome, with player 1's
utility listed first.

More examples of normal-form games
Prisoner’s Dilemma

Previously, we saw an example of a game in normal form, namely, the Prisoner’s
(or the TCP user’s) Dilemma. However, as discussed in Section 3.1.2, the precise
payoff numbers play a limited role. The essence of the Prisoner’s Dilemma exam-
ple would not change if the-4 was replaced by-5, or if 100 was added to each of

the numbers. In its most general form, the Prisoner’s Dilemma is any normal-form
game shown in Figure 3.4, in which> a > d > b.2

C a,a b,c

D| ¢b | dd

Figure 3.4: Anyc > a > d > b define an instance of Prisoner’s Dilemma.

2. Under some definitions, there is the further requiremenhthat%, which guarantees that the outcome
(C, C) maximizes the sum of the agents’ utilities.
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Incidentally, the name “Prisoner’s Dilemma” for this famous game-theoretic sit-
uation derives from the original story accompanying the numbers. The players of
the game are two prisoners suspected of a crime rather than two network users. The
prisoners are taken to separate interrogation rooms, and each can either “confess”
to the crime or “deny” it (or, alternatively, “cooperate” or “defect”). If the payoff
are all nonpositive, their absolute values can be interpreted as the length of jail term
each of prisoner gets in each scenario.

Common-payoff games

There are some restricted classes of normal-form games that deserve special men-
tion. The first is the class @ommon-payoff game$hese are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 (Common-payoff game)A common-payoff gamés a game in
which for all action profilest € A, x --- x A,, and any pair of agents, j, it is
the case thati;(a) = u;(a).

Common-payoff games are also callegre coordination gamesr team games
In such games the agents have no conflicting interests; their sole challenge is to
coordinate on an action that is maximally beneficial to all.

As an example, imagine two drivers driving towards each other in a country
having no traffic rules, and who must independently decide whether to drive on the
left or on the right. If the drivers choose the same side (left or right) they have
some high utility, and otherwise they have a low utility. The game matrix is shown
in Figure 3.5.

Left Right

Left 1,1 0,0

Right | 0,0 1,1

Figure 3.5: Coordination game.

Zero-sum games

At the other end of the spectrum from pure coordination gamegl@sum games
which (bearing in mind the comment we made earlier about positive affine trans-
formations) are more properly callednstant-sum gamebinlike common-payoff
games, constant-sum games are meaningful primarily in the context of two-player
(though not necessarily two-strategy) games.
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Definition 3.2.3 (Constant-sum game)A two-player normal-form game t®nstant-
sumif there exists a constamtsuch that for each strategy profilee A, x A, it
is the case thati; (a) + uz(a) = c.

For convenience, when we talk of constant-sum games going forward we will
always assume that = 0, that is, that we have a zero-sum game. If common-
payoff games represent situations of pure coordination, zero-sum games represent
situations of pure competition; one player’s gain must come at the expense of the
other player. This property requires that there be exactly two agents. Indeed, if
you allow more agents, any game can be turned into a zero-sum game by adding
a dummy player whose actions do not impact the payoffs to the other agents, and
whose own payoffs are chosen to make the payoffs in each outcome sum to zero.

A classical example of a zero-sum game is the ganMaithing Penniesin this
game, each of the two players has a penny and independently chooses to display
either heads or tails. The two players then compare their pennies. If they are the
same then player 1 pockets both, and otherwise player 2 pockets them. The payoff
matrix is shown in Figure 3.6.

Heads Tails

Heads | 1,-1 —-1,1

Tails -1,1 1,—1

Figure 3.6: Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rocham-
beau, provides a three-strategy generalization of the matching-pennies game. The
payoff matrix of this zero-sum game is shown in Figure 3.7. In this game, each of
the two players can choose either rock, paper, or scissors. If both players choose
the same action, there is no winner and the utilities are zero. Otherwise, each of the
actions wins over one of the other actions and loses to the other remaining action.

Battle of the Sexes

In general, games can include elements of both coordination and competition. Pris-
oner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, cBHEgite of the Sexea
husband and wife wish to go to the movies, and they can select among two movies:
“Lethal Weapon (LW)” and “Wondrous Love (WL).” They much prefer to go to-
gether rather than to separate movies, but while the wife (player 1) prefers LW, the
husband (player 2) prefers WL. The payoff matrix is shown in Figure 3.8. We will
return to this game shortly.
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Rock Paper  Scissors
Rock | 0,0 —-1,1 1,-1
Paper | 1,—1 0,0 -1,1
Scissors| —1,1 1,—1 0,0

Figure 3.7: Rock, Paper, Scissors game.

Husband
LW WL
LW 2,1 0,0
Wife
WL 0,0 1,2

Figure 3.8: Battle of the Sexes game.

3.2.4 Strategies in normal-form games

pure strategy

pure-strategy
profile

mixed strategy

mixed-strategy
profile

We have so far defined the actions available to each player ameegbut not yet
his set ofstrategiesor his available choices. Certainly one kind of strategy is to
select a single action and play it. We call such a strategyra strategyand we
will use the notation we have already developed for actions to represent it. We call
a choice of pure strategy for each agepuae-strategy profile

Players could also follow another, less obvious type of strategy: randomizing
over the set of available actions according to some probability distribution. Such
a strategy is called a mixed strategy. Although it may not be immediately obvious
why a player should introduce randomness into his choice of action, in fact in
a multiagent setting the role of mixed strategies is critical. We define a mixed
strategy for a normal-form game as follows.

Definition 3.2.4 (Mixed strategy) Let (N, A, ) be a normal-form game, and for
any setX letII(X) be the set of all probability distributions ovéf. Then the set
of mixed strategiefor playeri is S; = II(A4;).

Definition 3.2.5 (Mixed-strategy profile) The set ofmixed-strategy profileis sim-
ply the Cartesian product of the individual mixed-strategy s&{sx - - - X S,,.
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By s;(a;) we denote the probability that an actiepwill be played under mixed
strategys;. The subset of actions that are assigned positive probability by the
mixed strategys; is called thesupportof s;.

Definition 3.2.6 (Support) Thesupportof a mixed strategy; for a playeri is the
set of pure strategie§a;|s;(a;) > 0}.

Note that a pure strategy is a special case of a mixed strategy, in which the
support is a single action. At the other end of the spectrum we fudlyemixed
strategies A strategy is fully mixed if it has full support (i.e., if it assigns every
action a nonzero probability).

We have not yet defined the payoffs of players given a particular strategy profile,
since the payoff matrix defines those directly only for the special case of pure-
strategy profiles. But the generalization to mixed strategies is straightforward, and
relies on the basic notion of decision theorgxpected utility Intuitively, we first
calculate the probability of reaching each outcome given the strategy profile, and
then we calculate the average of the payoffs of the outcomes, weighted by the
probabilities of each outcome. Formally, we define the expected utility as follows
(overloading notation, we useg for both utility and expected utility).

Definition 3.2.7 (Expected utility of a mixed strategy) Given a normal-form game
(N, A,u), the expected utility:; for player: of the mixed-strategy profile =
(s1,...,8,) is defined as

n

ui(s) =Y _ui(a) [ 5;(a;).

acA j=1

Analyzing games: from optimality to equilibrium

Now that we have defined what games in normal form are and what strategies are
available to players in them, the question is how to reason about such games. In
single-agent decision theory the key notion is that obatimal strategythat is,

a strategy that maximizes the agent’s expected payoff for a given environment in
which the agent operates. The situation in the single-agent case can be fraught
with uncertainty, since the environment might be stochastic, partially observable,
and spring all kinds of surprises on the agent. However, the situation is even more
complex in a multiagent setting. In this case the environmentincludes—or, in many
cases we discuss, consists entirely of—other agents, all of whom are also hoping
to maximize their payoffs. Thus the notion of an optimal strategy for a given agent
is not meaningful; the best strategy depends on the choices of others.

Game theorists deal with this problem by identifying certain subsets of outcomes,
calledsolution conceptdhat are interesting in one sense or another. In this section
we describe two of the most fundamental solution concepts: Pareto optimality and
Nash equilibrium.
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Pareto optimality

First, let us investigate the extent to which a notion of optity can be meaningful
in games. From the point of view of an outside observer, can some outcomes of a
game be said to be better than others?

This question is complicated because we have no way of saying that one agent’s
interests are more important than another’s. For example, it might be tempting to
say that we should prefer outcomes in which the sum of agents’ utilities is higher.
However, recall from Section 3.1.2 that we can apply any positive affine transfor-
mation to an agent’s utility function and obtain another valid utility function. For
example, we could multiply all of player 1's payoffs by 1,000, which could clearly
change which outcome maximized the sum of agents’ utilities.

Thus, our problem is to find a way of saying that some outcomes are better
than others, even when we only know agents’ utility functions up to a positive
affine transformation. Imagine that each agent’s utility is a monetary payment that
you will receive, but that each payment comes in a different currency, and you do
not know anything about the exchange rates. Which outcomes should you prefer?
Observe that, while it is not usually possible to identify the best outcome, dhere
situations in which you can be sure that one outcome is better than another. For
example, it is better to gdt) units of currency4d and3 units of currencyB than
to get9 units of currency4d and3 units of currencyB, regardless of the exchange
rate. We formalize this intuition in the following definition.

Definition 3.3.1 (Pareto domination) Strategy profiles Pareto dominatestrat-
egy profiles’ if for all i € N, u;(s) > w;(s’), and there exists someg € N
for whichu;(s) > u;(s").

In other words, in a Pareto-dominated strategy profile somgeplcan be made
better off without making any other player worse off. Observe that we define Pareto
domination over strategy profiles, not just action profiles. Thus, here we treat strat-
egy profiles as outcomes, just as we treated lotteries as outcomes in Section 3.1.2.

Pareto domination gives us a partial ordering over strategy profiles. Thus, in an-
swer to our question before, we cannot generally identify a single “best” outcome;
instead, we may have a set of noncomparable optima.

Definition 3.3.2 (Pareto optimality) Strategy profiles is Pareto optimalor strictly
Pareto efficientif there does not exist another strategy profile= S that Pareto
dominatess.

We can easily draw several conclusions about Pareto optimal strategy profiles.
First, every game must have at least one such optimum, and there must always exist
at least one such optimum in which all players adopt pure strategies. Second, some
games will have multiple optima. For example, in zero-sum gamléstrategy
profiles are strictly Pareto efficient. Finally, in common-payoff games, all Pareto
optimal strategy profiles have the same payoffs.
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Defining best response and Nash equilibrium

Now we will look at games from an individual agent’s point oéwj, rather than
from the vantage point of an outside observer. This will lead us to the most influ-
ential solution concept in game theory, tRash equilibrium

Ouir first observation is that if an agent knew how the others were going to play,
his strategic problem would become simple. Specifically, he would be left with the
single-agent problem of choosing a utility-maximizing action that we discussed
in Section 3.1. Formally, define_; = (s1,...,8_1,Sit1,---,5,), & Strategy
profile s without agent’s strategy. Thus we can write= (s;, s_;). If the agents
other thani (whom we denote-7) were to commit to play_;, a utility-maximizing
agent; would face the problem of determining his best response.

Definition 3.3.3 (Best responsePlayer i's best responséo the strategy profile
s_; is a mixed strategy; € S, such thatu,(s;,s_;) > u,(s;,s_;) for all strate-
giess; € S;.

The best response is not necessarily unique. Indeed, except in the extreme case
in which there is a unique best response that is a pure strategy, the number of
best responses is always infinite. When the support of a best resgoimtudes
two or more actions, the agent must be indifferent among them—otherwise, the
agent would prefer to reduce the probability of playing at least one of the actions
to zero. But thusany mixture of these actions must also be a best response, not
only the particular mixture irs*. Similarly, if there are two pure strategies that
are individually best responses, any mixture of the two is necessarily also a best
response.

Of course, in general an agent will not know what strategies the other players
plan to adopt. Thus, the notion of best response is not a solution concept—it does
not identify an interesting set of outcomes in this general case. However, we can
leverage the idea of best response to define what is arguably the most central notion
in noncooperative game theory, the Nash equilibrium.

Definition 3.3.4 (Nash equilibrium) A strategy profiles = (s, ..., s, ) isaNash
equilibriumif, for all agentsi, s; is a best response @ ;.

Intuitively, a Nash equilibrium is atablestrategy profile: no agent would want
to change his strategy if he knew what strategies the other agents were following.
We can divide Nash equilibria into two categories, strict and weak, depending
on whether or not every agent’s strategy constitutasiguebest response to the
other agents’ strategies.

Definition 3.3.5 (Strict Nash) A strategy profiles = (sq,. .., s,,) is astrict Nash
equilibrium if, for all agentsi and for all strategiess, # s;, u;(s;,s_;) >

u; (85, s_4).

Definition 3.3.6 (Weak Nash)A strategy profiles = (s1,. .., s,,) is aweak Nash
equilibrium if, for all agentsi and for all strategiess, # s;, u;(s;,s_;) >
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u; (s}, s_;), ands is not a strict Nash equilibrium.

Intuitively, weak Nash equilibria are less stable than strict Nash equilibria, be-
cause in the former case at least one player has a best response to the other players’
strategies that is not his equilibrium strategy. Mixed-strategy Nash equilibria are
necessarily weak, while pure-strategy Nash equilibria can be either strict or weak,
depending on the game.

Finding Nash equilibria

Consider again the Battle of the Sexes game. We immediatelthse it has two
pure-strategy Nash equilibria, depicted in Figure 3.9.

LW WL
w | (2,1 0,0
WL | 0,0 1,2

Figure 3.9: Pure-strategy Nash equilibria in the Battle of the Sexes game.

We can check that these are Nash equilibria by confirming that whenever one
of the players plays the given (pure) strategy, the other player would only lose by
deviating.

Are these the only Nash equilibria? The answer is no; although they are indeed
the only pure-strategy equilibria, there is also another mixed-strategy equilibrium.
In general, it is tricky to compute a game’s mixed-strategy equilibria; we consider
this problem in detail in Chapter 4. However, we will show here that this computa-
tional problem is easy when we know (or can guessktigportof the equilibrium
strategies, particularly so in this small game. Let us now guess that both players
randomize, and let us assume that husband’s strategy is to play LW with proba-
bility p and WL with probabilityl — p. Then if the wife, the row player, also
mixes between her two actions, she must be indifferent between them, given the
husband’s strategy. (Otherwise, she would be better off switching to a pure strategy
according to which she only played the better of her actions.) Then we can write
the following equations.

Uwife(LW) = U\Nife(WL)
24p+0x(1—p)=0xp+1x(1—-p)
1

ng

We get the result that in order to make the wife indiffereniesn her actions,
the husband must choose LW with probability3 and WL with probability2/3.
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Of course, since the husband plays a mixed strategy he must also be indifferent
between his actions. By a similar calculation it can be shown that to make the
husband indifferent, the wife must choose LW with probabiify3 and WL with
probability 1/3. Now we can confirm that we have indeed found an equilibrium:
since both players play in a way that makes the other indifferent, they are both
best responding to each other. Like all mixed-strategy equilibria, this is a weak
Nash equilibrium. The expected payoff of both agent3/8 in this equilibrium,

which means that each of the pure-strategy equilibria Pareto-dominates the mixed-
strategy equilibrium.

Heads Tails

Heads | 1,-1 -1,1

Tails | —1,1 1,-1

Figure 3.10: The Matching Pennies game.

Earlier, we mentioned briefly that mixed strategies play an important role. The
previous example may not make it obvious, but now consider again the Matching
Pennies game, reproduced in Figure 3.10. It is not hard to see that no pure strat-
egy could be part of an equilibrium in this game of pure competition. Therefore,
likewise there can be no strict Nash equilibrium in this game. But using the afore-
mentioned procedure, the reader can verify that again there exists a mixed-strategy
equilibrium; in this case, each player chooses one of the two available actions with
probability1/2.

What does it mean to say that an agent plays a mixed-strategy Nash equilibrium?
Do players really sample probability distributions in their heads? Some people
have argued that they really do. One well-known motivating example for mixed
strategies involves soccer: specifically, a kicker and a goalie getting ready for a
penalty kick. The kicker can kick to the left or the right, and the goalie can jump
to the left or the right. The kicker scores if and only if he kicks to one side and
the goalie jumps to the other; this is thus best modeled as Matching Pennies. Any
pure strategy on the part of either player invites a winning best response on the part
of the other player. It is only by kicking or jumping in either direction with equal
probability, goes the argument, that the opponent cannot exploit your strategy.

Of course, this argument is not uncontroversial. In particular, it can be argued
that the strategies of each player are deterministic, but each player has uncertainty
regarding the other player’s strategy. This is indeed a second possible interpretation
of mixed strategies: the mixed strategy of player everyone else’s assessment of
how likely ¢ is to play each pure strategy. In equilibriuis mixed strategy has
the further property that every action in its support is a best response to piyer
beliefs about the other agents’ strategies.
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Finally, there are two interpretations that are related to learning in multiagent
systems. In one interpretation, the game is actually played many times repeatedly,
and the probability of a pure strategy is the fraction of the time it is played in the
limit (its so-calledempirical frequency In the other interpretation, not only is
the game played repeatedly, but each time it involves two different agents selected
at random from a large population. In this interpretation, each agent in the pop-
ulation plays a pure strategy, and the probability of a pure strategy represents the
fraction of agents playing that strategy. We return to these learning interpretations
in Chapter 7.

Nash’s theorem: proving the existence of Nash equilitx

We have now seen two examples in which we managed to find Naslibegu
(three equilibria for Battle of the Sexes, one equilibrium for Matching Pennies).
Did we just luck out? Here there is some good news—it was not just luck. In this
section we prove that every game has at least one Nash equilibrium.

First, a disclaimer: this section is more technical than the rest of the chapter. A
reader who is prepared to take the existence of Nash equilibria on faith can safely
skip to the beginning of Section 3.4 on p. 73. For the bold of heart who remain, we
begin with some preliminary definitions.

Definition 3.3.7 (Convexity) A setC' C R™ is convexif for everyz,y € C and
A€ [0,1], \z + (1 — \)y € C. Forvectorsz’, ..., z" and nonnegative scalars
Aos - -+, A, satisfyingd~" A\, = 1, the vectory )" | ;" is called aconvex com-
binationof 2°, . . . , 2.

For example, a cube is a convex selif; a bowl is not.

Definition 3.3.8 (Affine independence)A finite set of vector$z’, ... 2"} in a
Euclidean space isffinely independent """ j X\;z" = 0and)_; A; = 0imply
that\g =--- =\, =0.

An equivalent condition is thafz® — 2% 2?2 — 2°,... 2" — 2%} are linearly
independent. Intuitively, a set of points is affinely independent if no three points
from the set lie on the same line, no four points from the set lie on the same plane,
and so on. For example, the set consisting of the ofigand the unit vectors
el,...,e" is affinely independent.

Next we define a simplex, which is andimensional generalization of a triangle.

Definition 3.3.9 (n-simplex) An n-simplex denotedz’ - - - z™, is the set of all
convex combinations of the affinely independent set of vetidrs. ., 2"}, that
is,

wO...xn:{Z)\ixi:Vie{O,...,n}, A > 0; andZ)\izl}.
i=0

=0
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Eachz' is called avertexof the simplexc? - - - ™ and eachk-simplexz™ - - - z*
is called ak-faceof z°---z", whereig,...,i, € {0,...,n}. For example, a
triangle (i.e., a 2-simplex) has one 2-face (itself), three 1-faces (its sides) and three
O-faces (its vertices).

Definition 3.3.10 (Standardn-simplex) Thestandard:-simplexA,, is

(B3 = 1V =0 2 0)

=0

In other words, the standargdsimplex is the set of all convex combinations of
then + 1 unit vectorse?, . . ., e™.

Definition 3.3.11 (Simplicial subdivision) A simplicial subdivisiorof ann-simplex
T'is afinite set of simplexgd’; } for which{J, ... T; = T', and for anyl;, T; € T,
T; NTj is either empty or equal to a common face.

Intuitively, this means that a simplex is divided up into a set of smaller simplexes
that together occupy exactly the same region of space and that overlap only on their
boundaries. Furthermore, when two of them overlap, the intersection must be an
entire face of both subsimplexes. Figure 3.11 (left) shows a 2-simplex subdivided
into 16 subsimplexes.

Lety € 2°---z" denote an arbitrary point in a simplex. This point can be
written as a convex combination of the verticgs:= 3, \;z’. Now define a
function that gives the set of vertices “involved” in this poirty) = {i : A\; > 0}.

We use this function to define a proper labeling.

Definition 3.3.12 (Proper labeling) LetT = z° - - - 2™ be simplicially subdivided,
and letV” denote the set of all distinct vertices of all the subsim@exXefunction
L:V —{0,...,n}isaproper labelingf a subdivision ifC(v) € x(v).

One consequence of this definition is that the vertices of a simplex must all
receive different labels. (Do you see why?) As an example, the subdivided simplex
in Figure 3.11 (left) is properly labeled.

Definition 3.3.13 (Complete labeling) A subsimplex isompletely labeled £ as-
sumes all the value . . . , n on its set of vertices.

For example in the subdivided triangle in Figure 3.11 (left), the subtriangle at the
very top is completely labeled.

Lemma 3.3.14 (Sperner’'s lemma)Let 7, = z°---2" be simplicially subdi-
vided and letC be a proper labeling of the subdivision. Then there are an odd
number of completely labeled subsimplexes in the subdivision.
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2 2
0 1 0 1
2 Y 1 2 1
0 9 ! 2 oml 2
0 1 0 1 0 /Q%W\ 1

Figure 3.11: A properly labeled simplex (left), and the same simplex with com-
pletely labeled subsimplexes shaded and three walks indicated (right).

Proof. We prove this by induction on. The caser = O is trivial. The simplex
consists of a single point’. The only possible simplicial subdivision {s:°}.
There is only one possible labeling functiofi(z®) = 0. Note that this is a
proper labeling. So there is one completely labeled subsimpleitself.

We now assume the statement to be truesfor 1 and prove it forn.
The simplicial subdivision off}, induces a simplicial subdivision on its face
2%--- 2" 1. This face is an(n — 1)-simplex; denote it ag;,_;. The label-
ing function £ restricted tol;, ; is a proper labeling df,, ;. Therefore by
the induction hypothesis there exist an odd numbemof- 1)-subsimplexes
in T,,_; that bear the label§),...,n — 1). (To provide graphical intuition,
we will illustrate the induction argument on a subdivided 2-simplex. In Fig-
ure 3.11 (left), observe that the bottom facke:! is a subdivided 1-simplex—a
line segment—containing four subsimplexes, three of which are completely
labeled.)

We now define rules for “walking” across our subdivided, labeled simplex
T,.. The walk begins at atw. — 1)-subsimplex with label$0, ..., n — 1) on
the faceT,,_q; call this subsimpleX. There exists a unique-subsimplexd
that ha9 as a face(l’s vertices consist of the vertices band another vertex.
If z is labeledn, then we have a completely labeled subsimplex and the walk
ends. Otherwised has the label§0, . .. ,n — 1), where one of the labels (say
j) is repeated, and the labelis missing. In this case there exists exactly one
other(n — 1)-subsimplex that is a face dfand bears the labe(s, ..., n—1).
This is because eadh — 1)-face ofd is defined by all but one af’s vertices;
since only the labej is repeated, afn. — 1)-face ofd has labelg0, ... ,n—1)
if and only if one of the two vertices with labglis left out. We knowb is one
such face, so there is exactly one other, which weealFor example, you can
confirm in Figure 3.11 (left) that if a subtriangle has an edge with lafiels),
then itis either completely labeled, or it has exactly one other edge with labels
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(0,1).) We continue the walk from. We make use of the following property:

an (n — 1)-face of ann-subsimplex in a simplicially subdivided simpl&¥,

is either on ain — 1)-face ofT,,, or the intersection of twa-subsimplexes.

If e is on an(n — 1)-face ofT,, we stop the walk. Otherwise we walk into

the unigue othen-subsimplex having as a face. This subsimplex is either
completely labeled or has one repeated label, and we continue the walk in the
same way we did with subsimplekearlier.

Note that the walk is completely determined by the starting— 1)-
subsimplex. The walk ends either at a completely labeleslibsimplex, or
at a(n — 1)-subsimplex with label§0, ..., n — 1) on the facel,,_;. (It can-
not end on any other face becausés a proper labeling.) Note also that every
walk can be followed backward: beginning from the end of the walk and fol-
lowing the same rule as earlier, we end up at the starting point. This implies
that if a walk starts aton7,,_, and ends at’ onT,,_, t andt’ must be differ-
ent, because otherwise we could reverse the walk and get a different path with
the same starting point, contradicting the uniqueness of the walk. (Figure 3.11
(right) illustrates one walk of each of the kinds we have discussed so far: one
that starts and ends at different subsimplexes on theiféeg, and one that
starts on the face’z! and ends at a completely labeled subtriangle.) Since
by the induction hypothesis there are an odd numbénof 1)-subsimplexes
with labels(0,...,n — 1) at the facel,,_,, there must be at least one walk
that does not end on this face. Since walks that start and end on the face “pair
up,” there are thus an odd number of walks starting from the face that end at
completely labeled subsimplexes. All such walks endifierentcompletely
labeled subsimplexes, because there is exactlyonrd )-simplex face labeled
(0,...,n — 1) for awalk to enter from in a completely labeled subsimplex.

Not all completely labeled subsimplexes are led to by such walks. To see
why, consider reverse walks starting from completely labeled subsimplexes.
Some of these reverse walks endat— 1)-simplexes orf},_;, but some end
at other completely labeled subsimplexes. (Figure 3.11 (right) illustrates one
walk of this kind.) However, these walks just pair up completely labeled sub-
simplexes. There are thus an even number of completely labeled subsimplexes
that pair up with each other, and an odd number of completely labeled subsim-
plexes that are led to by walks from the faEg_,. Therefore the total number
of completely labeled subsimplexes is odd. [ |

Definition 3.3.15 (Compactness)A subset ofR™ is compactif the set is closed
and bounded.

It is straightforward to verify that\,,, is compact. A compact set has the property
that every sequence in the set has a convergent subsequence.

Definition 3.3.16 (Centroid) Thecentroidof a simplext? - - - 2™ is the “average”
of its vertices, 15 > &
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We are now ready to use Sperner’s lemma to prove Brouwer’s fixed-point theorem.

Theorem 3.3.17 (Brouwer’s fixed-point theorem)Let f : A, — A,, be con-
tinuous. Thenf has a fixed point—that is, there exists some A, such that

f(z) ==z

Proof. We prove this by first constructing a proper labelingof,, then show-

ing that as we make finer and finer subdivisions, there exists a subsequence of

completely labeled subsimplexes that converges to a fixed pojfit of

Part 1: L is a proper labeling. Lete > 0. We simplicially subdividéA,,
such that the Euclidean distance between any two points in the same

subsimplex is at most. We define a labeling functiof : V' — {0,...,m}
as follows. For each we choose a label satisfying
L(v) e x(w)n{i: fi(v) <wv}, (3.1)

wherev; is thei™ component ofv and f;(v) is thei™ component off (v). In
other words,£(v) can be any labelsuch thaw; > 0 and f weakly decreases
the i component ofv. To ensure that is well defined, we must show that

the intersection on the right side of Equation (3.1) is always nonempty. (Intu-

itively, sincev and f(v) are both on the standard simpléx,,, and onA,,
each point’'s components sum to 1, there must exist a componenttft is
weakly decreased by. This intuition holds even though we restrict to the
components iny(v) because these are exactly all the positive components of
v.) We now show this formally. For contradiction, assume otliez. This as-
sumption implies thaf;(v) > v; for alli € x(v). Recall from the definition
of a standard simplex that_;" ; v; = 1. Since by the definition of, v; > 0
if and only if j € x(v), we have

'Uj = Z’Ui = 1 (32)
=0

Since f;(v) > v; forall j € x(v),
je€x(v) jex(v)

But sincef (v) is also on the standard simpléx,,,,

Y L) <> filv) =1 (3.4)

jex(v) =0

Equations (3.3) and (3.4) lead to a contradiction. Theref6ris,well defined;
itis a proper labeling by construction.

3. Here, we implicitly assume that simplices can always be subdivided regardless of dimension. This is true,

but surprisingly difficult to show.
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Part 2: As e— 0, completely labeled subsimplexes converge to fixed points

of f. Since L is a proper labeling, by Sperner’s lemma (3.3.14) there isast|
one completely labeled subsimplgX- - - p™ such thatf;(p‘) < p* for each

1. Lete — 0 and consider the sequence of centroids of completely labeled
subsimplexes. Sincd\,, is compact, there is a convergent subsequence: Let
be its limit; then forali = 0, ..., m, p' — z ase — 0. Sincef is continuous

we must havef;(z) < z; for all i. This impliesf(z) = z, because otherwise
(by an argument similar to the one in Part 1) we would hiave )", f;(z) <

>, % = 1, a contradiction. ]

Theorem 3.3.17 cannot be used directly to prove the existence of Nash equi-
libria. This is because a Nash equilibrium is a point in the set of mixed-strategy
profiles.S. This set is not a simplex but rathesianplotope a Cartesian product
of simplexes. (Observe that each individual agent’s mixed stratagype under-
stood as a point in a simplex.) However, it turns out that Brouwer’s theorem can be
extended beyond simplexes to simplotopés.essence, this is because every sim-
plotope is topologically the same as a simplex (formally, theyhameomorphic

Definition 3.3.18 (Bijective function) A functionf is injective(or one-to-one) if
f(a) = f(b) impliesa = b. A functionf : X — Y is ontoif for everyy € Y
there existe: € X such thatf(x) = y. A function isbijectiveif it is both injective
and onto.

Definition 3.3.19 (Homeomorphism)A setA is homeomaorphido a setB if there
exists a continuous, bijective functibn A — B such that,~! is also continuous.
Such a functiorh is called ahomeomorphism

Definition 3.3.20 (Interior) A pointx is aninterior pointof a setA C R™ if
there is an opemn-dimensional ballB C R™ centered atr such thatB C A.
Theinterior of a setA is the set of all its interior points.

Corollary 3.3.21 (Brouwer's fixed-point theorem, simplotopes)Let K = Hle A,
be a simplotope and lef : K — K be continuous. Thefi has a fixed point.

Proof. Letm = Z?Zl m;. First we show that i’ is homeomorphic tad\,,,,
then a continuous functiofi : K +— K has afixed point. Lek : A,, — K
be a homeomorphism. Théim! o fo h : A,, — A, is continuous, where
o denotes function composition. By Theorem 3.3.17 there €=ist such that
h™'o foh(z') =2 Letz = h(z), thenh™t o f(z) = 2/ = h™!(2). Since
h~tisinjective,f(z) = z.

4. An argument similar to our proof below can be used to prove a generalization of Theorem 3.3.17 to
arbitrary convex and compact sets.
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We must still show that{ = Hle A, is homeomorphic td\,,,. K is

convex and compact because edt} ; is convex and compact, and a product

of convex and compact sets is also convex and compact. Ldirttensiorof a
subset of an Euclidean space be the number of independent parameters required
to describe each point in the set. For examplepaimplex has dimension.

Since each\,,,, has dimensionn;, K has dimensiomn. SinceX C R™**
andA,, € R™"! both have dimensiom, they can be embeddedti™ as K

and A/, respectively. Furthermore, whereAs C R™** and A, € R™*!

have no interior points, both” and A/ have nonempty interior. For example,

a standar@-simplex is defined ifR?, but we can embed the triangle R’

As illustrated in Figure 3.12 (left), the product of two standarsimplexes

is a square, which can also be embeddef®in We scale and translat&”

into K such thatK" is strictly inside/\! . Since scaling and translation are
homeomorphisms, and a chain of homeomorphisms is still a homeomorphism,
we just need to find a homeomorphigm K” — A’ . Fix a pointa in the
interior of K. Defineh to be the “radial projection” with respect tQ where

h(a) = a and forx € K"\ {a},

[|2" — all
h(z) =a+ 77 —al| (x —a),
wherez’ is the intersection point of the boundaryAf, with the ray that starts
ata and passes through andz” is the intersection point of the boundary of
K" with the same ray. Becaugé” and A/ are convex and compact,” and
x’ exist and are unique. Sineeis an interior point of” and A, ||z’ — al|
and||z” — a|| are both positive. Intuitively, scalesc along the ray by a factor

of ""f,,,j‘;"". Figure 3.12 (right) illustrates an example of this radial projection
from a square simplotope to a triangle.

Finally, it remains to show thak is a homeomorphism. It is relatively
straightforward to verify that is continuous. Since we know thatz) lies
on the ray that starts atand passes through givenh(z) we can reconstruct
the same ray by drawing a ray fromthat passes through(x). We can then

recoverz’ and z”, and findz by scalingh(x) along the ray by a factor of
lle"=all “Thysh is injective. h is onto because given any poipte A/, we

[lz’—all *
can construct the ray and findsuch thati(z) = y. So,h™! has the same
form ash except that the scaling factor is inverted, tius is also continuous.

Thereforeh is a homeomorphism. [ |

We are now ready to prove the existence of Nash equilibrium. Indeed, now
that we have Corollary 3.3.21 and notation for discussing mixed strategies (Sec-
tion 3.2.4), it is surprisingly easy. The proof proceeds by constructing a continuous
f S — S such that each fixed point ¢f is a Nash equilibrium. Then we use
Corollary 3.3.21 to argue that has at least one fixed point, and thus that Nash
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x| =

simplex simplex simplotope

Figure 3.12: A product of two standatesimplexes is a square (a simplotope; left).
The square is scaled and put inside a triangle-&@mplex), and an example of
radial projectionh is shown (right).

equilibria always exist.

Theorem 3.3.22 (Nash, 1951Fvery game with a finite number of players and
action profiles has at least one Nash equilibrium.

Proof. Given a strategy profile € S, for alli € N anda; € A; we define
©ia, (s) = max{0, u;(a;, s_;) — u;(s)}.
We then define the functiofi: S +— S by f(s) = s’, where

o si(ai) + ¢ia,(5)
silai) D biea, Si(bi) + @i, (s)
_ 5il@) +¢ia(s)
142 e, Pini(8)

Intuitively, this function maps a strategy profileo a new strategy profile’
in which each agent’s actions that are better responsesdoeive increased
probability mass.

The function f is continuous since eaap, ,, is continuous. Sincé' is
convex and compactanfl: S — S, by Corollary 3.3.21f must have at least
one fixed point. We must now show that the fixed pointsfadre the Nash
equilibria.

First, if s is a Nash equilibrium then ajb’s are 0, making a fixed point of
f

(3.5)

Conversely, consider an arbitrary fixed pointfafs. By the linearity of ex-
pectation there must exist at least one action in the suppott séya;, for
which u; ./ (s) < w;(s). From the definition ofp, ¢; . (s) = 0. Sinces
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is a fixed point off, si(a;) = s;(a}). Consider Equation (3.5), the expres-
sion definings;(a;). The numerator simplifies te;(a}), and is positive since

a, is ini’s support. Hence the denominator must be 1. Thus foriazyd

b; € A;, vip,(s) must equal. From the definition ofp, this can occur only
when no player can improve his expected payoff by moving to a pure strategy.
Therefore s is a Nash equilibrium. [ |

3.4  Further solution concepts for normal-form games

As described earlier at the beginning of Section 3.3, we reason about multiplayer
solution concept  games usingolution conceptsrinciples according to which we identify interest-
ing subsets of the outcomes of a game. While the most important solution concept
is the Nash equilibrium, there are also a large number of others, only some of
which we will discuss here. Some of these concepts are more restrictive than the
Nash equilibrium, some less so, and some noncomparable. In Chapters 5 and 6 we
will introduce some additional solution concepts that are only applicable to game
representations other than the normal form.

3.4.1 Maxmin and minmax strategies

The maxmin strategyf player: in ann-player, general-sum game is a (not neces-

sarily unique, and in general mixed) strategy that maximizew/orst-case payoff,

in the situation where all the other players happen to play the strategies which cause
security level the greatest harm to The maxmin valugor security level of the game for player

1 is that minimum amount of payoff guaranteed by a maxmin sisate

maxmin strategy ~ Definition 3.4.1 (Maxmin) Themaxmin strategjor playeri is arg max, min,_, u;(s;, s_;),

_ and themaxmin valueor playeri is max,, min,_, u;(S;, s_;).
maxmin value

Although the maxmin strategy is a concept that makes sense in simultaneous-
move games, it can be understood through the following temporal intuition. The
maxmin strategy ig's best choice when firgtmust commit to a (possibly mixed)
strategy, and then the remaining agentsobserve this strategy (but nds action
choice) and choose their own strategies to minimigeexpected payoff. In the
Battle of the Sexes game (Figure 3.8), the maxmin value for either player is 2/3,
and requires the maximizing agent to play a mixed strategy. (Do you see why?)

While it may not seem reasonable to assume that the other agents would be solely
interested in minimizing’s utility, it is the case that if plays a maxmin strategy
and the other agents play arbitrarilywill still receive an expected payoff of at least
his maxmin value. This means that the maxmin strategy is a sensible choice for a
conservative agent who wants to maximize his expected utility without having to
make any assumptions about the other agents, such as that they will act rationally
according to their own interests, or that they will draw their action choices from
known distributions.
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The minmax strategandminmax valueplay a dual role to their maxmin coun-
terparts. In two-player games the minmax strategy for playsyainst player:
is a strategy that keeps the maximum payoff-afat a minimum, and the minmax
value of player—: is that minimum. This is useful when we want to consider the
amount that one player can punish another without regard for his own payoff. Such
punishment can arise in repeated games, as we will see in Section 6.1. The formal
definitions follow.

Definition 3.4.2 (Minmax, two-player) In a two-player game, theninmax strat-
egyfor playeri against player—i is arg min, max,_, u_;(s;, s_;), and player
—i's minmax valuds min,, max,_, u_;(s;,S_;).

In n-player games witlm > 2, defining playeri’s minmax strategy against
player j is a bit more complicated. This is becauswill not usually be able
to guarantee thgt achieves minimal payoff by acting unilaterally. Howeveny#é
assume that all the players other thashoose to “gang up” oj—and that they are
able to coordinate appropriately when there is more than one strategy profile that
would yield the same minimal payoff fgr—then we can define minmax strategies
for then-player case.

Definition 3.4.3 (Minmax, n-player) In ann-player game, theninmax strategy
for playeri against playerj # i is i's component of the mixed-strategy profile;

in the expressioarg min, . max,; u;(s;, s_;), where—j denotes the set of play-
ers other thanyj. As before, theninmax valuefor playerj ismin,_, max,, u;(s;,5_;).

As with the maxmin value, we can give temporal intuition for the minmax value.
Imagine that the agentsi must commit to a (possibly mixed) strategy profile, to
which< can then play a best response. Playeceives his minmax value if players
—i choose their strategies in order to minimize expected utility after he plays
his best response.

In two-player games, a player’s minmax value is always equal to his maxmin
value. For games with more than two players a weaker condition holds: a player’s
maxmin value is always less than or equal to his minmax value. (Can you explain
why this is?)

Since neither an agent’s maxmin strategy nor his minmax strategy depend on
the strategies that the other agents actually choose, the maxmin and minmax strate-
gies give rise to solution concepts in a straightforward way. We will call a mixed-
strategy profiles = (s1, s2,...) amaxmin strategy profil®f a given game ifs;
is a maxmin strategy for player ; is a maxmin strategy for player 2 and so on.

In two-player games, we can also defineimax strategy profilegnalogously. In
two-player, zero-sum games, there is a very tight connection between minmax and
maxmin strategy profiles. Furthermore, these solution concepts are also linked to
the Nash equilibrium.

Theorem 3.4.4 (Minimax theorem (von Neumann, 1928))n any finite, two-player,
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zero-sum game, in any Nash equilibriieach player receives a payoff that is
equal to both his maxmin value and his minmax value.

Proof. At least one Nash equilibrium must exist by Theorem 3.3.22. Let
(st,s",) be an arbitrary Nash equilibrium, and dendgequilibrium payoff
aswv;. Denotei’s maxmin value a$; and+’s minmax value ag,.

First, show that;, = v;. Clearly we cannot have; > v;, as if this were
true theni would profit by deviating frons to his maxmin strategy, and hence
(st,s" ;) would not be a Nash equilibrium. Thus it remains to show that
cannot be less tham.

Assume that; < v;. By definition, in equilibrium each player plays a best
response to the other. Thus

v_; = maxu_(s},s_;).
Equivalently, we can write that+ minimizes the negative of his payoff, given
1'S strategy,
—v_; = min—u_,;(s},s_;).

S—i

Since the game is zero sum,= —v_; andu; = —u_;. Thus,

v; = minw;(s), s_;).
S—i
We definedy; asmax,, min,_, u;(s;, s_;). By the definition ofmax, we must
have
max min w;(s;, s_;) > minu;(s}, s_;).
S; S_i S—i

Thusw; > v;, contradicting our assumption.

We have shown that; = v;. The proof thaty, = v; is similar, and is left as
an exercise. [ |

Why is the minmax theorem important? It demonstrates that maxmin strategies,
minmax strategies and Nash equilibria coincide in two-player, zero-sum games.
In particular, Theorem 3.4.4 allows us to conclude that in two-player, zero-sum
games:

1. Each player’'s maxmin value is equal to his minmax value. By convention, the
value of a maxmin value for player 1 is called thalue of the game
Zero-sum game
2. For both players, the set of maxmin strategies coincides with the set of minmax
strategies; and

5. The attentive reader might wonder how a theorem from 1928 can use the term “Nash equilibrium,” when
Nash’s work was published in 1950. Von Neumann used different terminology and proved the theorem in a
different way; however, the given presentation is probably clearer in the context of modern game theory.
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3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a
Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently,
all Nash equilibria have the same payoff vector (namely, those in which player
1 gets the value of the game).

For example, in the Matching Pennies game in Figure 3.6, the value of the game
is 0. The unique Nash equilibrium consists of both players randomizing between
heads and tails with equal probability, which is both the maxmin strategy and the
minmax strategy for each player.

Nash equilibria in zero-sum games can be viewed graphically as a “saddle” in
a high-dimensional space. At a saddle point, any deviation of the agent lowers
his utility and increases the utility of the other agent. It is easy to visualize in the
simple case in which each agent has two pure strategies. In this case the space of
mixed strategy profiles can be viewed as the points on the square between (0,0) and
(1,1). Adding a third dimension representing player 1's expected utility, the payoff
to player 1 under these mixed strategy profiles (and thus the negative of the payoff
to player 2) is a saddle-shaped surface. Figure 3.13 (left) gives a pictorial example,
illustrating player 1's expected utility in Matching Pennies as a function of both
players’ probabilities of playing heads. Figure 3.13 (right) adds a plane=a)
to make it easier to see that it is an equilibrium for both ptaye play heads 50%
of the time and that zero is both the maxmin value and the minmax value for both
players.

player 1's
expected
utility

player 1's
expected
utility

player 1's

W< player 1's
Pr(heads) T

17 SO
player 2's Pr(heads) 0 player 2's
Pr(heads) Pr(heads)

Figure 3.13: The saddle point in Matching Pennies, with and without a plane at
z=0.

Minimax regret

We argued earlier that agents might play maxmin strategiesder to achieve
good payoffs in the worst case, even in a game that is not zero sum. However,
consider a setting in which the other agent is not believed to be malicious, but is
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instead entirely unpredictable. (Crucially, in this section we do not approach the
problem as Bayesians, saying that agémbeliefs can be described by a probabil-
ity distribution; instead, we use a “pre-Bayesian” model in whidioes not know
such a distribution and indeed has no beliefs about it.) In such a setting, it can
make sense for agents to care about minimizing their worstloasesrather than
maximizing their worst-case payoffs.

L R

T | 100,a |1—¢,b

B 2,¢ 1,d

Figure 3.14: A game for contrasting maxmin with minimax regret. The numbers
refer only to playen’s payoffs;e is an arbitrarily small positive constant. Player
2’s payoffs are the arbitrary (and possibly unknown) constani, c, andd.

Consider the game in Figure 3.14. Ledbe an arbitrarily small positive constant.
For this example it does not matter what ag2stpayoffsa, b, ¢, andd are, and
we can even imagine that ageintoes not know these values. Indeed, this could
be one reason why playérwould be unable to form beliefs about how player
would play, even if he were to believe that playewas rational. Let us imagine
that agentl wants to determine a strategy to follow that makes sensetddspi
uncertainty about play&. First, agenti might play his maxmin, or “safety level”
strategy. In this game it is easy to see that playgmaxmin strategy is to plajs;
this is because play@fs minmax strategy is to plaf®, andB is a best response to
R.

If player1 does not believe that playiis malicious, however, he might instead
reason as follows. If player were to playR then it would not matter very much
how playerl plays: the most he could lose by playing the wrong way would.be
On the other hand, if player were to playL then player’s action would be very
significant: if playerl were to make the wrong choice here then his utility would
be decreased b§8. Thus playerl might choose to play’ in order to minimize
his worst-case loss. Observe that this is the opposite of what he would choose if he
followed his maxmin strategy.

Let us now formalize this idea. We begin with the notion of regret.

Definition 3.4.5 (Regret) An agent’s regretfor playing an actiora; if the other
agents adopt action profile_; is defined as

[gpeajg w;(a;, ai):| —ui(a;,a_;).
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In words, this is the amount thatioses by playing:;, rather than playing his
best response to_;. Of course,;; does not know what actions the other players
will take; however, he can consider those actions that would give him the highest
regret for playingz;.

Definition 3.4.6 (Max regret) An agent’s maximum regrefor playing an action
a, is defined as

agleaj: < [gleaﬁ i (a;’ CZZ):| o ui(ai’ al)) .

This is the amount thatloses by playing; rather than playing his best response
to a_,, if the other agents chose tle ; that makes this loss as large as possible.
Finally, 2 can choose his action in order to minimize this worst-caseeteg

Definition 3.4.7 (Minimax regret) Minimax regret actions for agertare defined
as

: !/
ara%erim [al?ea}i <{gleaji u;(a;, a_i)} u;(ag, a_i)>} .
Thus, an agent’s minimax regret action is an action that gitld smallest max-
imum regret. Minimax regret can be extended to a solution concept in the natural
way, by identifying action profiles that consist of minimax regret actions for each
player. Note that we can safely restrict ourselves to actions rather than mixed strate-
gies in the definitions above (i.e., maximizing over the sktend A_; instead of
S; and S_;), because of the linearity of expectation. We leave the proof of this fact
as an exercise.

Removal of dominated strategies

We first define what it means for one strategy to dominate andthteitively, one
strategy dominates another for a play#ithe first strategy yields a greater payoff
than the second strategy, fany strategy profile of the remaining playérsShere

are, however, three gradations of dominance, which are captured in the following
definition.

Definition 3.4.8 (Domination) Lets; ands; be two strategies of playerandsS_;
the set of all strategy profiles of the remaining players. Then

1. s, strictly dominatess!, if for all s_; € S_,, itis the case thai;(s;,s_;) >
u; (8}, 8-4)-

2. s; weakly dominates/, if for all s_; € S_,, itis the case that;(s;,s_;)
u;(s;,s_;), and for at least one_; € S_,, itis the case that;(s;,s_;) >
u; (85, s_;).

v
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3. s; very weakly dominates; ifforall s_; € S_;, itis the case that; (s;, s_;) >
u;(sh, s_;).

If one strategy dominates all others, we say that it is (strongly, weakly or very
weakly)dominant

Definition 3.4.9 (Dominant strategy) A strategy isstrictly (resp., weakly; very
weakly) dominanfor an agent if it strictly (weakly; very weakly) dominates any
other strategy for that agent.

It is obvious that a strategy profilg,, ..., s,) in which everys, is dominant
for player: (whether strictly, weakly, or very weakly) is a Nash equililon. Such
a strategy profile forms what is called aguilibrium in dominant strategiesith
the appropriate modifier (strictletc). An equilibrium in strictly dominant strate-
gies is necessarily the unique Nash equilibrium. For example, consider again the
Prisoner’s Dilemma game. For each player, the strat@gyg strictly dominant,
and indeed(D, D) is the unique Nash equilibrium. Indeed, we can now explain
the “dilemma” which is particularly troubling about the Prisoner’s Dilemma game:
the outcome reached in the unique equilibrium, which is an equilibrium in strictly
dominant strategies, is also the only outcome thabisPareto optimal.

Games with dominant strategies play an important role in game theory, espe-
cially in games handcrafted by experts. This is true in particulan@thanism
design as we will see in Chapter 10. However, dominant strategies are rare in
naturally-occurring games. More common are dominated strategies.

Definition 3.4.10 (Dominated strategy)A strategys; isstrictly (weakly; very weakly)
dominatedfor an agent: if some other strategy; strictly (weakly; very weakly)
dominates;.

Let us focus for the moment on strictly dominated strategies. Intuitively, all
strictly dominated pure strategies can be ignored, since they can never be best re-
sponses to any moves by the other players. There are several subtleties, however.
First, once a pure strategy is eliminated, another strategy that was not dominated
can become dominated. And so this process of elimination can be continued. Sec-
ond, a pure strategy may be dominated by a mixture of other pure strategies without
being dominated by any of them independently. To see this, consider the game in
Figure 3.15.

Column R can be eliminated, since it is dominated by, for example,rooli.

We are left with the reduced game in Figure 3.16.

In this gameM is dominated by neithel/ nor D, but it is dominated by the
mixed strategy that selects eithE@ror D with equal probability. (Note, however,
that it was not dominated before the elimination of fReolumn.) And so we are
left with the maximally reduced game in Figure 3.17.

6. Note that here we consider strategy domination from one individual player's point of view; thus, this
notion is unrelated to the concept of Pareto domination discussed earlier.
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L C R

Ul 31 |01 | 00

M| 1,1 | 1,1 | 50

D | 0,1 4,1 0,0

Figure 3.15: A game with dominated strategies.

L C

Ul 31 |01

M| 1,1 | 1,1

D |01 | 41

Figure 3.16: The game from Figure 3.15 after removing the dominated strRtegy

This yields us a solution concept: the set of all strategy profiles that assign zero
probability to playing any action that would be removed through iterated removal
of strictly dominated strategies. Note that this is a much weaker solution concept
than Nash equilibrium—the set of strategy profiles will include all the Nash equi-
libria, but it will include many other mixed strategies as well. In some games, it
will be equal toS, the set of all possible mixed strategies.

Since iterated removal of strictly dominated strategies preserves Nash equilibria,
we can use this technigue to computational advantage. In the previous example,
rather than computing the Nash equilibria of the origihad 3 game, we can now
compute them for thi® x 2 game, applying the technique described earlier. In
some cases, the procedure ends with a single cell; this is the case, for example,
with the Prisoner’s Dilemma game. In this case we say that the gasudviable
by iterated elimination.

Clearly, in any finite game, iterated elimination ends after a finite number of
iterations. One might worry that, in general, the order of elimination might affect
the final outcome. It turns out that this elimination order does not matter when we
removestrictly dominated strategies. (This is calledCAurch—Rosseproperty.)
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L C

Ul 31 |01

D | 01 | 41

Figure 3.17: The game from Figure 3.16 after removing the dominated strategy
M.

However, the elimination order can make a difference to the final reduced game if
we remove weakly or very weakly dominated strategies.

Which flavor of domination should we concern ourselves with? In fact, each
flavor has advantages and disadvantages, which is why we present all of them here.
Strict domination leads to better-behaved iterated elimination: it yields a reduced
game that is independent of the elimination order, and iterated elimination is more
computationally manageable. (This and other computational issues regarding dom-
ination are discussed in Section 4.5.3.) There is also a further related advantage
that we will defer to Section 3.4.4. Weak domination can yield smaller reduced
games, but under iterated elimination the reduced game can depend on the elim-
ination order. Very weak domination can yield even smaller reduced games, but
again these reduced games depend on elimination order. Furthermore, very weak
domination does not impose a strict order on strategies: when two strategies are
equivalent, each very weakly dominates the other. For this reason, this last form of
domination is generally considered the least important.

Rationalizability

A strategy isrationalizableif a perfectly rational player could justifiably play it
against one or more perfectly rational opponents. Informally, a strategy profile
for player: is rationalizable if it is a best response to some beliefs itatuld
have about the strategies that the other players will take. The wrinkle, however,
is that: cannot have arbitrary beliefs about the other players’ astiehis beliefs
must take into account his knowledgetbéir rationality, which incorporates their
knowledge otis rationality, their knowledge of his knowledge of their rationality,
and so on in an infinite regress. A rationalizable strategy profile is a strategy profile
that consists only of rationalizable strategies.

For example, in the Matching Pennies game givenin Figure 3.6, the pure strategy
headsds rationalizable for the row player. First, the stratbgadss a best response
to the pure strateglyeadshy the column player. Second, believing that the column
player would also playheadsis consistent with the column player’s rationality:
the column player could believe that the row player would kg, to which the
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column player’s best responsenigads It would be rational for the column player

to believe that the row player would pldgils because the column player could
believe that the row player believed that the column player would tads, to
whichtails is a best response. Arguing in the same way, we can make our way up
the chain of beliefs.

However, not every strategy can be justified in this way. For example, consider-
ing the Prisoner’s Dilemma game given in Figure 3.3, the straegdy not ratio-
nalizable for the row player, becauégis not a best response to any strategy that
the column player could play. Similarly, consider the game from Figure 3V15.
is not a rationalizable strategy for the row player: althoiigb a best response to
a strategy of the column player’s j/there do not exist any beliefs that the col-
umn player could hold about the row player’s strategy to whittvould be a best
response.

Because of the infinite regress, the formal definition of rationalizability is some-
what involved; however, it turns out that there are some intuitive things that we
can say about rationalizable strategies. First, Nash equilibrium strategies are al-
ways rationalizable: thus, the set of rationalizable strategies (and strategy profiles)
is always nonempty. Second, in two-player games rationalizable strategies have a
simple characterization: they are those strategies that survive the iterated elimina-
tion of strictly dominated strategies. implayer games there exist strategies that
survive iterated removal of dominated strategies but are not rationalizable. In this
more general case, rationalizable strategies are those strategies that survive itera-
tive removal of strategies that are never a best response to any strategy profile by
the other players.

We now define rationalizability more formally. First we will define an infinite
sequence of (possibly mixed) strategf&'s S}, 57, . . . for each playet. Let S? =
S;; thus, for each agerntthe first elementin the sequence is the set afathixed
strategies. LeCU H (S) denote the convex hull of a s8t the smallest convex set
containing all the elements . Now we defineSF as the set of all strategies
s; € S;~! for which there exists some ; € [],_,, CH(S; ") such that for all
sh €SI wu(si,s-5) > wi(sh,s_;). Thatis, a strategy belongs &F if there
is some strategy_; for the other players in response to whighis at least as
good as any other strategy frafif . The convex hull operation allowisto best
respond to uncertain beliefs about which strategies fﬂjml playerj will adopt.

CH(S§™")is used instead df (S} "), the set of all probability distributions over

Sf‘l, because the latter would allow consideration of mixed strategies that are
dominated by some pure strategies forPlayer: could not believe thaj would
play such a strategy because such a belief would be inconsistentsktiowledge
of j's rationality.
Now we define the set of rationalizable strategies for playerthe intersection
of the setsS?, SF, 57, .. ..

Definition 3.4.11 (Rationalizable strategies)Therationalizable strategidsr player
iare(N,—, Sr.
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Correlated equilibrium

The correlated equilibrium is a solution concept that gdims the Nash equi-
librium. Some people feel that this is the most fundamental solution concept of
all.’”

In a standard game, each player mixes his pure strategies independently. For
example, consider again the Battle of the Sexes game (reproduced here as Fig-
ure 3.18) and its mixed-strategy equilibrium.

LW WL
W | 2,1 0,0
WL | 0,0 1,2

Figure 3.18: Battle of the Sexes game.

As we saw in Section 3.3.3, this game’s unique mixed-strategy equilibrium
yields each player an expected payoff2gf3. But now imagine that the two play-
ers can observe the result of a fair coin flip and can condition their strategies based
on that outcome. They can now adopt strategies from a richer set; for example,
they could choose “WL if heads, LW if tails.” Indeed, this pair forms an equilib-
rium in this richer strategy space; given that one player plays the strategy, the other
player only loses by adopting another. Furthermore, the expected payoff to each
player in this so-called correlated equilibriumisx 2 + .5 x« 1 = 1.5. Thus both
agents receive higher utility than they do under the mixed-strategy equilibrium in
the uncorrelated case (which had expected payoff of 2/3 for both agents), and the
outcome is fairer than either of the pure-strategy equilibria in the sense that the
worst-off player achieves higher expected utility. Correlating devices can thus be
quite useful.

The aforementioned example had both players observe the exact outcome of the
coin flip, but the general setting does not require this. Generally, the setting in-
cludes some random variable (the “external event”) with a commonly-known prob-
ability distribution, and a private signal to each player about the instantiation of the
random variable. A player’s signal can be correlated with the random variable’s
value and with the signals received by other players, without uniquely identifying
any of them. Standard games can be viewed as the degenerate case in which the
signals of the different agents are probabilistically independent.

To model this formally, considet random variables, with a joint distribution
over these variables. Imagine that nature chooses according to this distribution, but

7. A Nobel-prize-winning game theorist, R. Myerson, has gone so far as to say that “if there is intelligent
life on other planets, in a majority of them, they would have discovered correlated equilibrium before Nash
equilibrium.”
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reveals to each agent only the realized value of his variable, and that the agent can
condition his action on this valde.

Definition 3.4.12 (Correlated equilibrium) Given am-agentgamér = (N, A, u),
acorrelated equilibriunis a tuple(v, 7, ), wherev is a tuple of random variables
v = (vy,...,v,) with respective domain® = (Dy,...,D,), 7 is a joint distri-
bution overv, o = (oy,...,0,) is a vector of mappings; : D; — A;, and for
each ageni and every mapping; : D, — A, itis the case that

> w(dyu; (o1(dh), .. 0i(di), - 00 (dn))

deD

> w(dyu; (o1(dy), .., 0i(di), ., 00 (dn))

deD

Note that the mapping is to an action—that is, to a pure styaigher than a
mixed one. One could allow a mapping to mixed strategies, but that would add no
greater generality. (Do you see why?)

For every Nash equilibrium, we can construct an equivalent correlated equilib-
rium, in the sense that they induce the same distribution on outcomes.

Theorem 3.4.13For every Nash equilibriure™* there exists a corresponding cor-
related equilibriuno.

The proof s straightforward. Roughly, we can construct a correlated equilibrium
from a given Nash equilibrium by letting eadhy = A; and letting the joint prob-
ability distribution ber(d) = [[,.y o7 (d;). Then we choose; as the mapping
from eachd; to the corresponding,. When the agents play the strategy profile
o, the distribution over outcomes is identical to that undér Because the),’s
are uncorrelated and no agent can benefit by deviating &b is a correlated
equilibrium.

On the other hand, not every correlated equilibrium is equivalent to a Nash equi-
librium; the Battle-of-the-Sexes example given earlier provides a counter-example.
Thus, correlated equilibrium is a strictly weaker notion than Nash equilibrium.

Finally, we note that correlated equilibria can be combined together to form new
correlated equilibria. Thus, if the set of correlated equilibria of a géfm#oes
not contain a single element, it is infinite. Indeed, any convex combination of
correlated equilibrium payoffs can itself be realized as the payoff profile of some
correlated equilibrium. The easiest way to understand this claim is to imagine a
public random device that selects which of the correlated equilibria will be played;
next, another random number is chosen in order to allow the chosen equilibrium to
be played. Overall, each agent’s expected payoff is the weighted sum of the payoffs

8. This construction is closely related to two other constructions later in the book, one in connection with
Bayesian Games in Chapter 6, and one in connection with knowledge and probability (KP) structures in
Chapter 13.

Uncorrected manuscript dfultiagent System®ublished by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.



3.4.6

trembling-hand
perfect
equilibrium

proper
equilibrium

3.4.7

3.4 Further solution concepts for normal-form games 85

from the correlated equilibria that were combined. Since no agent has an incentive
to deviate regardless of the probabilities governing the first random device, we
can achieve any convex combination of correlated equilibrium payoffs. Finally,
observe that having two stages of random number generation is not necessary: we
can simply derive new domairi2 and a new joint probability distribution from

the D’s and#’s of the original correlated equilibria, and so perform thedom
number generation in one step.

Trembling-hand perfect equilibrium

Another important solution concept is ttrembling-hand perfect equilibriupor
simply perfect equilibrium While rationalizability is a weaker notion than that of

a Nash equilibrium, perfection is a stronger one. Several equivalent definitions of
the concept exist. In the following definition, recall that a fully mixed strategy is
one that assigns every action a strictly positive probability.

Definition 3.4.14 (Trembling-hand perfect equilibrium) A mixed-strategy profile
s is a (trembling-hand) perfect equilibriumof a normal-form gamé& if there ex-
ists asequence, s', . .. of fully mixed-strategy profiles such tHat,, .. s™ = s,
and such that for eack” in the sequence and each playethe strategys, is a
best response to the strategi€s.

Perfect equilibria are relevant to one aspect of multiagent learning (see Chap-
ter 7), which is why we mention them here. However, we do not discuss them
in any detail; they are an involved topic, and relate to other subtle refinements of
the Nash equilibrium such as tipeoper equilibrium The notes at the end of the
chapter point the reader to further readings on this topic. We should, however, at
least explain the term “trembling hand.” One way to think about the concept is as
requiring that the equilibrium be robust against slight errors—“trembles”—on the
part of players. In other words, one’s action ought to be the best response not only
against the opponents’ equilibrium strategies, but also against small perturbation
of those. However, since the mathematical definition speaks about arbitrarily small
perturbations, whether these trembles in fact model player fallibility or are merely
a mathematical device is open to debate.

e-Nash equilibrium

Our final solution concept reflects the idea that players nmightare about chang-
ing their strategies to a best response when the amount of utility that they could
gain by doing so is very small. This leads us to the idea afBiash equilibrium.

Definition 3.4.15 (eNash) Fix e > 0. A strategy profiles = (sy,...,s,) is an
e-Nash equilibrium if, for all agentsand for all strategies, # s;, u;(s;, s_;) >
u;(sh,s_;) — €.
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This concept has various attractive propertiellash equilibria always exist; in-
deed, every Nash equilibrium is surrounded by a regionigésh equilibria for any
e > 0. The argument that agents are indifferent to sufficientlylsgans is con-
vincing to many. Further, the concept can be computationally useful: algorithms
that aim to identifye-Nash equilibria need to consider only a finite set of mixed-
strategy profiles rather than the whole continuous space. (Of course, the size of this
finite set depends on bottand on the game’s payoffs.) Since computers generally
represent real numbers using a floating-point approximation, it is usually the case
that even methods for the “exact” computation of Nash equilibria (see e.g., Sec-
tion 4.2) actually find only-equilibria wheree is roughly the “machine precision”

(on the order ofl0~% or less for most modern computerg)Nash equilibria are
aso important to multiagent learning algorithms; we discuss them in that context
in Section 7.3.

However,e-Nash equilibria also have several drawbacks. First, aghddash
equilibria are always surrounded byNash equilibria, the reverse is not true. Thus,
agivene-Nash equilibrium is not necessarily close to any Nash dayitilin. This
undermines the sense in whietNash equilibria can be understood as approxima-
tions of Nash equilibria. Consider the game in Figure 3.19.

L R

Ul 1,1 0,0

D |1+ £,1 | 500,500

Figure 3.19: A game with an interestingNash equilibrium.

This game has a unique Nash equilibrium(é?, R), which can be identified
through the iterated removal of dominated strategiesd@inated/ for player
1; on the removal of/, R dominatesL for player 2.) (D, R) is also ane-Nash
equilibrium, of course. However, there is also anothéash equilibrium:(U, L).
This game illustrates two things.

First, neither player's payoff under theNash equilibrium is withine of his
payoff in a Nash equilibrium; indeed, in general both players’ payoffs under an
Nash equilibrium can be arbitrarily less than in any Nash equilibrium. The problem
is that the requirement that player 1 cannot gain more ¢iandeviating from the
e-Nash equilibrium strategy profile ¢/, L) does not imply thaplayer 2would
not be able to gain more tharby best responding to player 1's deviation.

Second, some-Nash equilibria might be very unlikely to arise in play. Adtigh
player 1 might not care about a gaingfhe might reason that the fact thatdom-
inates/ would lead player 2 to expect him to pldy, and that player 2 would thus
play R in response. Player 1 might thus plBybecause it is his best responsdio
Overall, the idea ot-approximation is much messier when applied to the identifi-
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cation of a fixed point than when it is applied to a (single-objective) optimization
problem.

History and references

There exist several excellent technical introductory textbooks for game theory, in-
cluding Osborne and Rubinstein [1994], Fudenberg and Tirole [1991], and Myer-
son [1991]. The reader interested in gaining deeper insight into game theory should
consult not only these, but also the most relevant strands of the the vast literature
on game theory which has evolved over the years.

The origins of the material covered in the chapter are as follows. In 1928, von
Neumann derived the “maximin” solution concept to solve zero-sum normal-form
games [von Neumann, 1928]. Our proof of his minimax theorem is similar to the
one in Luce and Raiffa [1957b]. In 1944, he together with Oskar Morgenstern
authored what was to become the founding document of game theory [von Neu-
mann and Morgenstern, 1944]; a second edition quickly followed in 1947. Among
the many contributions of this work are the axiomatic foundations for “objective
probabilities” and what became known as von Neumann—Morgenstern utility the-
ory. The classical foundation of “subjective probabilities” is Savage [1954], but
we do not cover those since they do not play a role in the book. A comprehensive
overview of these foundational topics is provided by Kreps [1988], among others.
Our own treatment of utility theory draws on Poole et al. [1997]; see also Russell
and Norvig [2003].

But von Neumann and Morgenstern [1944] did much more; they introduced the
normal-form game, the extensive form (to be discussed in Chapter 5), the con-
cepts of pure and mixed strategies, as well as other notions central to game theory.
Schelling [1960] was one of the first to show that interesting social interactions
could usefully be modeled using game theory, for which he was recognized in
2005 with a Nobel Prize.

Shortly afterward John Nash introduced the concept of what would become
known as the “Nash equilibrium” [Nash, 1950; Nash, 1951], without a doubt
the most influential concept in game theory to this date. Indeed, Nash received
a Nobel Prize in 1994 because of this w8rkThe proof in Nash [1950] uses
Kakutani’s fixed-point theorem; our proof of Theorem 3.3.22 follows Nash [1951].
Lemma 3.3.14 is due to Sperner [1928] and Theorem 3.3.17 is due to Brouwer
[1912]; our proof of the latter follows Border [1985].

This work opened the floodgates to a series of refinements and alternative solu-
tion concepts which continues to this day. We covered several of these solution
concepts. The literature on Pareto optimality and social optimization dates back to
the early twentieth century, including seminal work by Pareto and Pigou, but per-
haps was best established by Arrow in his seminal work on social choice [Arrow,

9. John Nash was also the topic of the Oscar-winning 2001 mdBeautiful Mind however, the movie
had little to do with his scientific contributions and indeed got the definition of Nash equilibrium wrong.
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1970]. The minimax regret decision criterion was first proposed by Savage [1954],
and further developed in Loomes and Sugden [1982] and Bell [1982]. Recent work
from a computer science perspective includes Hyafil and Boutilier [2004], which
also applies this criterion to the Bayesian games setting we introduce in Section 6.3.
Iterated removal of dominated strategies, and the closely related rationalizability,
enjoy a long history, though modern discussion of them is most firmly anchored in
two independent and concurrent publications: Pearce [1984] and Bernheim [1984].
Correlated equilibria were introduced in Aumann [1974]; Myerson’s quote is taken
from Solan and Vohra [2002]. Trembling-hand perfection was introduced in Selten
[1975]. An even stronger notion than (trembling-hand) perfect equilibrium is that
of proper equilibrium [Myerson, 1978]. In Chapter 7 we discuss the concept of
evolutionarily stable strategies [Maynard Smith and Price, 1973] and their connec-
tion to Nash equilibria. In addition to such single-equilibrium concepts, there are
concepts that apply to sets of equilibria, not single ones. Of note are the notions of
stable equilibriaas originally defined in Kohlberg and Mertens [1986], and various
later refinements such agperstable setdefined in Govindan and Wilson [2005a].
Good surveys of many of these concepts can be found in Hillas and Kohlberg
[2002] and Govindan and Wilson [2005b].
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4.1

Computing Solution Concepts of
Normal-Form Games

The discussion of strategies and solution concepts in Chapter 3 largely ignored
issues of computation. We start by asking the most basic question: How hard is it
to compute the Nash equilibria of a game? The answer turns out to be quite subtle,
and to depend on the class of games being considered.

We have already seen how to compute the Nash equilibria of simple games.
These calculations were deceptively easy, partly because there were only two play-
ers and partly because each player had only two actions. In this chapter we discuss
several different classes of games, starting with the simple two-player, zero-sum
normal-form game. Dropping only the zero-sum restriction yields a problem of
different complexity—while it is generally believed that any algorithm that guaran-
tees a solution must have an exponential worst case complexity, it is also believed
that a proof to this effect may not emerge for some time. We also consider proce-
dures forn-player games. In each case, we describe how to formulate o,
the algorithm (or algorithms) commonly used to solve them, and the complexity of
the problem. While we focus on the problem of finding a sample Nash equilibrium,
we will briefly discuss the problem of finding all Nash equilibria and finding equi-
libria with specific properties. Along the way we also discuss the computation of
other game-theoretic solution concepts: maxmin and minmax strategies, strategies
that survive iterated removal of dominated strategies, and correlated equilibria.

Computing Nash equilibria of two-player, zero-sum games

The class of two-player, zero-sum games is the easiest to solve. The Nash equilib-
rium problem for such games can be expressedlagar program (LP), which
means that equilibria can be computed in polynomial tin@ansider a two-player,
zero-sum gamé&’ = ({1,2}, A; x As, (u1,us)). LetU; be the expected utility

for player: in equilibrium (the value of the game); since the game is zen,

U = —U;. The minmax theorem (see Section 3.4.1 and Theorem 3.4.4) tells
us thatU;" holds constant in all equilibria and that it is the same as the value that

1. Appendix B reviews the basics of linear programming.
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player 1 achieves under a minmax strategy by player 2. Using this result, we can
construct the linear program that follows.

minimize U; (4.1)
subjectto > ui(af,ab) - s§ < U7 Vje A (4.2)
keAs
d sh=1 (4.3)
keAs
sk >0 Vk € A, (4.4)

Note first of all that the utility terms; (-) are constants in the linear program,
while the mixed strategy terms, and U are variables. Let us start by looking at
constraint (4.2). This states that for every pure stragegiplayer 1, his expected
utility for playing any actionj € A; given player 2's mixed strategy, is at
mostU;. Those pure strategies for which the expected utility is exdgflywill
be in player 1's best response set, while those pure strategies leading to lower
expected utility will not. Of course, as mentioned earligris a variable; the linear
program will choose player 2’s mixed strategy in order to minindizesubject to
the constraint just discussed. Thus, lines (4.1) and (4.2) state that player 2 plays
the mixed strategy that minimizes the utility player 1 can gain by playing his best
response. This is almost exactly what we want. All that is left is to ensure that the
values of the variables} are consistent with their interpretation as probabilities.
Thus, the linear program also expresses the constraints that these variables must
sum to one (4.3) and must each be nonnegative (4.4).

This linear program gives us player 2's mixed strategy in equilibrium. In the
same fashion, we can construct a linear program to give us player 1's mixed strate-
gies. This program reverses the roles of player 1 and player 2 in the constraints;
the objective is tanaximizel;, as player 1 wants to maximize his own payoffs.
This corresponds to thaual of player 2's program.

maximize U} (4.5)
subject to Z uy(al,ab) - 51 > U; Vk € A, (4.6)
JEA,
JEA
s1 >0 Vj e A, (4.8)

Finally, we give a formulation equivalent to our first linear program from Equa-
tions (4.1)—(4.4), which will be useful in the next section. This program works by
introducingslack variables- for everyj € A; and then replacing the inequality
constraints with equality constraints. This LP formulation follows.
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minimize U7y (4.9
subjectto > uy(af,ab) - s§ +ri = U} Vi€ A (4.10)
keAs
> sh=1 (4.11)
k€eAs
sk >0 Vk € A, (4.12)
>0 Vj e A (4.13)

Comparing the LP formulation given in Equations (4.9)—(4.12) with our first
formulation given in Equations (4.1)—(4.4), observe that constraint (4.2) changed
to constraint (4.10) and that a new constraint (4.13) was introduced. To see why
the two formulations are equivalent, note that since constraint (4.13) requires only
that each slack variable must be positive, the requirement of equality in constraint
(4.10) is equivalent to the inequality in constraint (4.2).

Computing Nash equilibria of two-player, general-sum games

Unfortunately, the problem of finding a Nash equilibrium of a two-player, general-
sum game cannot be formulated as a linear program. Essentially, this is because
the two players’ interests are no longer diametrically opposed. Thus, we cannot
state our problem as an optimization problem: one player is not trying to minimize
the other’s utility.

Complexity of computing a sample Nash equilibrium

The issue of characterizing the complexity of computing aariash equilib-

rium is tricky. No known reduction exists from our problem to a decision problem
that is NP-complete, nor has our problem been shown to be easier. An intuitive
stumbling block is thatverygame has at least one Nash equilibrium, whereas
known NP-complete problems are expressible in terms of decision problems that
do not always have solutions.

Current knowledge about the complexity of computing a sample Nash equilib-
rium thus relies on another, less familiar complexity class that describes the prob-
lem of finding a solution which always exists. This class is called PPAD, which
stands for “polynomial parity argument, directed version.” To describe this class
we must first define a family of directed graphs which we will derite). Let
each graph in this family be defined on a $étof 2” nodes. Although each graph
in G(n) thus contains a number of nodes that is exponential iwe want to re-
strict our attention to graphs that can be described in polynomial space. There is
no need to encode the set of nodes explicitly; we encode the set of edges in a given
graph as follows. LeParent : N — N andChild : N — N be two functions
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that can be encoded as arithmetic circuits with sizes polynomiafihet there be
one graphG € G(n) for every such pair oParent andChild functions, as long
as GG satisfies one additional restriction that is described.l&@éren such a graph
G, an edge exists from a nogléo a nodek iff Parent(k) = j andChild(j) = k.
Thus, each node has either zero parents or one parent and either zero children or
one child. The additional restriction is that there must exist one distinguished node
0 € N with exactly zero parents.

The aforementioned constraints on the in- and out-degrees of the nodes in graphs
G € G(n) imply that every node is either part of a cycle or part of a padmf
a source (a parentless node) to a sink (a childless node). The computational task
of problems in the class PPAD is finding either a sink or a source othetfan
agiven graphGG € G(n). Such a solution always exists: because the ribidea
source, there must be some sink which is either a descendérurdf itself.

We can now state the main complexity resuilt.

Theorem 4.2.1 The problem of finding a sample Nash equilibrium of a general-
sum finite game with two or more players is PPAD-complete.

Of course, this proof is achieved by showing that the problem is in PPAD and
that any other problem in PPAD can be reduced to it in polynomial time. To show
that the problem is in PPAD, a reduction is given, which expresses the problem of
finding a Nash equilibrium as the problem of finding source or sink nodes in a graph
as described earlier. This reduction proceeds quite directly from the proof that
every game has a Nash equilibrium that appeals to Sperner’s lemma. The harder
part is the other half of the puzzle: showing that Nash equilibrium computation
is PPAD-hard, or in other words that every problem in PPAD can be reduced to
finding a Nash equilibrium of some game with size polynomial in the size of the
original problem. This result, obtained in 2005, is a culmination of a series of
intermediate results obtained over more than a decade. The initial results relied in
part on the concept a@raphical gamegsee Section 6.5.2) which, in equilibrium,
simulate the behavior of the arithmetic circufrent and C'hild used in the
definition of PPAD. More details are given in the notes at the end of the chapter.

What are the practical implications of the result that the problem of finding a
sample Nash equilibrium is PPAD-complete? As is the case with other complexity
classes such as NP, it is not known whether or not P = PPAD. However, it is gener-
ally believed (e.g., due to oracle arguments) that the two classes are not equivalent.
Thus, the common belief is that in the worst case, computing a sample Nash equi-
librium will take time that is exponential in the size of the game. We do know for
sure that finding a Nash equilibrium of a two-player game is no easier than finding
an equilibrium of am-player game—a result that may be surprising, given that in

2. We warn the reader that some technical details are glossed over here.

3. This theorem describes the problem of approximating a Nash equilibrium to an arbitrary, specified degree
of precision (i.e., computing arrequilibrium for a givere). The equilibrium computation problem is defined

in this way partly because games with three or more players can have equilibria involving irrational-valued
probabilities.
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practice different algorithms are used for the two-player case than for-thayer
case—and that finding a Nash equilibrium is no easier than finding an arbitrary
Brouwer fixed point.

An LCP formulation and the Lemke—Howson algorithm

We now turn to algorithms for computing sample Nash equdipriotwithstand-

ing the discouraging computational complexity of this problem. We start with the
Lemke—Howson algorithpfior two reasons. First, it is the best known algorithm

for the two-player, general-sum case (however, it must be said, not the fastest al-
gorithm, experimentally speaking). Second, it provides insight into the structure
of Nash equilibria, and indeed constitutes an independent, constructive proof of
Nash’s theorem (Theorem 3.3.22).

The LCP formulation

Unlike in the special zero-sum case, the problem of finding a sample Nash equilib-
rium cannot be formulated as a linear program. However, the problem of finding a
Nash equilibrium of a two-player, general-sum game can be formulateliresa
complementarity problerfi. CP). In this section we show how to construct this for-
mulation by starting with the slack variable formulation given in Equations (4.9)—
(4.12). After giving the formulation, we present the Lemke—Howson algorithm,
which can be used to solve this LCP.

As it turns out, our LCP will have no objective function at all, and is thus a con-
straint satisfaction problem, orfaasibility program rather than an optimization
problem. Also, we can no longer determine one player’s equilibrium strategy by
only considering the other player's payoff; instead, we will need to discuss both
players explicitly. The LCP for computing the Nash equilibrium of a general-sum
two-player game follows.

> ui(af,ab) s+ = U7 Vie A (4.14)
keAs

> us(al,af) - s+ 0k =U; VEk € A, (4.15)
JEAL

dosi=1, ) sh=1 (4.16)
JEAL kEAs

s1>0, sk>0 Vje Ay, Vk e A, (4.17)
>0, rF>0 Vj e Ay, Vk € A, (4.18)
8] =0, rh-sh=0 Vj € Ay, Vk € A, (4.19)

Observe that this formulation bears a strong resemblance to the LP formulation
with slack variables given earlier in Equations (4.9)—(4.12). Let us go through the
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differences. First, as discussed earlier the LCP has no objective function. Second,
constraint (4.14) is the same as constraint (4.10) in our LP formulation; however,
here we also include constraint (4.15) which constrains player 2's actions in the
same way. We also give the standard constraints that probabilities sum to one
(4.16), that probabilities are nonnegative (4.17) and that slack variables are non-
negative (4.18), but now state these constraints for both players rather than only for
player 1.

If we included only constraints (4.14)—(4.18)), we would still have a linear pro-
gram. However, we would also have a flaw in our formulation: the varialifes
and U would be insufficiently constrained. We want these values to express the
expected utility that each player would achieve by playing his best response to
the other player’s chosen mixed strategy. However, with the constraints we have
described so fard/;" and U5 would be allowed to take unboundedly large values,
because all of these constraints remain satisfied whenljo#nd ] are increased
by the same constant, for any giveandj. We solve this problem by adding the
nonlinear constraint (4.19), called teemplementarity conditiarThe addition of
this constraint means that we no longer have a linear program; instead, we have a
linear complementarity problem.

Why does the complementarity condition fix our problem formulation? This
constraint requires that whenever an action is played by a given player with posi-
tive probability (i.e., whenever an action is in the support of a given player’s mixed
strategy) then the corresponding slack variable must be zero. Under this require-
ment, each slack variable can be viewed as the player’s incentive to deviate from
the corresponding action. Thus, the complementarity condition captures the fact
that, in equilibrium, all strategies that are played with positive probability must
yield the same expected payoff, while all strategies that lead to lower expected
payoffs are not played. Taking all of our constraints together, we are left with
the requirement that each player plays a best response to the other player’'s mixed
strategy: the definition of a Nash equilibrium.

The Lemke—Howson algorithm: a graphical exposition

The best-known algorithm designed to solve this LCP formulation id.dmke—
Howson algorithmWe will explain it initially through a graphical exposition. Con-
sider the game in Figure 4.1. Figure 4.2 shows a graphical representation of the
two players’ mixed-strategy spaces in this game. Each player’s strategy space is
shown in a separate graph. Within a graph, each axis corresponds to one of the cor-
responding player’s pure strategies and the region spanned by these axes represents
all the mixed strategies (as discussed in Section 3.3.4,Avithl axes, the region
forms ak-dimensional simplex). For example, in the right-hand sitine figure,
the two dots show player 2's two pure strategies and the line connecting them (a
one-dimensional simplex) represents all his possible mixed strategies.

Similarly, player 1's three pure strategies are represented by the goifitsl ),
(0,1,0), and(1,0,0), while the set of his mixed strategies (a two-dimensional
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0,1 | 6,0
2,0 | 5,2
3,4 3,3

Figure 4.1: A game for the exposition of the Lemke—Howson algorithm.

57 53

0,0,1) 01) ¢

1
(1,0,0)

(0,1,0) (1,0

S1

Figure 4.2: Strategy spaces for player 1 (left) and player 2 (right) in the game from
Figure 4.1.

simplex) is represented by the region bounded by the triangle having these three
points as its vertices. (Can you identify the point corresponding to the strategy that
randomizes equally among the three pure strategies?)

Our next step in defining the Lemke—Howson algorithm is to define a labeling
on the strategies. Every possible mixed strategsg given a set of labels(s]) C
A; U A, drawn from the set of available actions for both players. Denoting a given
player asi and the other player asi, mixed strategy; for player: is labeled as
follows:

« with each of playei’s actionsa’ that isnotin the support of;; and

« with each of playeri's actionsa’ , thatis a best response by playeti to s;.

This labeling is useful because a pair of strategigss,) is a Nash equilibrium
if and only if it is completely labeled (i.eL(s,) U L(s2) = A; U Ay). For a pair
to be completely labeled, each actiehmust either played by playerwith zero
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1
(1,0,0) 2

Figure 4.3: Labeled strategy spaces for player 1 (left) and player 2 (right) in the
game from Figure 4.1.

probability, or be a best response by playtr the mixed strategy of playeri. 4°

The requirement that a pair of mixed strategies must be completely labeled can
be understood as a restatement of the complementarity condition given in con-
straint (4.19) in the LCP for computing the Nash equilibrium of a general-sum
two-player game, because the slack variablis zero exactly when its correspond-
ing actiona’ is a best response to the mixed strategy

It turns out that it is convenient to add one fictitious point in the strategy space
of each agent, the origin; that i$0, 0,0) for player 1 and(0,0) for player 2.
Thus, we want to be able to consider these points as belonging to the players’
strategy spaces. While discussing this algorithm, therefore, we redefine the players
strategy spaces to be the convex hull of their true strategy spaces and the origin of
the graph. (This can be understood as replacing the constrai@gh@{t = 1 with

the constraint than s{ < 1.) Thus, player 2’s strategy space is a triangle with
vertices(0,0), (1,0), and(0, 1), while player 1's strategy space is a pyramid with
vertices(0, 0,0), (1,0,0), (0,1,0), and(0, 0, 1).

Returning to our running example, the labeled version of the strategy spaces is
given in Figure 4.3. Consider first the right side of Figure 4.3, which describes
player 2’s strategy space, and examine the two regions labeled with player 2's
actions. The line fron{0, 0) to (0, 1) is labeled witha3, because none of these

4. We must introduce a certain caveat here. In general, it is possible that some actions will satisfy both
of these conditions and thus belong to bdtfs:) and L(s2); however, this will not occur when a game

is nondegenerate. Full discussion of degenericity lies beyond the scope of the book, but for the record, one
definition is as follows: A two-player gamedegeneratéf there exists some mixed strategy for either player

such that the number of pure strategy best responses of the other player is greater than the size of the support
of the mixed strategy. Here we will assume that the game is nondegenerate.

5. Some readers may be reminded of the labeling of simplex vertices in the proof of Sperner’s Lemma in
Section 3.3.4. These readers should note that these are rather different kinds of labeling, which should not
be confused with each other.
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G1: G2:

(1,0)
2
ay, a3y

(0,0)
1 2
ag,aj

Figure 4.4: Graph of triply labeled strategies for player 1 (left) and doubly labeled
strategies for player 2 (right) derived from the game in Figure 4.1.

mixed strategies assign any probability to playing actidnin the same way, the

line from (0, 0) to (1, 0) is labeled witha2. Now consider the three regions labeled
with player 1's actions. Examining the payoff matrix in Figure 4.1, you can verify
that, for example, the action} is a best response by player 1 to any of the mixed
strategies represented by the line frgin1) to (£, 2). Notice that the points, 2)

is labeled by botl} and a?, because both of these actions are best responses by
player 1 to the mixed stratedy, 2) by player 2°

Similarly, consider now the left side of Figure 4.3, representing player 1's strat-
egy space. There is a region labeled with each actjoof player 1, which is the
triangle having a vertex at the origin and running orthogonal to thegxig¢Can
you see why these are the only mixed strategies for player 1 that do not involve the
actiona; ?) The two regions for the labels corresponding to actions of playet 2 (a
and a2) divide the outer triangle. As earlier, note that some mixed strategies are
multiply labeled: for example, the poif0, 1, 2) is labeled witha}, aZ, andai.

The Lemke—Howson algorithm can be understood as searching these pairs of
labeled spaces for a completely labeled pair of points. Defipend G, to be
graphs, for players 1 and 2 respectively. The nodes in the graph are fully labeled
points in the labeled space, that is, triply labeled point§'inand doubly labeled
points inG,. An edge exists between pairs of points that differ in exactly one label.
These graphs for our example are shown in Figure 4.4; each node is annotated with
the mixed strategy to which it corresponds as well as the actions with which it is
labeled.

6. The reader may note a subtlety here. Since we added the (9ot and are considering the entire
triangle and not just the lingl, 0) — (0, 1), it might be expected that we would attach best-response labels
also to interior points within the triangle. However, it turns out that the Lemke—Howson algorithm traverses
only the edges of the polygon containing the simplexes and has no use for interior points, and so we ignore
them.
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When the game is nondegenerate, there are no points with more labels than the
given player has actions, which implies that a completely labeled pair of strategies
must consist of two points that have no labels in common. In our example it is
easy to find the three Nash equilibria of the game by inspecti®n0, 1), (1,0)),
((9,5:3) 5 (5,5)), and((3. 5.0), (5, %))

The Lemke—Howson algorithm finds an equilibrium by following a path through
pairs (s, s2) € G x Gy in the cross product of the two graphs. Alternating
between the two graphs, each iteration changes one of the two points to a new
point that is connected by an edge to the original point. Starting f@m®), which
is completely labeled, the algorithm picks one of the two graphs and moves from
0 in that graph to some adjacent node The noder, together with thed from
the other graph, together form an almost completely labeled pair, in that between
them they miss exactly one label. The algorithm then moves from the remaining
0 to a neighboring node that picks up that missing label, but in the process loses
a different label. The process thus proceeds, alternating between the two graphs,
until an equilibrium (i.e., a totally labeled pair) is reached.

In our running example, a possible execution of the algorithm staf€s @ and
then changes, to (0,1,0). Now, our pair((0,1,0), (0,0)) is a}-almost com-
pletely labeled, and the duplicate labekis For its next step iz, the algorithm
moves to(0, 1) because the other possible choi¢g,0), has the labe3. Re-
turning toG, for the next iteration, we move t()f;), %,O) because it is the point
adjacent to(0, 1,0) that does not have the duplicate lalgl The final step is

to changes, to (%, %) in order to move away from the label. We have now
reached the completely labeled p&(z, £,0) , (3, %)), and the algorithm termi-

nates. This execution trace can be summarlzed by the (§atb, 0), (0,0)) —

((0,1,0),(0,0)) — ((0,1,0),(0,1)) — ((3,3,0),(0,1)) — ((3,3,0), (3, 3))-

The Lemke—Howson algorithm: A deeper look at pivoting

The graphical description of the Lemke—Howson algorithm in the previous section
provides good intuition but glosses over elements that only a close look at the
algebraic formulation reveals. Specifically, in abstracting away to the graphical
exposition we did not specify how to compute the graph nodes from the game
description. This is the role of this section. The two sections complement each
other: This one provides a clear recipe for implementing the algorithm, but on its
own would provide little intuition. The previous section did the opposite.

In fact, we do not compute the nodes in advance at all. Instead, we compute them
incrementally along the path being explored. At each step, we find the missing
label to be added (called threntering variablg, add it, find out which label has
been lost (it is called thieaving variablg, and the process repeats until no variable
is lost in which case a solution has been obtained. This procedure is piiteithg,
and also underlies tr@mplex algorithnfor solving linear programming problems.
The high-level description of the Lemke—Howson algorithm is given in Figure 4.5.

As can be seen from the pseudocode, identifying the entering variable follows
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initialize the two systems of equations at the origin
arbitrarily pick one dependent variable from one of the two systems. This
variableentergthe basis.

repeat
identify one of the previous basis variables which mest/e according

to the minimum ratio test. The result is a new basis.
if this basis is completely labeleden
| return the basis Il we have found an equilibrium.

else
| the variable dual to the variable that last lefhtersthe basis.

Figure 4.5: Pseudocode for the Lemke—Howson algorithm.

immediately from the current labeling (except in the first step, in which the choice
is arbitrary). The only nontrivial step is identifying the leaving variable. We ex-
plain it by tracing the operation of the algorithm on our example.

We start with a reformulation of the first two constraints (4.14) and (4.15) from
our LCP formulatior?.

o= 1 —6ys
ro = 1 —2y, —byl (4.20)
rs = 1 =3y, =3y

s = 1 —af —4zl

s5 = 1 —2x5 =374 (4.21)

This system admits the trivial solution of assignihp all variables on the right-
hand side, which is our fictitious starting point. At this point, r,, 73, s4, S5 form

the basis of our system of equations, and the other variableg@leand thez’s)

are the dependent variabfés\ote that each basis variable has a dual dependent
one; the dual pairs ar@-, x}), (72, z5), (r3,x%), (s4,94), and(ss, yL). We will

now iteratively remove some of the variables from the basis and replace them with
what were previously dependent variables to get a new basis. The rule for which
variable enters is simple; initially the choice is arbitrary, and thereafter it is the
dual to the variable that previously left. The rule for which variable leaves is more
complicated and is called thminimum ratio test When a variable enters, the
candidates to leave are all the “clashing variables"; these are all the current basis
variables in whose equation the entering variable appears. If there is only one such

7. Beside the minor rearrangement of terms and slight notational change, the reader will note that we have
lost the differentlU values and replaced them by the unit valiigshis turns out to be convenient computa-
tionally and does not alter the solutions.

8. From the definitions of matrix theory, in our particular system the basis variables are independent of each
other (i.e., their values can be chosen independently), but together they determine the values of all other
variables.
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equation we are done, but otherwise we choose as follows. Each such equation has
the formv = ¢+ qu + T, wherew is the clashing variable,is a constant (initially
they are all 1),u is the entering variable; is a constant coefficient, aril is a
linear combination of variables other thair u. The clashing variable to leave is
the one in whose equation théc ratio is smallest.

We illustrate the procedure on our example. Let us arbitrarily picles the
first entering variable. In this case we see immediately ¢hahust leave, since
it is the only clashing variable. {xdoes not appear in the equation of any other
basis variable.) With}, in the basis the equations much be updated to remove any
occurrence oft}, on the right-hand side, which in this case is achieved simply by
rearranging the terms of the second equation in (4.21). This gives us the following.

— ! /!
s = 1 —2f —4zj (4.22)
x, = 1 —3z —1g '
2 T2 23 275

The next variable that must enter the bagiss;'s dual. Now the choice for
which variable should leave the basis is less obvious; all three variaples 3
clash withy;. The variable we choose g, since it has the lowest rati(%:, versus
% forry and% for r3. Equation (4.20) is now replaced by the following.

1

Y5 = % —g
Ty = § —2y2 +§T1 (423)
T3 = D) —33/:1 + 57‘1

In this case the first equation is rearranged as above, and then, in the second two
equations, the occurrencesyifare replaced b)é — %rl.

With r; having leftz} must enter. This entails that, must leave (in this case
again, the only clashing variable). Equation (4.22) now changes as follows.

!/ _ !/
ry = 1 —dx; —sy (4.24)
x, = i 3 —1s '

2 T2 23 275

With y, entering, either, or r; must leave, and it is, that leaves since its ratio
1 . . 1 .
of & = 1—12 is lower thanrs’s ratio of 2 = % Equation (4.23) changes as follows.

1

‘- p
Yy = v T —érz (4.25)
T3 = 1 —17‘1 +§7‘2

At this point the algorithm terminates since, between them, Equations (4.25) and
(4.24) contain all the labels. Renormalizing the vectersnd 3’ to be proper

probabilities, one gets the soluti¢tZ, £, 0), (3, 2)) with payoffs4 and2 to the

373
row and column players, respectively.

Properties of the Lemke—Howson algorithm

The Lemke—Howson algorithm has some good properties. First, it is guaranteed
to find a sample Nash equilibrium. Indeed, its constructive nature constitutes an
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alternative proof of the existence of a Nash equilibrium (Theorem 3.3.22). Also,
note the following interesting fact: Since the algorithm repeatedly seeks to cover
a missing label, after choosing the initial move away fr@y0), the path through
amost completely labeled pairs to an equilibrium is unique. So while the al-
gorithm is nondeterministic, all the nondeterminism is concentrated in its first
move. Finally, it can be used to find more than one Nash equilibrium. The rea-
son the algorithm is initialized to start at the origin is that this is the only pair
that is knowna priori to be completely labeled. However, once we have found
another completely labeled pair, we can usa&s the starting point, allowing us to
reach additional equilibria. For example, starting at the equilibrium we just found
and making an appropriate first choice, we can quickly find another equilibrium
by the path((3, 5,0), (5.3)) — ((0,5.3).(5,5)) — ((0,5,3),(5,5))
The remaining equilibrium can be found using the following path from the origin:
((0,0,0),(0,0)) — ((0,0,1),(0,0)) — ((0,0,1), (1,0)).

However, the algorithm is not without its limitations. Whilee were able to use
the algorithm to find all equilibria in our running example, in general we are not
guaranteed to be able to do so. As we have seen, the Lemke—Howson algorithm can
be thought of as exploring a graph of all completely and almost completely labeled
pairs. The bad news is that this graph can be disconnected, and the algorithm is
only able to find the equilibria in the connected component that contains the origin
(although luckily, there is guaranteed to be at least one such equilibrium). Not only
are we unable to guarantee that we will find all equilibria—there is not even an
efficient way to determine whether or not all equilibria have been found.

Even with respect to finding a single equilibrium we are not trouble free. First,
there is still indeterminacy in the first move, and the algorithm provides no guid-
ance on how to make a good first choice, one that will lead to a relatively short
path to the equilibrium, if one exists. And one may not exist—there are cases
in which all paths are of exponential length (and thus the time complexity of the
Lemke—Howson algorithm is provably exponential). Finally, even if one gives up
on worst-case guarantees and hopes for good heuristics, the fact that the algorithm
has no objective function means that it provides no obvious guideline to assess how
close it is to a solution before actually finding one.

Nevertheless, despite all these limitations, the Lemke—Howson algorithm re-
mains a key element in understanding the algorithmic structure of Nash equilibria
in general two-person games.

4.2.3 Searching the space of supports

One can identify a spectrum of approaches to the design ofitiiges. At one end

of the spectrum one can develop deep insight into the structure of the problem, and
craft a highly specialized algorithm based on this insight. The Lemke—Howson
algorithm lies close to this end of the spectrum. At the other end of the spectrum,
one identifies relatively shallow heuristics and hopes that these, coupled with ever-
increasing computing power, will do the job. Of course, in order to be effective,
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102 4 Computing Solution Concepts of Normal-Form Games

even these heuristics must embody some insight into the problem. However, this
insight tends to be limited and local, yielding rules of thumb that aid in guiding
the search through the space of possible solutions, but that do not directly yield a
solution. One of the lessons from computer science is that sometimes heuristic ap-
proaches can outperform more sophisticated algorithms in practice. In this section
we discuss such a heuristic algorithm.

The basic idea behind the algorithm is straightforward. We first note that while
the general problem of computing a Nash equilibrium (NE) is a complementarity
problem, computing whether there exists a NE withaaticular support for each
player is a relatively simple feasibility program. So the problem is reduced to
searching the space of supports. Of course the size of this space is exponential in
the number of actions, and this is where the heuristics come in.

We start with the feasibility program. Given a support profile= (o4, 02) as
input (where each; C A,), feasibility program TGS (for “test given supports”)
finds a NEp consistent withr or proves that no such strategy profile exists. In this
program,v; corresponds to the expected utility of playen an equilibrium, and
the subscript-i indicates the player other tharas usual. The complete program
follows.

Z pla_i)ui(a;,a_;) =v; Vi e {1,2},a; € o; (4.26)
a_;€o—;
Z p(a_i)ui(ai,a_i) S (% Vi e {1,2},(11' Qai (427)
a_;€o—;
pi(ai) =0 Vi e {1,2},(11' Qai (429)
> pila) =1 Vi e {1,2} (4.30)
a; €05

Constraints (4.26) and (4.27) require that each player must be indifferent be-
tween all actions within his support and must not strictly prefer an action outside
of his support. These imply that neither player can deviate to a pure strategy that
improves his expected utility, which is exactly the condition for the strategy profile
to be a NE. Constraints (4.28) and (4.29) ensure that Sachn be interpreted as
the support of playei’s mixed strategy: the pure strategiesSpmust be played
with zero or positive probability, and the pure strategies ndf;imust be played
with zero probability:° Finally, constraint (4.30) ensures that eagltan be inter-
preted as a probability distribution. A solution will be returned only when there
exists an equilibrium with suppoff (subject to the caveat in footnote 10).

9. Recall that the support specifies the pure strategies played with nonzero probability (see Definition 3.2.6).
10. Note that constraint (4.28) allows an actien € .S; to be played with zero probability, and so the
feasibility program may sometimes find a solution even when s8miacludes actions that are not in the
support. However, playermust still be indifferent between actien and each other actios, € S;. Thus,

simply substituting inS; = A; would not necessarily yield a Nash equilibrium as a solution.

Uncorrected manuscript dfultiagent System®ublished by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.



support-
enumeration
method

conditional strict
dominance

4.2 Computing Nash equilibria of two-player, general-sum games 103

With this feasibility program in our arsenal, we can proceed to search the space
of supports. There are three keys to the efficiency of the following algorithm, called
SEM (forsupport-enumeration methpdrhe first two are the factors used to order
the search space. Specifically, SEM considers every possible support size profile
separately, favoring support sizes that are balanced and small. The third key to
SEM is that it separately instantiates each player’s support, making use of what we
will call conditional strict dominancto prune the search space.

Definition 4.2.2 (Conditionally strictly dominated action) An actiona; € A; is
conditionally strictly dominatedjiven a profile of sets of available actioRs ; C
A_, for the remaining agents, if the following condition hold&t, € A; Va_; €
R_;: wi(a;,a_;) <wui(al,a_y).

Observe that this definition is strict because, in a Nash equilibrium, no action that
is played with positive probability can be conditionally dominated given the actions
in the support of the opponents’ strategies. The problem of checking whether an
action is conditionally strictly dominated is equivalent to the problem of checking
whether the action is strictly dominated by a pure strategy in a reduced version of
the original game. As we show in Section 4.5.1, this problem can be solved in time
linear in the size of the game.

The preference for small support sizes amplifies the advantages of checking for
conditional dominance. For example, after instantiating a support of size two for
the first player, it will often be the case that many of the second player’s actions
are pruned, because only two inequalities must hold for one action to conditionally
dominate another.

Pseudocode for SEM is given in Figure 4.6.

forall support size profiles = (x;, ), sorted in increasing order of, first,
|z, — 5] and, second,z; + z5) do
forall 0y C A; st. |oy| =z, do
A, — {as € A, not conditionally dominated, givem, }
if fla; € o, conditionally dominated, giver!, then
forall oo C A} st. |02] = 25 do
if #la; € o, conditionally dominated, givem, andTGS is
satisfiable foro = (04, 03) then
| return the solution found,; it is a NE

Figure 4.6: The SEM algorithm

Note that SEM is complete, because it considers all support size profiles and
because it prunes only those actions thatsrietly dominated. As mentioned
earlier, the number of supports is exponential in the number of actions and hence
this algorithm has an exponential worst-case running time.
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Of course, any enumeration order would yield a solution; the particular ordering
here has simply been shown to yield solutions quickly in practice. In fact, extensive
testing on a wide variety of games encountered throughout the literature has shown
SEM to performbetterthan the more sophisticated algorithms. Of course, this
result tells us as much about the games in the literature (e.g., they tend to have
small-support equilibria) as it tells us about the algorithms.

Beyond sample equilibrium computation

In this section we consider two problems related to the coatjmut of Nash equi-
libria in two-player, general-sum games that go beyond simply identifying a sample
equilibrium.

First, instead of just searching for a sample equilibrium, we might want to find an
equilibrium with a specific property. Listed below are several different questions
we could ask about the existence of such an equilibrium.

1. (Uniqueness)Given a gamé&=, does there exist a unique equilibriumd?

2. (Pareto optimality) Given a gamé&=, does there exist a strictly Pareto efficient
equilibrium in G?

3. (Guaranteed payoff) Given a gamé~ and a valuey, does there exist an equi-
librium in G in which some player obtains an expected payoff of at lea$t

4. (Guaranteed social welfare)Given a gamé=, does there exist an equilibrium
in which the sum of agents’ utilities is at le&st

5. (Action inclusion) Given a gamé&5 and an actioru; € A; for some player
i € N, does there exist an equilibrium &f in which playeri plays action;
with strictly positive probability?

6. (Action exclusion) Given a game= and an actiors; € A; for some player
i € N, does there exist an equilibrium &f in which playeri plays action;
with zero probability?

The answers to these questions are more useful that they might appear at first
glance. For example, the ability to answer thearanteed payoffjuestion in poly-
nomial time could be used to find, in polynomial time, the maximum expected
payoff that can be guaranteed in a Nash equilibrium. Unfortunately, all of these
questions are hard in the worst case.

Theorem 4.2.3The following problems are NP-hard when applied to Nash equi-
libria: uniquenesdareto optimalityguaranteed payoffjuaranteed social welfgre
action inclusionpandaction exclusion

This result holds even for two-player games. Further, it is possible to show that
the guaranteed payofaind guaranteed social welfarproperties cannot even be
approximated to any constant factor by a polynomial-time algorithm.

A second problem is to determiadl equilibria of a game.
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Theorem 4.2.4 Computing all of the equilibria of a two-player, general-sum game
requires worst-case time that is exponential in the number of actions for each
player.

This result follows straightforwardly from the observation that a game With
actions can have® — 1 Nash equilibria, even if the game is nondegenerate (when
the game is degenerate, it can have an infinite number of equilibria). Consider a
two-player Coordination game in which both players hawactions and a utility
function given by the identity matrix posses@s— 1 Nash equilibria: one for
each nonempty subset of tlheactions. The equilibrium for each subset is for both
players to randomize uniformly over each action in the subset. Any algorithm that
finds all of these equilibria must have a running time that is at least exponential in
k.

Computing Nash equilibria of n-player, general-sum games

Forn-player games where > 3, the problem of finding a Nash equilibrium can

no longer be represented even as an LCP. While it does allow a formulation as a
nonlinear complementarity problersuch problems are often hopelessly impracti-
cal to solve exactly. Unlike the two-player case, therefore, it is unclear how to best
formulate the problem as input to an algorithm. In this section we discuss three
possibilities.

Instead of solving the nonlinear complementarity problem exactly, there has
been some success approximating the solution usiaggaence of linear com-
plementarity problems (SLCP). Each LCP is an approximation of the problem, and
its solution is used to create the next approximation in the sequence. This method
can be thought of as a generalizationNewton’s methoaf approximating the
local maximum of a quadratic equation. Although this method is not globally con-
vergent, in practice it is often possible to try a number of different starting points
because of its relative speed.

Another approach is to formulate the problem as a minimum of a function. First,
we need to define some more notation. Starting from a strategy psofdec! (s)
be the change in utility to playerif he switches to playing action’ as a pure
strategy. Then, defin€! (s) asc] (s) bounded from below by zero.
ui(ag7 S—i)

cl(s)

(2

d}(s) = max(c](s),0)

u;(s)

Note thatd{(s) is positive if and only if player has an incentive to deviate to
action a{. Thus, strategy profile is a Nash equilibrium if and only izfl{(s) =0
for all playersi, and all actiong for each player.

We capture this property in the objective function given in Equation (4.31); we
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will refer to this function asf(s).

minimize  f(s)=>_ > (d(s))” (4.31)
iEN jJEA;
subject to Z sl =1 Vie N (4.32)
JEA;
s >0 Vie N,Vj € A; (4.33)

This function has one or more global minima at 0, and the set of sallch that
f(s) = 0is exactly the set of Nash equilibria. Of course, this propkdids even
if we did not square eactt (s), but doing so makes the function differentiable
everywhere. The constraints on the function are the obvious ones: each player’s
distribution over actions must sum to one, and all probabilities must be nonnegative.
The advantage of this method is its flexibility. We can now apply any method for
constrained optimization.

If we instead want to use an unconstrained optimization method, we can roll
the constraints into the objective function (which we now géH)) in such a way
that we still have a differentiable function that is zero if and only it a Nash
equilibrium. This optimization problem follows.

minimize Z Z (dz(s))g%—z (1 - Z sZ) —I—Z Z <min(sz,0)>2

iEN jEA; €N JEA; iEN jEA;

Observe that the first term ig(s) is just f(s) from Equation (4.31). The second
and third terms iny(s) enforce the constraints given in Equations (4.32) and (4.33)
respectively.

A disadvantage in the formulations given in both Equations (4.31)—(4.33) and
Equation (4.3) is that both optimization problems have local minima which do not
correspond to Nash equilibria. Thus, global convergence is an issue. For example,
considering the commonly-used optimization methods hill-climbing and simulated
annealing, the former get stuck in local minima while the latter often converge
globally only for parameter settings that yield an impractically long running time.

When global convergence is required, a common choice is to turn to the class
of simplicial subdivision algorithmsBefore describing these algorithms we will
revisit some properties of the Nash equilibrium. Recall from the Nash existence
theorem (Theorem 3.3.22) that Nash equilibria are fixed points of the best response
function, f. (As defined previously, given a strategy profile= (s, s2, ..., $,),

f(s) consists of all strategy profilds], s5, ..., s),) such thats, is a best response

by player: to s_;.) Since the space of mixed-strategy profiles can be viewed as
a product of simplexes—a so-callstinplotope—f is a function mapping from a
simplotope to a set of simplotopes.

Scarf’s algorithm is a simplicial subdivision method for finding the fixed point

of any function on a simplex or simplotope. It divides the simplotope into small
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regions and then searches over the regions. Unfortunately, such a search is approx-
imate, since a continuous space is approximated by a mesh of small regions. The
quality of the approximation can be controlled by refining the meshes into smaller
and smaller subdivisions. One way to do this is by restarting the algorithm with a
finer mesh after an initial solution has been found. Alternatehgraotopy method

can be used. In this approach, a new variable is added that represents the fidelity of
the approximation, and the variable’s value is gradually adjusted until the algorithm
converges.

An alternative approach, due to Govindan and Wilson, uses a homotopy method
in a different way. (This homotopy method actually turns out to bergrayer
extension of the Lemke—Howson algorithm, although this correspondence is not
obvious.) Instead of varying between coarse and fine approximations, the new
added variable interpolates between the given game and an easy-to-solve game.
That is, we define a set of games indexed by a scalar [0, 1] such that when
A = 0, we have our original game, and whan= 1, we have a very simple game.
(One way to do this is to change the original game by adding a “boAksto
each player’s payoff in one outcome = (ay,...,a,). Consider a choice of
big enough that for each playérplayinga; is a strictly dominant strategy. Then,
when) = 1, a will be a (unique) Nash equilibrium, and when= 0, we will
have our original game.) We begin with an equilibrium to the simple game and
A = 1 and let both the equilibrium to the game and the index vary iordicuous
fashion to trace the path of game-equilibrium pairs. Along this pathay both
decrease and increase; however, if the path is followed correctly, it will necessarily
pass through a point where = 0. This point’s corresponding equilibrium is a
sample Nash equilibrium of the original game.

Finally, it is possible to generalize the SEM algorithm to thplayer case. Un-
fortunately, the feasibility program becomes nonlinear, as follows. We call this
feasibility program TGS-n

Z <Hpj((lj)> ui(ai, (1,1') = V; Vi € N, a; € o, (434)

a_;€o_; JFi
Z (Hpj(aj)> ui(aiaa—i) < Vi€ N,a; QO’i (435)
a_;€o_; J#i
pi(a;) >0 Vie N, a; € o (4.36)
pi(a;) =0 Vi € N,a; € o; (4.37)
Z pi(a;) =1 Vie N (4.38)
a;€0;

The expressiom(a_;) from constraints (4.26) and (4.27) is no longer a sin-
gle variable, but must now be written 44, p;(a;) in constraints (4.34) and
(4.35). The resulting feasibility problem can be solved using standard numerical
techniques for nonlinear optimization. As with two-player games, in principle any
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enumeration method would work; the question is which search heuristic works the
fastest. It turns out that a minor modification of the SEM heuristic described in
Figure 4.6 is effective for the general case as well: one simply reverses the lex-
icographic ordering between size and balance of supports (SEM first sorts them
by size, and then by a measure of balance; initi@ayer case we reverse the
ordering). The resulting heuristic algorithm performs very well in practice, and
better than the algorithms discussed earlier. We should note that while the ordering
between balance and size becomes extremely important to the efficiency of the al-
gorithm asn increases, this reverse ordering does not perform subatgntiorse

than SEM in the two-player case, because the smallest of the balanced support size
profiles still appears very early in the ordering.

Computing maxmin and minmax strategies for two-player, general-
sum games

Recall from Section 3.4.1 that in a two-player, general-sum game a maxmin strat-
egy for player: is a strategy that maximizes his worst-case payoff, presy thizt
the other playey follows the strategy that will cause the greatest harni. té\
minmax strategy forj againsti is such a maximum-harm strategy. Maxmin and
minmax strategies can be computed in polynomial time because they correspond
to Nash equilibrium strategies in related zero-sum games.

Let G be an arbitrary two-player gante = ({1,2}, A; x A, (u1,usz)). Let
us consider how to compute a maxmin strategy for playelt will be useful to
define the zero-sum gan®@ = ({1,2}, A; x As, (u1, —u;)), in which player
1’s utility function is unchanged and play2k utility is the negative of playet’s.
By the minmax theorem (Theorem 3.4.4), sirfeeis zero sum every strategy for
player 1 which is part of a Nash equilibrium strategy profile @8ris a maxmin
strategy for player 1 itz’. Notice that by definition, playel’'s maxmin strategy is
independent of play&'s utility function. Thus, playeil’s maxmin strategy is the
same inG and inG’. Our problem of finding a maxmin strategy@thus reduces
to finding a Nash equilibrium ofs’, a two-player, zero-sum game. We can thus
solve the problem by applying the techniques given earlier in Section 4.1.

The computation of minmax strategies follows the same pattern. We can again
use the minmax theorem to argue that pl&deiNash equilibrium strategy i is
a minmax strategy for him against playlein G. (If we wanted to compute player
1's minmax strategy, we would have to construct another gathevhere player
1's payoff is —u,, the negative of playe?’s payoff in G.) Thus, both maxmin and
minmax strategies can be computed efficiently for two-player games.

Identifying dominated strategies

Recall that one strategy dominates another when the first strategy is always at least
as good as the second, regardless of the other players’ actions. (Section 3.4.3 gave
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the formal definitions.) In this section we discuss some computational uses for
identifying dominated strategies, and consider the computational complexity of
this process.

As discussed earlier, iterated removal of strictly dominated strategies is concep-
tually straightforward: the same set of strategies will be identified regardless of the
elimination order, and all Nash equilibria of the original game will be contained
in this set. Thus, this method can be used to narrow down the set of strategies
to consider before attempting to identify a sample Nash equilibrium. In the worst
case this procedure will have no effect—many games had®minated strategies.

In practice, however, it can make a big difference to iteratively remove dominated
strategies before attempting to compute an equilibrium.

Things are a bit trickier with the iterated removakleéaklyor very weaklydomi-
nated strategies. In this case the elimination order does make a difference: the set of
strategies that survive iterated removal can differ depending on the order in which
dominated strategies are removed. As a consequence, removing weakly or very
weakly dominated strategiesn eliminate some equilibria of the original game.
There is still a computational benefit to this technique, however. Since no new
equilibria are ever created by this elimination (and since every game has at least
one equilibrium), at least one of the original equilibria always survives. This is
enough if all we want to do is to identify a sample Nash equilibrium. Furthermore,
iterative removal of weakly or very weakly dominated strategies can eliminate a
larger set of strategies than iterative removal of strictly dominated strategies and so
will often produce a smaller game.

What is the complexity of determining whether a given strategy can be removed?
This depends on whether we are interested in checking the strategy for domination
by a pure or mixed strategies, whether we are interested in strict, weak or very
weak domination, and whether we are interested only in domination or in survival
under iterated removal of dominated strategies.

Domination by a pure strategy

The simplest case is checking whether a (not necessarily gtnagegys; for player

1 is (strictly; weakly; very weakly) dominated by any pure stgy for:. For
concreteness, let us consider the case of strict dominance. To solve the problem we
must check every pure strategyfor player: and every pure-strategy profile for

the other players to determine whether there exists sonfier which it is never
weakly better for; to play s; instead ofa;. If so, s; is strictly dominated. An
algorithm for this case is given in Figure 4.7.

Observe that this algorithm works because we do not need to checkreiverg
strategy profile of the other players, even though the definition of dominance refers
to such strategies. Why can we get away with this? If it is the case (as the inner
loop of our algorithm attempts to prove) that for every pure-strategy profile=
A ui(si,a_y) < ui(a;, a_y;), then there cannot exist any mixed-strategy profile
s_; € S_; forwhichu,(s;, s_;) > w;(a;, s_;). This holds because of the linearity
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forall pure strategies; € A; for playeri wherea; # s; do
dom « true
forall pure-strategy profiles_; € A_; for the players other thando
if ui(si, (1,1') > ui(ai, a,i) then
dom «— false
break

if dom = true then
L return true

return false

Figure 4.7: Algorithm for determining whetheyis strictly dominated by any pure
strategy

of expectation.

The case of very weak dominance can be tested using essentially the same al-
gorithm as in Figure 4.7, except that we must test the conditids;, s_;) >
u;(s;,s_;). For weak dominance we need to do a bit more book-keeping: we
can test the same condition as for very weak dominance, but we must also set
dom « false if there is not at least one ; for whichu,(s;,s_;) < w;(s}, s_;).

For all of the definitions of domination, the complexity of the procedur@(sA|),
linear in the size of the normal-form game.

Domination by a mixed strategy

Recall that sometimes a strategy is not dominated by any pategy, buis dom-
inated by some mixed strategy. (We saw an example of this in Figure 3.16.) We
cannot use a simple algorithm like the one in Figure 4.7 to test whether a given
strategys; is dominated by a mixed strategy because these strategies cannot be
enumerated. However, it turns out that we can still answer the question in polyno-
mial time by solving a linear program. In this section, we will assume that player
1's utilities are strictly positive. This assumption is withtdoss of generality be-
cause if any playei’s utilities were negative, we could add a constant to all®f
payoffs without changing the game (see Section 3.1.2).

Each flavor of domination requires a somewhat different linear program. First,
let us consider strict domination by a mixed strategy. This would seem to have the
following straightforward LP formulation (indeed, a mere feasibility program).

Z pjui(aj, a—;) > w;i(s;, a_;) Va_; € A (4.39)
JEA;
p; >0 Vi e A; (4.40)
> pi=1 (4.41)
JEA;
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While constraints (4.39)—(4.41) do indeed describe strict domination by a mixed
strategy, they do not constitute a linear program. The problem is that the constraints
in linear programs must heeakinequalities (see Appendix B), and thus we cannot
write constraint (4.39) as we have done here. Instead, we must use the LP that
follows.

minimize Dj (4.42)
JEA;

SUbjeCt to Z pjui(aj, a,i) > Ui(Si, a,i) \V/CZ,Z' € A*i (443)
JEA;
p; >0 Vi e A; (4.44)

This linear program simulates the strict inequality of constraint (4.39) through
the objective function, as we will describe in a moment. Because no constraints
restrict thep,’s from above, this LP will always be feasible. However, in the op-
timal solution thep;'s may not sum to 1; indeed, their sum can be greater than 1
or less than 1. In the optimal solution the's will be set so that their sum cannot
be reduced any further without violating constraint (4.43). Thus for at least some
a_; € A_;, we will have ZjeAi pjui(a;,a_;) = w;(s;,a_;). A strictly domi-
nating mixed strategy therefore exists if and only if the optimal solution to the LP
has objective function value strictly less thann this case, we can add a positive
amount to eactp; in order to cause constraint (4.43) to hold in its strict version
everywhere while achieving the conditidn . p; = 1.

Next, let us consider very weak domination. This flavor of domination does
not require any strict inequalities, so things are easy here. Hemameonstruct
a feasibility program—nearly identical to our earlier failed attempt from Equa-
tions (4.39)—(4.41)—which follows.

Z pjui(aj,a_;) > ui(si,a_;) Va_; € A (4.45)
JEA;
p; >0 Vi e A; (4.46)
> pi=1 (4.47)
JEA;

Finally, let us consider weak domination by a mixed strategy. Again our inability
to write a strict inequality will make things more complicated. However, we can
derive an LP by adding an objective function to the feasibility program given in
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Equations (4.45)—(4.47).

maximize Z [(Z p; - ui(a;, ai)> — u;(si, ai)] (4.48)

a_;€EA_; JEA;
SijeCt to Z pjui(aj,a,i) > ui(si,a,i) Va,i S A,i
JEA;
(4.49)
Dj >0 VJ € Ai
(4.50)
Y opi=1 (4.51)
JEA;

Because of constraint (4.49), any feasible solution will have a nonnegative ob-
jective value. If the optimal solution has a strictly positive objective, the mixed
strategy given by thp;’s achieves strictly positive expected utility for at least one
a_; € A_;, meaning thas; is weakly dominated by this mixed strategy.

As a closing remark, observe that all of our linear programs can be modified to
check whether a strategy is strictly dominated by any mixed strategy that only
places positive probability on some subset’'sfactionsT C A;. This can be
achieved simply by replacing all occurrencesAfby 1" in the linear programs
given earlier.

Iterated dominance

Finally, we consider the iterated removal of dominated strigts. We only consider

pure strategies as candidates for removal; indeed, as it turns out, it never helps
to remove dominated mixed strategies when performing iterated removad. It
important, however, that we consider the possibility that pure strategies may be
dominatedby mixed strategies, as we saw in Section 3.4.3.

For all three flavors of domination, it requires only polynomial time to itera-
tively remove dominated strategies until the game has been maximally reduced
(i.e., no strategy is dominated for any player). A single step of this process con-
sists of checking whether every pure strategy of every player is dominated by any
other mixed strategy, which requires us to solve at wrst , |A;| linear pro-
grams. Each step removes one pure strategy for one player, so there can be at most
> ien(|Ai| — 1) steps.

However, recall that some forms of dominance can produce different reduced
games depending on the order in which dominated strategies are removed. We
might therefore want to ask other computational questions, regarding which strate-
gies remain in reduced games. Listed below are some such questions.

1. (Strategy elimination) Does there exist some elimination path under which the
strategys; is eliminated?
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2. (Reduction identity) Given action subsetd’, C A; for each playei, does
there exist a maximally reduced game where each plalyas the actionsl,?

3. (Reduction size)Given constants; for each playef, does there exist a maxi-
mally reduced game where each playémas exactly; actions?

It turns out that the complexity of answering these questions depends on the form
of domination under consideration.

Theorem 4.5.1 For iterated strict dominance, th&trategy eliminatiopreduction
identity, uniguenesandreduction sizgroblems are in P. For iterated weak domi-
nance, these problems are NP-complete.

The first part of this result, considering iterated strict dominance, is straightfor-
ward: it follows from the fact that iterated strict dominance always arrives at the
same set of strategies regardless of elimination order. The second part is tricker; in-
deed, our statement of this theorem sweeps under the carpet some subtleties about
whether domination by mixed strategies is considered (it is in some cases, and is
not in others) and the minimum number of utility values permitted for each player.
For all the details, the reader should consult the papers cited at the end of the chap-
ter.

Computing correlated equilibria

The final solution concept that we will consider is correlated equilibrium. It turns
out that correlated equilibria are (probably) easier to compute than Nash equilibria:
a sample correlated equilibrium can be found in polynomial time using a linear pro-
gramming formulation. Itis not hard to see (e.g., from the proof of Theorem 3.4.13)
that every game has at least one correlated equilibrium in which the value of the
random variable can be interpreted as a recommendation to each agent of what ac-
tion to play, and in equilibrium the agents all follow these recommendations. Thus,
we can find a sample correlated equilibrium if we can find a probability distribution
over pure action profiles with the property that each agent would prefer to play the
action corresponding to a chosen outcome when told to do so, given that the other
agents are doing the same.

As in Section 3.2, leu € A denote a pure-strategy profile, and dgte A;
denote a pure strategy for player The variables in our linear program aréu),
the probability of realizing a given pure-strategy profilesince there is a variable
for every pure-strategy profile there are thds variables. Observe that as above
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the values;(a) are constants. The linear program follows.

Z p(a)ui(a) > Z p(a)ui(aj,a—;) Vi€ N, Va;,a; € A; (4.52)

ac€Ala;Ea a€Ala;Ea

pa) >0 Vaec A (4.53)
> pla)=1 (4.54)
a€A

Constraints (4.53) and (4.54) ensure thad a valid probability distribution. The
interesting constraint is (4.52), which expresses the requirement that playst
be (weakly) better off playing actioa when he is told to do so than playing any
other actiona, given that other agents play their prescribed actions. This con-
straint effectively restates the definition of a correlated equilibrium given in Defini-
tion 3.4.12. Note that it can be rewritten®3 _ , , . ,[ui(a) —u;(aj, a—;)|p(a) =
0; in other words, whenever agenis “recommended” to play actiom; with pos-
itive probability, he must get at least as much utility from doing so as he would
from playing any other actioa’.

We can select a desired correlated equilibrium by adding an objective function
to the linear program. For example, we can find a correlated equilibrium that max-
imizes the sum of the agents’ expected utilities by adding the objective function

maximize: Zp(a) Z u;(a). (4.55)

acA iEN

Furthermore, all of the questions discussed in Section 4.2.4 can be answered
about correlated equilibria in polynomial time, making them (most likely) funda-
mentally easier problems.

Theorem 4.6.1 The following problems are in the complexity class P when applied
to correlated equilibria: uniquenessPareto optimalguaranteed payoffsubset
inclusion andsubset containment

Finally, it is worthwhile to consider the reason for the computational difference
between correlated equilibria and Nash equilibria. Why can we express the defini-
tion of a correlated equilibrium as a linear constraint (4.52), while we cannot do
the same with the definition of a Nash equilibrium, even though both definitions
are quite similar? The difference is that a correlated equilibrium involves a single
randomization over action profiles, while in a Nash equilibrium agents randomize
separately. Thus, the (nonlinear) version of constraint (4.52) which would instruct
a feasibility program to find a Nash equilibrium would be

Zui(a) Hpj(aj) > Zui(a;,a_i) H p;(a;) Vi€ N, Va, € A,.

acA JEN acA FJEN\{i}
This constraint now mimics constraint (4.52), directly eegsing the definition of
Nash equilibrium. It states that each playeattains at least as much expected
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utility from following his mixed strategy; as from any pure strategy deviatiaf,
given the mixed strategies of the other players. However, the constraintis nonlinear
because of the produg{;_  p;(a;).

History and references

The complexity of finding a sample Nash equilibrium is explored in a series of
articles. First came the original definition of the class TFNP [Megiddo and Pa-
padimitriou, 1991], a super-class of PPAD, followed by the definition of PPAD
by Papadimitriou [1994]. Next, Goldberg and Papadimitriou [2006] showed that
finding an equilibrium of a game with any constant number of players is no harder
than finding the equilibrium of a four-player game, and Daskalakis et al. [2006b]
showed that these computational problems are PPAD-complete. The result was
almost immediately tightened to encompass two-player games by Chen and Deng
[2006]. The NP-completeness results for Nash equilibria with specific properties
are due to Gilboa and Zemel [1989] and Conitzer and Sandholm [2003b]; the inap-
proximability result appeared in Conitzer [2006].

A general survey of the classical algorithms for computing Nash equilibria in 2-
person games is provided in von Stengel [2002]. Another good survey is McKelvey
and McLennan [1996]. Some specific references, both to these classical algorithms
and to the newer ones discussed in the chapter, are as follows. The Lemke—Howson
algorithm [Lemke and Howson, 1964] can be understood as a a specialization of
Lemke’s pivoting procedure for solving linear complementarity problems [Lemke,
1978]. The graphical exposition of the Lemke—Howson algorithm appeared first
in Shapley [1974], and then in a modified version in von Stengel [2002]. Our de-
scription of the Lemke—Howson algorithm is based on the latter. An example of
games for whichall Lemke—Howson paths are of exponential length appears in
Savani and von Stengel [2004]. Scarf’s simplicial-subdivision-based algorithm is
described in Scarf [1967]. Homotopy-based approximation methods are covered,
for example, in Garcia and Zangwill [1981]. Govindan and Wilson’s homotopy
method was presented in Govindan and Wilson [2003]; its path-following proce-
dure depends on topological results due to Kohlberg and Mertens [1986]. The
support-enumeration method for finding a sample Nash equilibrium is described in
Porter et al. [2004a]. The complexity of iteratedly eliminating dominated strategies
is described in Gilboa et al. [1989] and Conitzer and Sandholm [2005].

Two online resources are of particular no@AMBIT [McKelvey et al., 2006]
(http:// econweb. t amu. edu/ ganbi t) is a library of game-theoretic algorithms
for finite normal-form and extensive-form games. It includes many different al-
gorithms for finding Nash equilibria. In addition to several algorithms that can be
used on general sum;player games, it includes implementations of algorithms de
signed for special cases, including two-player games, zero-sum games, and finding
all equilibria. Finally, GAMUT [Nudelman et al., 2004] (ht t p: / / ganut . st anf or d. edu
is a suite of game generators designed for testing game-theoretic algorithms.
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5.1

Games with Sequential Actions:
Reasoning and Computing with the
Extensive Form

In Chapter 3 we assumed that a game is represented in normal form: effectively,
as a big table. In some sense, this is reasonable. The normal form is conceptually
straightforward, and most see it as fundamental. While many other representations
exist to describe finite games, we will see in this chapter and in Chapter 6 that
each of them has an “induced normal form”: a corresponding normal-form repre-
sentation that preserves game-theoretic properties such as Nash equilibria. Thus
the results given in Chapter 3 hold for all finite games, no matter how they are
represented; in that sense the normal-form representation is universal.

In this chapter we will look at extensive-form games, a finite representation that
does not always assume that players act simultaneously. This representation is in
general exponentially smaller than its induced normal form, and furthermore can
be much more natural to reason about. While the Nash equilibria of an extensive-
form game can be found through its induced normal form, computational benefit
can be had by working with the extensive form directly. Furthermore, there are
other solution concepts, such as subgame-perfect equilibrium (see Section 5.1.3),
which explicitly refer to the sequence in which players act and which are therefore
not meaningful when applied to normal-form games.

Perfect-information extensive-form games

The normal-form game representation does not incorporate any notion of sequence,
or time, of the actions of the players. Thetensive (otree) formis an alternative
representation that makes the temporal structure explicit. We start by discussing
the special case gferfect informatiorextensive-form games, and then move on to
discuss the more general classimperfect-informatiorextensive-form games in
Section 5.2. In both cases we will restrict the discussion to finite games, that is, to
games represented as finite trees.
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Definition

Informally speaking, a perfect-information game in exteagorm (or, more sim-

ply, a perfect-information game) is a tree in the sense of graph theory, in which
each node represents the choice of one of the players, each edge represents a pos-
sible action, and the leaves represent final outcomes over which each player has a
utility function. Indeed, in certain circles (in particular, in artificial intelligence),
these are known simply as game trees. Formally, we define them as follows.

Definition 5.1.1 (Perfect-information game) A (finite) perfect-information game
(in extensive form) is a tuplé' = (N, A, H, Z, x, p, 0, u), where:

e N is a set ofq players;

Ais a (single) set of actions;

* H is a set of nonterminal choice nodes;

Z is a set of terminal nodes, disjoint froff;

« x : H — 24 is the action function, which assigns to each choice node a set of
possible actions;

* p: H — N is the player function, which assigns to each nonterminakred
playeri € N who chooses an action at that node;

« 0: HxAw— HULZisthe successor function, which maps a choice node and
an action to a new choice node or terminal node such that fohallh, € H
andal,ag S A, if O'(hl, CL1) = O'(hg, CLQ) thenhl = hg and a; = Qog, and

e u = (uy,...,u,), whereu; : Z — R is a real-valued utility function for
player: on the terminal node%'.

Since the choice nodes form a tree, we can unambiguously identify a node with
its history, that is, the sequence of choices leading from the root node to it. We can
also define thelescendantef a nodeh, namely all the choice and terminal nodes
in the subtree rooted &t

An example of such a game is tBharing game Imagine a brother and sister
following the following protocol for sharing two indivisible and identical presents
from their parents. First the brother suggests a split, which can be one of three—he
keeps both, she keeps both, or they each keep one. Then the sister chooses whether
to accept or reject the split. If she accepts they each get their allocated present(s),
and otherwise neither gets any gift. Assuming both siblings value the two presents
equally and additively, the tree representation of this game is shown in Figure 5.1.
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(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

Figure 5.1: The Sharing game.

Strategies and equilibria

A pure strategy for a player in a perfect-information gameésmplete specifica-
tion of which deterministic action to take at every node belonging to that player. A
more formal definition follows.

Definition 5.1.2 (Pure strategies)LetG = (N, A, H, Z, x, p, 0, u) be a perfect-
information extensive-form game. Then the pure strategies of playamsist of
the Cartesian produdt],, ;7 , )= X(h).

Notice that the definition contains a subtlety. An agent'atstyy requires a
decision at each choice node, regardless of whether or not it is possible to reach
that node given the other choice nodes. In the Sharing game above the situation
is straightforward—player 1 has three pure strategies, and player 2 has eight, as
follows.

S, = {2-0,1-1,0-2

Sy = {(yes, yes, yes), (yes, yes, no), (yes,no,yes), (yes, no,no), (no, yes, yes),
(no,yes,no), (no, no,yes), (no,no,no)}

But now consider the game shown in Figure 5.2.

In order to define a complete strategy for this game, each of the players must
choose an action at each of his two choice nodes. Thus we can enumerate the pure
strategies of the players as follows.

S, = {(A,G),(A,H),(B,G),(B,H)}
Sy = {(C>E)v(C>F)>(D7E)>(D>F)}

It is important to note that we have to include the strate@its=) and (A, H),
even though once player 1 has chosgéthen his ownG-versus- Hchoice is moot.

The definition of best response and Nash equilibria in this game are exactly
as they are for normal-form games. Indeed, this example illustrates how every
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(2,10) (1,0)

Figure 5.2: A perfect-information game in extensive form.

perfect-information game can be converted to an equivalent normal-form game.
For example, the perfect-information game of Figure 5.2 can be converted into the
normal form image of the game, shown in Figure 5.3. Clearly, the strategy spaces
of the two games are the same, as are the pure-strategy Nash equilibria. (Indeed,
both the mixed strategies and the mixed-strategy Nash equilibria of the two games
are also the same; however, we defer further discussion of mixed strategies until
we consider imperfect-information games in Section 5.2.)

(CE) (Cc,F) (DE) (DF

(AG) | 3,8 | 3,8 | 83 | 83

(AH) | 3,8 | 3,8 | 83 | 8,3

(B.G) | 55 | 2,10 | 55 | 210

BH) | 55 | 1,0 | 55 | 1,0

Figure 5.3: The game from Figure 5.2 in normal form.

In this way, for every perfect-information game there exists a corresponding
normal-form game. Note, however, that the temporal structure of the extensive-
form representation can result in a certain redundancy within the normal form. For
example, in Figure 5.3 there are 16 different outcomes, while in Figure 5.2 there
are only 5 (the payoff3, 8) occurs only once in Figure 5.2 but four times in Fig-
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ure 5.3, etc.). One general lesson is that while this transformation can always be
performed, it can result in an exponential blowup of the game representation. This
is an important lesson, since the didactic examples of normal-form games are very
small, wrongly suggesting that this form is more compact.

The normal form gets its revenge, however, since the reverse transformation—
from the normal form to the perfect-information extensive form—does not always
exist. Consider, for example, the Prisoner’'s Dilemma game from Figure 3.3. A
little experimentation will convince the reader that there does not exist a perfect-
information game that is equivalentin the sense of having the same strategy profiles
and the same payoffs. Intuitively, the problem is that perfect-information extensive-
form games cannot model simultaneity. The general characterization of the class of
normal-form games for which there exist corresponding perfect-information games
in extensive form is somewhat complex.

The reader will have noticed that we have so far concentrated on pure strategies
and pure Nash equilibria in extensive-form games. There are two reasons for this,
or perhaps one reason and one excuse. The reason is that mixed strategies introduce
a new subtlety, and it is convenient to postpone discussion of it. The excuse (which
also allows the postponement, though not for long) is the following theorem.

Theorem 5.1.3Every (finite) perfect-information game in extensive form has a
pure-strategy Nash equilibrium.

This is perhaps the earliest result in game theory, due to Zermelo in 1913 (see
the historical notes at the end of the chapter). The intuition here should be clear;
since players take turns, and everyone gets to see everything that happened thus far
before making a move, it is never necessary to introduce randomness into action
selection in order to find an equilibrium. We will see this plainly when we discuss
backward inductiorbelow. Both this intuition and the theorem will cease to hold
when we discuss more general classes of games such as imperfect-information
games in extensive form. First, however, we discuss an important refinement of
the concept of Nash equilibrium.

Subgame-perfect equilibrium

As we have discussed, the notion of Nash equilibrium is asdegihed in perfect-
information games in extensive form as it is in the normal form. However, as
the following example shows, the Nash equilibrium can be too weak a notion for
the extensive form. Consider again the perfect-information extensive-form game
shown in Figure 5.2. There are three pure-strategy Nash equilibria in this game:
{(4,G),(C,F)}, {(A,H),(C,F)}, and{(B, H),(C, E)}. This can be deter-
mined by examining the normal form image of the game, as indicated in Figure 5.4.
However, examining the normal form image of an extensive-form game ob-
scures the game’s temporal nature. To illustrate a problem that can arise in cer-
tain equilibria of extensive-form games, in Figure 5.5 we contrast the equilibria

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book at t p: / / ww. masf oundat i ons. or g.


http://www.masfoundations.org

122 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

(CCE) (C,F) (D,E) (D,F)

(A,G) | 3,8 |(3,8)| 83 | 83

(AH) | 3,8 |(3,8) ]| 83 | 83

(B,G) | 55 | 2,10 | 55 | 2,10

®H) | (55 | 1,0 | 55 | 1,0

Figure 5.4: Equilibria of the game from Figure 5.2.

{(A,G),(C,F)} and{(B, H), (C, E)} by drawing them on the extensive-form
game tree.

First consider the equilibriun{(A, G), (C, F)}. If player 1 chooses! then
player 2 receives a higher payoff by choosifighan by choosind. If player 2
played the strategyC', F) rather thar(C, F') then player would prefer to playB
at the first node in the tree; as it is, player 1 gets a payad¥flof playing A rather
than a payoff o by playing B. Hence we have an equilibrium.

The second equilibriufi(B, H), (C, E)} is less intuitive. First, note thd( B, G),
(C, E)} is not an equilibrium: player 2’s best respons€ 9, G) is (C, F'). Thus,
the only reason that player 2 chooses to play the adtids that he knows that
player 1 would playH at his second decision node. This behavior by player 1 is
called athreat by committing to choose an action that is harmful to player 2 in
his second decision node, player 1 can cause player 2 to avoid that part of the tree.
(Note that player 1 benefits from making this threat: he gets a paybfinstead of
2 by playing(B, H) instead of( B, G).) So far so good. The problem, however, is
that player 2 may not consider player 1's threat to be credible: if player 1 did reach
his final decision node, actually choosiffover G would also reduce player 1's
own utility. If player 2 playedF’, would player 1 really follow through on his threat
and play H, or would he relent and pick instead?

To formally capture the reason why théB, H), (C, E')} equilibrium is unsat-
isfying, and to define an equilibrium refinement concept that does not suffer from
this problem, we first define the notion of a subgame.

Definition 5.1.4 (Subgame)Given a perfect-information extensive-form gatie
the subgamef G rooted at nodeh is the restriction ofG to the descendants af
The set of subgames 6f consists of all of subgames Gfrooted at some node in
G.

Now we can define the notion ofsubgame-perfect equilibriuna refinement
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(2,10) (1,0)

(2,10) (1,0)

Figure 5.5: Two out of the three equilibria of the game from Figure 5.2:
{(4,G),(C,F)} and{(B, H),(C, E)}. Bold edges indicate players’ choices
at each node.

of the Nash equilibrium in perfect-information games in extensive form, which
eliminates those unwanted Nash equilibria.

Definition 5.1.5 (Subgame-perfect equilibrium) Thesubgame-perfect equilibria
(SPE) of a gamé&- are all strategy profiles such that for any subgan@ of G,
the restriction ofs to G’ is a Nash equilibrium of'.

Since( is its own subgame, every SPE is also a Nash equilibrium. Eortbre,
although SPE is a stronger concept than Nash equilibrium (i.e., every SPE is a
NE, but not every NE is a SPE) it is still the case that every perfect-information
extensive-form game has at least one subgame-perfect equilibrium.

This definition rules out “noncredible threats” of the sort illustrated in the above
example. In particular, note that the extensive-form game in Figure 5.2 has only

1. Note that the word “perfect” is used in two different senses here.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book at t p: / / ww. masf oundat i ons. or g.


http://www.masfoundations.org

backward
induction

514

124 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

one subgame-perfect equilibriufqi(4, G), (C, F')}. Neither of the other Nash
equilibria is subgame perfect. Consider the subgame rooted at player 1's second
choice node. The unique Nash equilibrium of this (trivial) game is for player 1 to
play G. Thus the actiorf, the restriction of the strategiés!, ) and (B, H)

to this subgame, is not optimal in this subgame, and cannoati@pa subgame-
perfect equilibrium of the larger game.

Computing equilibria: backward induction
n-player, general-sum games: the backward induction algoritm

Inherent in the concept of subgame-perfect equilibrium is the principleack-

ward induction One identifies the equilibria in the “bottom-most” subgame trees,
and assumes that those equilibria will be played as one backs up and considers
increasingly larger trees. We can use this procedure to compute a sample Nash
equilibrium. This is good news: not only are we guaranteed to find a subgame-
perfect equilibrium (rather than possibly finding a Nash equilibrium that involves
noncredible threats), but also this procedure is computationally simple. In partic-
ular, it can be implemented as a single depth-first traversal of the game tree and
thus requires time linear in the size of the game representation. Recall in contrast
that the best known methods for finding Nash equilibria of general games require
time exponential in the size of the normal form; remember as well that the induced
normal form of an extensive-form game is exponentially larger than the original
representation.

function BACKWARDINDUCTION (nodeh) returns u(h)
if h € Z then
| return wu(h) Il his a terminal node
best_util «— —o0
forall a € x(h) do
util_at_child <—BACKWARDINDUCTION(o (h, a))
if util_at_child,;y > best_util ) then
| best_util «— util_at_child

return best_util

Figure 5.6: Procedure for finding the value of a sample (sulegpenfect) Nash
equilibrium of a perfect-information extensive-form game.

The algorithm B\CKWARDINDUCTION is described in Figure 5.6. The variable
util_at_child is a vector denoting the utility for each player at the childiep
util_at_child,) denotes the element of this vector corresponding to the utility
for playerp(h) (the player who gets to move at note Similarly, best_util is a
vector giving utilities for each player.

Observe that this procedure does not return an equilibrium strategy for each of
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then players, but rather describes how to label each node with wetn real
numbers. This labeling can be seen as an extension of the game’s utility function
to the nonterminal nodeH. The players’ equilibrium strategies follow straight-
forwardly from this extended utility function: every time a given playéas the
opportunity to act at a given nodec H (i.e., p(h) = i), that player will choose

an actiona; € x(h) that solvesirg max, ;) ui(o(a;, h)). These strategies can
aso be returned by BCKWARDINDUCTION given some extra bookkeeping.

While the procedure demonstrates that in principle a sample SPE is effectively
computable, in practice many game trees are not enumerated in advance and are
hence unavailable for backward induction. For example, the extensive-form repre-
sentation of chess has arouh@®® nodes, which is vastly too large to represent
explicitly. For such games it is more common to discuss the size of the game tree
in terms of the average branching factofthe average number of actions which
are possible at each node) and a maximum deptkthe maximum number of
sequential actions). A procedure which requires time linear in the size of the repre-
sentation thus expand$(b™) nodes. Unfortunately, we can do no better than this
on arbitrary perfect-information games.

Two-player, zero-sum games: minimax and alpha-beta pruning

We can make some computational headway in the widely applicable case of two-
player, zero-sum games. We first note thalCRWARDINDUCTION has another
name in the two-player, zero-sum context: thmimax algorithm Recall that in

such games, only a single payoff number is required to characterize any outcome.
Player 1 wants to maximize this number, while player 2 wants to minimize it. In
this context BCKWARDINDUCTION can be understood as propagating these sin-
gle payoff numbers from the leaves of the tree up to the root. Each decision node
for player 1 is labeled with the maximum of the labels of its child nodes (repre-
senting the fact that player 1 would choose the corresponding action), and each
decision node for player 2 is labeled with the minimum of that node’s children’s
labels. The label on the root node is the value of the game: player 1's payoff in
equilibrium.

How can we improve on the minimax algorithm? The fact that player 1 and
player 2 always have strictly opposing interests means that weicare away
some parts of the game tree: we can recognize that certain subtrees will never
be reached in equilibrium, even without examining the nodes in these subtrees.
This leads us to a new algorithm called ®FHABETAPRUNING, which is given in
Figure 5.7.

There are several ways in whichLAHABETAPRUNING differs from BACK-
WARDINDUCTION. Some concern the fact that we have now restricted ourselves to
a setting where there are only two players, and one player’s utility is the negative
of the other’'s. We thus deal only with the utility for player 1. This is why we treat
the two players separately, maximizing for player 1 and minimizing for player 2.

At each nodéeh eithera or (3 is updated. These variables take the value of the
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function ALPHABETAPRUNING (nodeh, reala, real 3) returns u, (h)
if h € Z then
| return wu,(h) I his a terminal node
best_util — (2p(h) — 3) x oo Il —oo for player 1;00 for player 2
forall a € x(h) do
if p(h) = 1then
best_util < max(best_util, ALPHABETAPRUNING (o (h,a), o, 3))
if best_util > (3 then
| return best_util
a «— max(a, best_util)
else
best_util < min(best_util, ALPHABETAPRUNING (o (h,a), o, 3))
if best_util < a then
| return best_util
| B < min(3, best_util)

return best_util

Figure 5.7: The alpha-beta pruning algorithm. It is invoketha root nodé: as
ALPHABETAPRUNING(h, —00, 00).

previously encountered node that their corresponding player (player & &d

player 2 for3) would most prefer to choosasteadof h. For example, consider

the variabled at some nodé. Now consider all the different choices that player

2 could make at ancestors bfthat would prevent from ever being reached, and

that would ultimately lead to previously encountered terminal nodes the best

value that player 2 could obtain at any of these terminal nodes. Because the players
do not have any alternative to starting at the root of the tree, at the beginning of the
searchn = —oo andg = cc.

We can now concentrate on the important difference betweerk®ARDIN-
DUCTION and ALPHABETAPRUNING: in the latter procedure, the search can back-
track at a node that is not terminal. Let us think about things from the point of view
of player 1, who is considering what action to play at nédgAs we encourage
you to check for yourself, a similar argument holds when it is player 2's turn to
move at nodé:.) For player 1, this backtracking occurs on the line that se'#d
best_util > [ then returnbest_util.” What is going on here? We have just ex-
plored some, but not all, of the children of player 1's decision nbdéhe highest
value among these explored nodesdst_util. The value of nodé is therefore
lower bounded byest_util (it is best_util if h has no children with larger values,
and is some larger amount otherwise). Either wayeift_util > 3 then player
1 knows that playe® prefers choosing his best alternative (at some ancestor node
of h) rather than allowing player 1 to act at node Thus nodeh cannot be on
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(10) (8) (6)

Figure 5.8: An example of alpha-beta pruning. We can backt&after expanding
the first child of the right choice node for player 2.

the equilibrium pathand so there is no need to continue exploring the game tree
belowh.

A simple example of APHABETAPRUNING in action is given in Figure 5.8. The
search begins by heading down the left branch and visiting both terminal nodes,
and eventually setting = 8. (Do you see why?) It then returns the vakias
the value of this subgame, which causet be set t&8 at the root node. In the
right subgame the search visits the first terminal node and séesgts:til = 6 at
the shaded node, which we will cdll Now ath we havebest_util < «, which
means that we can backtrack. This is safe to do because we have just shown that
player 1 would never choose this subgame: he can guarantee himself a payoff of
8 by choosing the left subgame, whereas his utility in the rggligame would be
no more tharé.

The effectiveness of the alpha-beta pruning algorithm depends on the order in
which nodes are considered. For example, if player 1 considers nodes in increas-
ing order of their value, and player 2 considers nodes in decreasing order of value,
then no nodes will ever be pruned. In the best case (where nodes are ordered in
decreasing value for player 1 and in increasing order for player 2), alpha-beta prun-
ing has complexity o0 (b% ). We can rewrite this expression@$\/5m), making
more explicit the fact that the game’s branching factor would effectively be cut to
the square root of its original value. If nodes are examined in random order then the
analysis becomes somewhat more complicated; wlgfairly small, the complex-
ity of alpha-beta pruning i@(b% ), which is still an exponential improvement. In
practice, it is usually possible to achieve performance somewhere between the best
case and the random case. This technique thus offers substantial practical benefit
over straightforward backward induction in two-player, zero-sum games for which
the game tree is represented implicitly.

2. Infact, in the caseest_util = (3, it is possible that. could be reached on an equilibrium path; however,
in this case there is still always an equilibrium in which player 2 plays his best alternative endot
reached.
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Techniques like alpha-beta pruning are commonly used to build strong computer
players for two-player board games such as chess. (However, they perform poorly
on games with extremely large branching factors, such as go.) Of course, building
a good computer player involves a great deal of engineering, and requires consider-
able attention to game-specific heuristics such as those used to order actions. One
general technique is required by many such systems, however, and so is worth dis-
cussing here. The game tree in practical games can be so large that it is infeasible
to search all the way down to leaf nodes. Instead, the search proceeds to some shal-
lower depth (which is chosen either statically or dynamically). Where do we get
the node values to propagate up using backward induction? The trick is to use an
evaluation functiorio estimate the value of the deepest node reached (taking into
account game-relevant features such as board position, number of pieces for each
player, who gets to move next, etc., and either built by hand or learned). When
the search has reached an appropriate depth, the node is treated as terminal with a
call to the evaluation function replacing the evaluation of the utility function at that
node. This requires a small change to the beginning FMMBETAPRUNING;
otherwise, the algorithm works unchanged.

Two-player, general-sum games: computing all subgame-perfect equilibria

While the BACKWARDINDUCTION procedure identifies one subgame-perfect equi-
librium in linear time, it does not provide an efficient way of finding all of them.
One might wonder how there could evée more than one SPE in a perfect-
information game. Multiple subgame-perfect equilibria can exist when there ex-
ist one or more decision nodes at which a player chooses between subgames in
which he receives the same utility. In such casesB~VARDINDUCTION simply
chooses the first subgame it encountered. It could be useful to find the set of all
subgame-perfect equilibria if we wanted to find a specific SPE (as we did with Nash
equilibria of normal-form games in Section 4.2.4) such as the one that maximizes
social welfare.

Here let us restrict ourselves to two-player perfect-information extensive-form
games, but lift our previous restriction that the game be zero-sum. A somewhat
more complicated algorithm can find the setadif subgame-perfect equilibrium
values in worst-case cubic time.

Theorem 5.1.6 Given a two-player perfect-information extensive-form game with
¢ leaves, the set of subgame-perfect equilibrium payoffs eapfiresented as the
union of O (¢?) axis-aligned rectangles and can be computed in ix{é’).

Intuitively, the algorithm works much like 2KWARDINDUCTION, but the vari-
ableutil_at_child holds a representation of all equilibrium values insteadisf j
one. The "max” operation we had previously implemented throgh_ut:l is
replaced by a subroutine that returns a representation of all the values that can be
obtained in subgame-perfect equilibria of the node’s children. This can include

Uncorrected manuscript dfultiagent System®ublished by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.



Centipede game

5.1 Perfect-information extensive-form games 129

mixed strategies if multiple children are simultaneously best responses. More in-
formation about this algorithm can be found in the reference cited in the chapter
notes.

An example and criticisms of backward induction

Despite the fact that strong arguments can be made in its favor, the concept of
backward induction is not without controversy. To see why this is, consider the
well-known Centipede gamealepicted in Figure 5.9. (The game starts at the node
at the upper left.) In this game two players alternate in making decisions, at each
turn choosing between going “down” and ending the game or going “across” and
continuing it (except at the last node where going “across” also ends the game).
The payoffs are constructed in such a way that the only SPE is for each player to
always choose to go down. To see why, consider the last choice. Clearly at that
point the best choice for the player is to go down. Since this is the case, going
down is also the best choice for the other player in the previous choice point. By
induction the same argument holds for all choice points.

(1,0) (0,2) (3,1) (2,4) (4,3)

Figure 5.9: The Centipede game.

This would seem to be the end of this story, except for two pesky factors. The
first problem is that the SPE prediction in this case flies in the face of intuition.
Indeed, in laboratory experiments subjects in fact continue to play “across” until
close to the end of the game. The second problem is theoretical. Imagine that you
are the second player in the game, and in the first step of the game the first player
actually goes across. What should you do? The SPE suggests you should go
down, but the same analysis suggests that you would not have gotten to this choice
point in the first place. In other words, you have reached a state to which your
analysis has given a probability of zero. How should you amend your beliefs and
course of action based on this measure-zero event? It turns out this seemingly small
inconvenience actually raises a fundamental problem in game theory. We will not
develop the subject further here, but let us only mention that there exist different
accounts of this situation, and they depend on the probabilistic assumptions made,
on what is common knowledge (in particular, whether there is common knowledge
of rationality), and on exactly how one revises one’s beliefs in the face of measure-
zero events. The last question is intimately related to the subject of belief revision
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discussed in Chapter 14.

Imperfect-information extensive-form games

Up to this point, in our discussion of extensive-form games we have allowed play-
ers to specify the action that they would take at every choice node of the game. This
implies that players know the node they are in, and—recalling that in such games
we equate nodes with the histories that led to them—all the prior choices, includ-
ing those of other agents. For this reason we have called geeect-information
games

We might not always want to make such a strong assumption about our players
and our environment. In many situations we may want to model agents needing
to act with partial or no knowledge of the actions taken by others, or even agents
with limited memory of their own past actions. The sequencing of choices allows
us to represent such ignorance to a limited degree; an “earlier” choice might be
interpreted as a choice made without knowing the “later” choices. However, so far
we could not represent two choices made in the same play of the game in mutual
ignorance of each other.

Definition

Imperfect-informatiogames in extensive form address this limitation. An imperfect-
information game is an extensive-form game in which each player’s choice nodes
are partitioned into information sets; intuitively, if two choice nodes are in the same

information set then the agent cannot distinguish between them.

Definition 5.2.1 (Imperfect-information game) An imperfect-information game
(in extensive form) is a tupleV, A, H, Z, x, p, o, u, I), where:

* (N,A, H, Z, x,p,o,u) is a perfect-information extensive-form game; and

eI =(L,...,1,),wherel;, = (I;1,...,1;,) is a set of equivalence classes
on (i.e., a partition of){h € H : p(h) = i} with the property thaty(h) =
x(h') and p(h) = p(h') whenever there exists afor whichh € I, ; and
hel;.

Note that in order for the choice nodes to be truly indistinguishable, we require
that the set of actions at each choice node in an information set be the same (oth-
erwise, the player would be able to distinguish the nodes). Thus; i€ I, is an
equivalence class, we can unambiguously use the notgfihr ) to denote the set
of actions available to playerat any node in information séf ;.

3. From the technical point of view, imperfect-information games are obtained by overlaying a partition
structure, as defined in Chapter 13 in connection with models of knowledge, over a perfect-information
game.
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(0,0) (2,4) (2,4) (0,0)

Figure 5.10: An imperfect-information game.

Consider the imperfect-information extensive-form game shown in Figure 5.10.
In this game, player 1 has two information sets: the set including the top choice
node, and the set including the bottom choice nodes. Note that the two bottom
choice nodes in the second information set have the same set of possible actions.
We can regard player 1 as not knowing whether player 2 chibee B when he
makes his choice betwedrandr.

Strategies and equilibria

A pure strategy for an agent in an imperfect-information gaelects one of the
available actions in each information set of that agent.

Definition 5.2.2 (Pure strategies)LetG = (N, A, H, Z, x, p, o, u, I) be an imperfect-
information extensive-form game. Then the pure strategies of playamsist of
the Cartesian produd];, ., x(/i;)-

Thus perfect-information games can be thought of as a special case of imperfect-
information games, in which every equivalence class of each partition is a single-
ton.

Consider again the Prisoner’s Dilemma game, shown as a normal-form game in
Figure 3.3. An equivalent imperfect-information game in extensive form is given
in Figure 5.11.

Note that we could have chosen to make player 2 choose first and player 1 choose
second.

Recall that perfect-information games were not expressive enough to capture
the Prisoner’s Dilemma game and many other ones. In contrast, as is obvious from
this example, any normal-form game can be trivially transformed into an equiva-
lent imperfect-information game. However, this example is also special in that the
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(-1,-1) (—4,0) (0,—4) (—3,-3)

Figure 5.11: The Prisoner’s Dilemma game in extensive form.

Prisoner’s Dilemma is a game with a dominant strategy solution, and thus in par-
ticular a pure-strategy Nash equilibrium. This is not true in general for imperfect-
information games. To be precise about the equivalence between a normal-form
game and its extensive-form image we must consider mixed strategies, and this is
where we encounter a new subtlety.

As we did for perfect-information games, we can define the normal-form game
corresponding to any given imperfect-information game; this normal game is again
defined by enumerating the pure strategies of each agent. Now, we define the set
of mixed strategies of an imperfect-information game as simply the set of mixed
strategies in its image normal-form game; in the same way, we can also define
the set of Nash equilibri4. However, we can also define the settwhavioral
strategiesn the extensive-form game. These are the strategies in which, rather than
randomizing over complete pure strategies, the agent randomizes independently
at each information set. And so, whereas a mixed strategy is a distribution over
vectors (each vector describing a pure strategy), a behavioral strategy is a vector of
distributions.

In general, the expressive power of behavioral strategies and the expressive
power of mixed strategies are noncomparable; in some games there are outcomes
that are achieved via mixed strategies but not any behavioral strategies, and in some
games it is the other way around.

Consider for example the game in Figure 5.12. In this game, when considering
mixed strategies (but not behavioral strategiés)s a strictly dominant strategy
for agent 1,D is agent 2's strict best response, and tfiis D) is the unique
Nash equilibrium. Note in particular that in a mixed strategy, agent 1 decides
probabilistically whether to play. or R in his information set, but once he decides
he plays that pure strategy consistently. Thus the payoff of 100 is irrelevant in the

4. Note that we have defined two transformations—one from any normal-form game to an imperfect-
information game, and one in the other direction. However the first transformation is not one to one, and so
if we transform a normal-form game to an extensive-form one and then back to normal form, we will not in
general get back the same game we started out with. However, we will get a game with identical strategy
spaces and equilibria.
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(1,0) (100,100) (5,1) (2,2)

Figure 5.12: A game with imperfect recall

context of mixed strategies. On the other hand, with behavioral strategies agent 1
gets to randomize afresh each time he finds himself in the information set. Noting
that the pure strategl is weakly dominant for agent 2 (and in fact is the unique
best response to all strategies of agent 1 other than the pure stiateggent 1
computes the best responsefibas follows. If he uses the behavioral strategy
(p,1 — p) (i-e., choosingL with probability p each time he finds himself in the
information set), his expected payoff is

1xp® 4100 % p(1 — p) + 2 % (1 — p).

The expression simplifies t099p? + 98p + 2, whose maximum is obtained at=
98/198. Thus(R, D) = ((0,1), (0,1)) is no longer an equilibrium in behavioral
strategies, and instead we get the equilibri((98,/198, 100,/198), (0, 1)).

There is, however, a broad class of imperfect-information games in which the
expressive power of mixed and behavioral strategies coincides. This is the class
of games ofperfect recall Intuitively speaking, in these games no player forgets
any information he knew about moves made so far; in particular, he remembers
precisely all his own moves. A formal definition follows.

Definition 5.2.3 (Perfect recall) Player: hasperfect recalin an imperfect-information
gamed if for any two nodes:, b’ that are in the same information set for player
1, for any pathhg, ag, hy, a1, ha, ..., by, ay,, h from the root of the game th

(where theh; are decision nodes and thg are actions) and for any pathy, ag, b}, a}, hs, ... k., a

from the root toh’ it must be the case that:
1. m=m';

2. forall0 < j <m,if p(h;) =i (i.e., h; is a decision node of playey, thenh;
and h’; are in the same equivalence class fpand

3. forall0 < j < m,if p(h;) =i (i.e., h; is a decision node of playe), then
a; = aj.

G is a game of perfect recall if every player has perfect reqalt.i
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Clearly, every perfect-information game is a game of perfect recall.

Theorem 5.2.4 (Kuhn, 1953)In a game of perfect recall, any mixed strategy of a
given agent can be replaced by an equivalent behavioral strategy, and any behav-
ioral strategy can be replaced by an equivalent mixed strategy. Here two strategies
are equivalentin the sense that they induce the same probabilities on outcomes, for
any fixed strategy profile (mixed or behavioral) of the remaining agents.

As a corollary we can conclude that the set of Nash equilibria does not change if
we restrict ourselves to behavioral strategies. This is true only in games of perfect
recall, and thus, for example, in perfect-information games. We stress again, how-
ever, that in general imperfect-information games, mixed and behavioral strategies
yield noncomparable sets of equilibria.

Computing equilibria: the sequence form

Because any extensive-form game can be converted into areéentinormal-form
game, an obvious way to find an equilibrium of an extensive-form game is to first
convert it into a normal-form game, and then find the equilibria using, for exam-
ple, the Lemke—Howson algorithm. This method is inefficient, however, because
the number of actions in the normal-form gameeigonentiain the size of the
extensive-form game. The normal-form game is created by considering all combi-
nations of information set actions for each player, and the payoffs that result when
these strategies are employed.

One way to avoid this problem is to operate directly on the extensive-form repre-
sentation. This can be done by employing behavioral strategies to express a game
using a description called the sequence form.

Defining the sequence form

The sequence form is (primarily) useful for representing imperfect-information
extensive-form games of perfect recall. Definition 5.2.5 describes the elements
of the sequence-form representation of such games; we then go on to explain what
each of these elements means.

Definition 5.2.5 (Sequence-form representation)_etG be animperfect-information
game of perfect recall. Theequence-form representatiofz is a tuple(NV, X, g, C),
where

e N is a set of agents;
e ¥ =(%y,...,%,), whereX; is the set osequenceavailable to agent;
* 9= (g1,---,9.), Whereg; : ¥ — R is the payoff function for agent

« C = (Cy,...,C,), whereC; is a set of linear constraints on the realization
probabilities of agent.
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Now let us define all these terms. To begin with, what is a sequence? The
key insight of the sequence form is that, while there are exponentially many pure
strategies in an extensive-form game, there are only a small number of nodes in
the game tree. Rather than building a player’s strategy around the idea of pure
strategies, the sequence form builds it around paths in the tree from the root to
each node.

Definition 5.2.6 (Sequence)A sequencef actions of playei € N, defined by a
nodeh € H U Z of the game tree, is the ordered set of playsractions that lie

on the path from the root th. Let() denote the sequence corresponding to the root
node. The set of sequences of player denoted;, and> = ¥y x --- x X, is

the set of all sequences.

A sequence can thus be thought of as a string listing the action choices that player
7 would have to take in order to get from the root to a given nbd®bserve that
h may or may not be a leaf node; observe also that the other glag@ions that
form part of this path are not part of the sequence.

Definition 5.2.7 (Payoff function) Thepayoff functiong; : > — R for agent: is
given byg(o) = u(z) if a leaf nodez € Z would be reached when each player
played his sequence, € o, and byg(c) = 0 otherwise.

Given the set of sequencés and the payoff functiory, we can think of the
sequence form as defining a tabular representation of an imperfect-information
extensive-form game, much as the induced normal form does. Consider the game
given in Figure 5.10 (see p. 131). The sets of sequences for the two players are
¥, ={0,L, R, L¢, Lr} andX, = {0, A, B}. The payoff function is given in Fig-
ure 5.13. For comparison, the induced normal form of the same game is given in
Figure 5.14. Written this way, the sequence form is larger than the induced normal
form. However, many of the entries in the game matrix in Figure 5.13 correspond
to cases where the payoff function is defined to be zero because the given pair of
sequences does not correspond to a leaf node in the game tree. These entries are
shaded in gray to indicate that they could not arise in play. Each payoffshat
defined at a leaf in the game tree occurs exactly once in the sequence-form table.
Thus, ifg was represented using a sparse encoding, only five values \Wwaué to
be stored. Compare this to the induced normal form, where all of the eight entries
correspond to leaf nodes from the game tree.

We now have a set of players, a set of sequences, and a mapping from sequences
to payoffs. At first glance this may look like everything we need to describe our
game. However, sequences do not quite take the place of actions. In particular,
a player cannot simply select a single sequence in the way that he would select a
pure strategy—the other player(s) might not play in a way that would allow him to
follow it to its end. Put another way, players still need to define what they would
do in every information set that could be reached in the game tree.
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0 A B
A B

0| 0,0 0,0 0,0
Le | 0,0 2,4

L | 00 0,0 0,0
Lr | 24 0,0

R | 1,1 0,0 0,0
R | 1,1 1,1

Le | 0.0 0,0 2,4
Rr | 1,1 1,1

Lr | 0.0 2,4 0,0

Figure 5.14: The induced normal

Figure 5.13: The sequence form of the form of the game from Figure 5.10.
game from Figure 5.10.

What we want is for agents to select behavioral strategies. (Since we have as-
sumed that our gamé@ has perfect recall, Theorem 5.2.4 tells us that any equi-
librium will be expressible using behavioral strategies.) However, it turns out that
it is not a good idea to work with behavioral strategies directly—if we did so,
the optimization problems we develop later would be computationally harder to
solve. Instead, we will develop the alternate concept @adization plan which
corresponds to the probability that a given sequence would arise under a given
behavioral strategy.

Consider an agent following a behavioral strategy that assigned probability
Bi(h, a;) to taking actior; at a given decision nodk. Then we can construct a
realization planthat assigns probabilities to sequences in a way that recasers
behavioral strategys.

Definition 5.2.8 (Realization plan of3;) Therealization plan of3; for playeri €
N is a mappingr; : ; — [0,1] defined as;(0;) = [].,, Bi(c). Each value
ri(0;) is called arealization probability

Definition 5.2.8 is not the most useful way of defining realization probabilities.
There is a second, equivalent definition with the advantage that it involves a set of
linear equations, although it is a bit more complicated. This definition relies on
two functions that we will make extensive use of in this section.

To define the first function, we make use of our assumptionth& a game
of perfect recall. This entails that, given an information et I;, there must be
one single sequence that playecan play to reach all of his nonterminal choice
nodesh € I. We denote this mapping asq, : I; — %;, and callseq,(/) the
sequencdeading toinformation set/. Note that while there is only one sequence
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that leads to a given information set, a given sequence can lead to multiple different
information sets. For example, if player 1 moves first and player 2 observes his
move, then the sequen@aill lead to multiple information sets for player 2.

The second function considers ways that sequences can be built from other se-
quences. By;a; denote a sequence that consists of the sequentalowed by
the single actiom;. As long as the new sequence still belong&itowe say that
the sequence;a; extendsthe sequence;. A sequence can often be extended
in multiple ways—for example, perhaps agerdould have chosen an actiaf)
instead ofa; after playing sequence;. We denote byExt,; : ¥, — 2% afunc-
tion mapping from sequences to sets of sequences, vihwetrgo;) denotes the
set of sequences that extend the sequenceNe defineExt;(()) to be the set of
al single-action sequences. Note that extension always refers to playingla
action beyond a given sequence; thuigy;a; does not belong tdxt;(o;), even
if it is a valid sequence. (doesbelong toExt;(o;a;).) Also note that not all se-
guences have extensions; one example is sequences leading to leaf nodes. In such
casedixt;(o) returns the empty set. Finally, to reduce notation we intcedhe
shorthandExt; (I) = Ext;(seq,(I)): the sequences extending an information set
are the sequences extending the (unique) sequence leading to that information set.

Definition 5.2.9 (Realization plan) A realization plarfor player: € N is a func-
tionr; : X; — [0, 1] satisfying the following constraints.

ri(0) =1 (5.1)
> nilol) = rilseq;(1)) VIel (5.2)

ol €Ext;(I)

(i) >0 Vo, € ¥, (5.3)

If a player: follows a realization plam;, we must be able to recover a behavioral
strategy(; from it. For a decision nodk for playeri that is in information set
I € I, and for any sequencg@eq;(I)a;) € Ext;(I), 5;(h,a;) is defined as
% as long as;(seq, (1)) > 0. If r;(seq;(I)) = 0 then we can assign
Bi(h, a;) an arbitrary value from0, 1]: here(; describes the player's behavioral
strategy at a node that could never be reached in play because of the player's own
previous decisions, and so the value we assigh) ig irrelevant.

Let C; be the set of constraints (5.2) on realization plans of playerfet
C = (Cy,...,C,). We have now defined all the elemeht§ a sequence-form
representatioty = (N, X, g, C), as laid out in Definition 5.2.5.

What is the space complexity of the sequence-form representation? Unlike the
normal form, the size of this representation is linear in the size of the extensive-
form game. There is one sequence for each node in the game tree, pllis the
sequence for each player. As argued previously, the payottion g can be rep-
resented sparsely, so that each payoff corresponding to a leaf node is stored only

5. We do not need to explicitly store constraints (5.1) and (5.3), because they are always the same for every
sequence-form representation.
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once, and no other payoffs are stored at all. There is one version of constraint (5.2)
for each edge in the game tree. Each such constraint for plagéerences only
| Ext,;(I)| + 1 variables, again allowing sparse encoding.

Computing best responses in two-player games

The sequence-form representation can be leveraged to allow the computation of
equilibria far more efficiently than can be done using the induced normal form.
Here we will consider the case of two-player games, as it is these games for which
the strongest results hold. First we consider the problem of determining player 1’s
best response to a fixed behavioral strategy of player 2 (represented as a realization
plan). This problem can be written as the following linear program.

maximize Z <Z gl(al,ag)r2(02)> r1(o1) (5.4)

01€X1 \o2€32
subjectto () =1 (5.5)
> rie}) = riseqy(I)) viel, (5.6)
o €Exty (1)
7”1(0'1) > 0 V(Tl S 21 (57)

This linear program is straightforward. First, observe tdt) andr,(-) are
constants, while; (-) are variables. The LP states that player 1 should chepse
to maximize his expected utility (given in the objective function (5.4)) subject to
constraints (5.5)—(5.7) which require thatcorresponds to a valid realization plan.

In an equilibrium, player 1 and player 2 best respond simultaneously. However,
if we treated bothr; andr, as variables in Equations (5.4)—(5.7) then the objective
function (5.4) would no longer be linear. Happily, this problem does not arise in
the dual of this linear prografh.Denote the variables of our dual LP asthere
will be onev; for every information sef € I; (corresponding to constraint (5.6)
from the primal) and one additional variahlg(corresponding to constraint (5.5)).
For notational convenience, we define a “dummy” informationOskeir player 1;
thus, we can consider every dual variable to correspond to an information set.

Ti(0;): the last We now define one more function. L&t : 3; — I, U {0} be a mapping from
information set  playeri’s sequences to information sets. We defi&r;) to be0 iff o; = 0,
encountered in - and to be the information set € I, in which the final action iro; was taken
i otherwise. Note that the information set in which each action in a sequence was
taken is unambiguous because of our assumption that the game has perfect recall.
Finally, we again overload notation to simplify the expressions that follow. Given
a set of sequences’, let Z;(¥’) denote{Z;(c")|o; € X!}. Thus, for example,

Z;(Exti(01)) =  Z;(Ext;(07)) is the (possibly empty) set of final information sets encorauten
{Zi(o")lo" € the (possibly empty) set of extensionsoof
Exti(o1)}

6. The dual of a linear program is defined in Appendix B.
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The dual LP follows.

minimize wvq (5.8)
Subjectto 'Uzl(o—l) — Z (I 2 Z gl(O'l,O'g)Tg(O'g) VO'l c 21
I'€T, (Exty(o1)) 02€X2
(5.9)

The variablev, represents player 1's expected utility under the realization plan
he chooses to play, given player 2's realization plan. In the optimal solugiwiil
correspond to player 1's expected utility when he plays his best response. (This
follows from LP duality—primal and dual linear programs always have the same
optimal solutions.) Each other variahle can be understood as the portion of this
expected utility that player 1 will achieve under his best-response realization plan
in the subgame starting from information detagain given player 2’s realization
planr,.

There is one version of constraint (5.9) for every sequencef player 1. Ob-
serve that there is always exactly one positive variable on the left-hand side of the
inequality, corresponding to the information set of the last action in the sequence.
There can also be zero or more negative variables, each of which corresponds to
a different information set in which player 1 can end up after playing the given
sequence. To understand this constraint, we will consider three different cases.

First, there are zero of these negative variables when the sequence cannot be
extended—that is, when player 1 never gets to move againZAftar, no matter
what player 2 does. In this case, the right-hand side of the constraint will evaluate
to player 1's expected payoff from the subgame beyendyiven player 2’s real-
ization probabilities,. (This subgame is either a terminal node or one or more
decision nodes for player 2 leading ultimately to terminal nodes.) Thus, here the
constraint states that the expected utility from a decision at informatidh &et)
must be at least as large as the expected utility from makmdéleision according
to o;. In the optimal solution this constraint will be realized as equality,ifis
played with positive probability; contrapositively, if the inequality is strict,will
never be played.

The second case is when the structure of the game is such that player 1 will
face another decision node no matter how he plays at informatioff;$et ).

For example, this occurs if;, = () and player 1 moves at the root node: then
Z,(Exty(01)) = {1} (the first information set). As another example, if player 2
takes one of two moves at the root node and player 1 observes this move before
choosing his own move, then for, = 0 we will haveZ, (Ext,(0;)) = {1,2}.
Whenever player 1 is guaranteed to face another decision node, the right-hand side
of constraint (5.9) will evaluate to zero becayséo, o) will equal 0 for all 0.

Thus the constraint can be interpreted as stating that player 1's expected utility at
information setZ, (o) must be equal to the sum of the expected utilities at the
information set¥, (Ext,(cy)). In the optimal solution, where, is minimized,

these constraints are always be realized as equality.
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Finally, there is the case where there exist extensions of sequertmg where it
is also possible that player 2 will play in a way that will deny player 1 another move.
For example, consider the game in Figure 5.2 from earlier in the chapter. If player
1 adopts the sequenégat his first information set, then he will reach his second
information set if player 2 play$’, and will reach a leaf node otherwise. In this
case there will be both negative terms on the left-hand side of constraint (5.9) (one
for every information set that player 1 could reach beyond sequerand posi-
tive terms on the right-hand side (expressing the expected utility player 1 achieves
for reaching a leaf node). Here the constraint can be interpreted as assertifgy that
expected utility atZ, (o) can only exceed the sum of the expected utilitieg'®f
successor information sets by the amount of the expected payoff due to reaching
leaf nodes from player 2’s move(s).

Computing equilibria of two-player zero-sum games

For two-player zero-sum games the sequence form allows us to write a linear pro-
gram for computing a Nash equilibrium that can be solved in time polynomial in
the size of the extensive form. Note that in contrast, the methods described in Sec-
tion 4.1 would require time exponential in the size of the extensive form, because
they require construction of an LP with a constraint for each pure strategy of each

player and a variable for each pure strategy of one of the players.

This new linear program for games in sequence form can be constructed quite
directly from the dual LP given in Equations (5.8)—(5.9). Intuitively, we simply
treat the terms () as variables rather than constants, and add in the constraint
from Definition 5.2.9 to ensure that, is a valid realization plan. The program
follows.

minimize wo (5.10)
subject to VI, (0q) — Z vy > Z 91(0'170'2)7'2(0'2) Vo, € 31 (511)
I'eTZy (Exty(o1)) 02EX
ra(0) = 1 (5.12)
ST ra(oh) = ra(seqy(D)) Viel, (5.13)
o eExty (1)
7’2(0’2) >0 Vog € Yo (514)

The fact that-, is now a variable means that player 2's realization plan will now
be selected to minimize player 1's expected utility when player 1 best responds
to it. In other words, we find a minmax strategy for player 2 against player 1,
and since we have a two-player zero-sum game it is also a Nash equilibrium by
Theorem 3.4.4. Observe that if we had tried this same trick with the primal LP
given in Equations (5.4)—(5.7) we would have ended up with a quadratic objective
function, and hence not a linear program.
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Computing equilibria of two-player general-sum games

For two-player general-sum games, the problem of findin? a Nash equilibrium can

be formulated as a linear complementarity problem as follows.
r(0) =1 (5.15)
r2(0) =1 (5.16)
r1(o1) = ri(seq; (1)) vien
of €Exty (1)
(5.17)
Yo ra(oh) = ra(seay(D)) VIE
ol €Exty (1)
(5.18)
Tl(Ul)ZO Vo, € X1
(5.19)
ra(o2) >0 Voo € Xo
(5.20)
<U71-'1(01) - Z U}/> - ( Z 91(0'170'2)7"2(0'2)> >0 Vo € X1
I'eZy (Exty(o1)) g9€EX,
(5.21)
(”%2072) - > “?/) - ( > 92(01702)7“1(01)) >0 Voo € g
I'€Z3(Exta(02)) o1€%]

(5.22)

7”1(01){(1)%1(01) — Z v},) — ( Z 91(01,02)7“2(02))} =0 Vo1 €X1

I'eZy (Exty (o1)) o€,
(5.23)

7”2(02){(1)%2(02) — Z v?,) — ( Z 92(01,02)7“1(01))} =0 Vog €Xog

I'€Z5 (Extg(03)) o1EX]
(5.24)

Like the linear complementarity problem for two-player games in normal form
given in Equations (4.14)—(4.19) on Page 93, this is a feasibility problem consist-
ing of linear constraints and complementary slackness conditions. The linear con-
straints are those from the primal LP for player 1 (constraints (5.15), (5.17), and
(5.19)), from the dual LP for player 1 (constraint (5.21)), and from the correspond-
ing versions of these primal and dual programs for player 2 (constraints (5.16),
(5.18), (5.20), and (5.22)). Note that we have rearranged some of these constraints
by moving all terms to the left side, and have superscriptedtheith the appro-
priate player number.

If we stopped at constraint (5.22) we would have a linear program, but the vari-
ablesv would be allowed to take arbitrarily large values. The comm@atary
slackness conditions (constraints (5.23) and (5.24)) fix this problem at the expense
of shifting us from a linear program to a linear complementarity problem. Let us
examine constraint (5.23). It states that either sequends never played (i.e.,
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r1(o1) = 0) or that

Vhen = . v =Y gi(01,02)r2(02). (5.25)

1'e€Z, (Exti(01)) 02€%,

What does it mean for Equation (5.25) to hold? The short answer is that this equa-
tion requires a property that we previously observed of the optimal solution to the
dual LP given in Equations (5.8)—(5.9): that the weak inequality in constraint (5.9)
will be realized as strict equality whenever the corresponding sequence is played
with positive probability. We were able to achieve this property in the dual LP by
minimizing vo; however, this does not work in the two-player general-sum case
where we have both} andv?. Instead, we use the complementary slackness idea
that we previously applied in the LCP for normal-form games (constraint (4.19)).

This linear complementarity program cannot be solved using the Lemke—Howson
algorithm, as we were able to do with our LCP for normal-form games. However,
it can be solved using the Lemke algorithm, a more general version of Lemke—
Howson. Neither algorithm is polynomial time in the worst case. However, it is
exponentially faster to run the Lemke algorithm on a game in sequence form than
it is to run the Lemke—Howson algorithm on the game’s induced normal form. We
omit the details of how to apply the Lemke algorithm to sequence-form games, but
refer the interested reader to the reference given at the end of the chapter.

Sequential equilibrium

We have already seen that the Nash equilibrium concept is &akvior perfect-
information games, and how the more selective notion of subgame-perfect equilib-
rium can be more instructive. The question is whether this essential idea can be
applied to the broader class of imperfect-information games; it turns out that it can,
although the details are considerably more involved.

Recall that in a subgame-perfect equilibrium we require that the strategy of each
agent be a best response in every subgame, not only overall. It is immediately
apparent that the definition does not apply in imperfect-information games, if for
no other reason than we no longer have a well-defined notion of a subgame. What
we have instead at each information set is a “subforest” or a collection of subgames.
We could require that each player’s strategy be a best response in each subgame in
each forest, but that would be both too strong a requirement and too weak. To see
why it is too strong, consider the game in Figure 5.15.

The pure strategies of player 1 afé,C, R} and of player 2{U, D}. Note
also that the two pure Nash equilibria g, U) and(R, D). But should either of
these be considered “subgame perfect?” On the face of it the answer is ambiguous,
since in one subtre€ (dramatically) dominate® and in the otheD dominated/.
However, consider the following argumemit.dominate<” for player 1, and player
2 knows this. So although player 2 does not have explicit information about which
of the two nodes he is in within his information set, he can deduce that he is in the
rightmost one based on player 1’s incentives, and hence wilDgd-urthermore
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(0,1000) (0,0) (1,0) (3,1)

Figure 5.15: Player 2 knows where in the information set he is.

player 1 knows that player 2 can deduce this, and therefore player 1 shoéd go
(rather thanl). Thus,(R, D) is the only subgame-perfect equilibrium.

This example shows how a requirement that a substrategy be a best response in
all subgames is too simplistic. However, in general it is not the case that subtrees of
an information set can be pruned as in the previous example so that all remaining
ones agree on the best strategy for the player. In this case the naive application of
the SPE intuition would rule out all strategies.

There have been several related proposals that apply the intuition underlying
subgame-perfection in more sophisticated ways. One of the more influential no-

sequential tions has been that sequential equilibriunSE). It shares some features with the

equilibrium notion of trembling-hand perfection, discussed in Section 3.4.6. Note that indeed
trembling-hand perfection, which was defined for normal-form games, applies here
just as well; just think of the normal form induced by the extensive-form game.
However, this notion makes no reference to the tree structure of the game. SE does,
but at the expense of additional complexity.

Sequential equilibrium is defined for games of perfect recall. As we have seen, in
such games we can restrict our attention to behavioral strategies. Consider for the
moment a fully mixed-strategy profifeSuch a strategy profile induces a positive
probability on every node in the game tree. This means in particular that every
information set is given a positive probability. Therefore, for a given fully mixed-
strategy profile, one can meaningfully speak’sfexpected utility, given that he
finds himself in any particular information set. (The expected utility of starting at
any node is well defined, and since each node is given positive probability, one
can apply Bayes' rule to aggregate the expected utilities of the different nodes in
the information set.) If the fully mixed-strategy profile constitutes an equilibrium,
it must be that each agent’s strategy maximizes his expected utility in each of his
information sets, holding the strategies of the other agents fixed.

All of the preceding discussion is for a fully mixed-strategy profile. The problem
is that equilibria are rarely fully mixed, and strategy profiles that are not fully

7. Again, recall that a strategy is fully mixed if, at every information set, each action is given some positive
probability.
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mixed donotinduce a positive probability on every information set. The expected
utility of starting in information sets whose probability is zero under the given
strategy profile is simply not well defined. This is where the ingenious device of
SE comes in. Given any strategy profi€not necessarily fully mixed), imagine
a probability distributiony.(h) over each information sefu has to beconsistent
with s, in the sense that for sets whose probability is nonzero uthe@ér parents’
conditional distributions, this distribution is precisely the one defined by Bayes’
rule. However, for other information sets, it can be any distribution. Intuitively, one
can think of these distributions as the new beliefs of the agents, if they are surprised
and find themselves in a situation they thought would not o€diitis means that
each agent’s expected utility is now well defined in any information set, including
those having measure zero. For information/sételonging to agent, with the
associated probability distribution(h), the expected utility under strategy profile
s is denoted by, (s | h, u(h)).

With this, the precise definition of SE is as follows.

Definition 5.2.10 (Sequential equilibrium) A strategy profiles is a sequential
equilibrium of an extensive-form gant@ if there exist probability distributions
u(h) for each information set in G, such that the following two conditions hold:

1. (s,p) = lim,, .o (s™, u™) for some sequendg!, u'), (s%, u?), ..., where

s™ is fully mixed, ang:™ is consistent witlk™ (in fact, sinces™ is fully mixed,
©™ is uniquely determined by™); and

2. For any information sek belonging to agent, and any alternative strategy/
of ¢, we have that

ui(s [ by p(h)) 2 wi((s', 5-3) | by p(h))-

Analogous to subgame-perfect equilibria in games of peifdormation, se-
quential equilibria are guaranteed to always exist.

Theorem 5.2.11Every finite game of perfect recall has a sequential equilibrium.
Finally, while sequential equilibria are defined for games of imperfect informa-

tion, they are obviously also well defined for the special case of games of perfect

information. This raises the question of what relationship holds between the two

solution concepts in games of perfect information.

Theorem 5.2.121n extensive-form games of perfect information, the sets of subgame-

perfect equilibria and sequential equilibria are always equivalent.

8. This construction is essentially that of an LPS, discussed in Chapter 13.
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History and references

As in Chapter 3, much of the material in this chapter is covered in modern game
theory textbooks. Some of the historical references are as follows. The earliest
game-theoretic publication is arguably that of Zermelo, who in 1913 introduced the
notions of a game tree and backward induction and argued that in principle chess
admits a trivial solution [Zermelo, 1913]. It was already mentioned in Chapter 3
that extensive-form games were discussed explicitly in von Neumann and Morgen-
stern [1944], as was backward induction. Subgame perfection was introduced by
Selten [1965], who received a Nobel Prize in 1994. The material on computing
all subgame-perfect equilibria is based on Littman et al. [2006]. The Centipede
game was introduced by Rosenthal [1981]; many other papers discuss the rational-
ity of backward induction in such games [Aumann, 1995; Binmore, 1996; Aumann,
1996].

In 1953 Kuhn introduced extensive-form games of imperfect information, in-
cluding the distinction and connection between mixed and behavioral strategies
[Kuhn, 1953]. The sequence form, and its application to computing the equilibria
of zero-sum games of imperfect information with perfect recall, is due to von Sten-
gel [1996]. Many of the same ideas were developed earlier by Koller and Megiddo
[1992]; see von Stengel [1996] pp. 242-243 for the distinctions. The use of the
sequence form for computing the equilibria of general-sum two-player games of
imperfect information is explained by Koller et al. [1996]. Sequential equilibria
were introduced by Kreps and Wilson [1982]. Here, as in normal-form games, the
full list of alternative solution concepts and connection among them is long, and
the interested reader is referred to Hillas and Kohlberg [2002] and Govindan and
Wilson [2005b] for a more extensive survey than is possible here.
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Richer Representations: Beyond the
Normal and Extensive Forms

In this chapter we will go beyond the normal and extensive forms by considering a
variety of richer game representations. These further representations are important
because the normal and extensive forms are not always suitable for modeling large
or realistic game-theoretic settings.

First, we may be interested in games that are not finite and that therefore cannot
be represented in normal or extensive form. For example, we may want to consider
what happens when a simple normal-form game such as the Prisoner’s Dilemma is
repeated infinitely. We might want to consider a game played by an uncountably
infinite set of agents. Or we may want to use an interval of the real numbers as
each player’s action space.

Second, both of the representations we have studied so far presume that agents
have perfect knowledge of everyone’s payoffs. This seems like a poor model of
many realistic situations, where, for example, agents might have private informa-
tion that affects their own payoffs and other agents might have only probabilistic
information about each others’ private information. An elaboration like this can
have a big impact, because one agent’s actions can depend on what he knows about
another agent’s payoffs.

Finally, as the numbers of players and actions in a game grow—even if they re-
main finite—games can quickly become far too large to reason about or even to
write down using the representations we have studied so far. Luckily, we are not
usually interested in studying arbitrary strategic situations. The sorts of noncooper-
ative settings that are most interesting in practice tend to involve highly structured
payoffs. This can occur because of constraints imposed by the fact that the play of
a game actually unfolds over time (e.g., because a large game actually corresponds
to finitely repeated play of a small game). It can also occur because of the nature
of the problem domain (e.g., while the world may involve many agents, the num-
ber of agents who are able to directly affect any given agent’s payoff is small). If
we understand the way in which agents’ payoffs are structured, we can represent
them much more compactly than we would be able to do using the normal or ex-

1. We will explore the first example in detail in this chapter. A thorough treatment of infinite sets of players
or action spaces is beyond the scope of this book; nevertheless, we will consider certain games with infinite
sets of players in Section 6.4.4 and with infinite action spaces in Chapters 10 and 11.
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C D C D
C —-1,-1 —4,0 C —-1,-1 —4,0
=
D 0,—4 -3,-3 D 0,—4 -3,-3

Figure 6.1: Twice-played Prisoner’s Dilemma.

tensive forms. Often, these compact representations also allow us to reason more
efficiently about the games they describe (e.g., the computation of Nash equilibria
can be provably faster, or pure-strategy Nash equilibria can be proved to always
exist).

In this chapter we will present various different representations that address these
limitations of the normal and extensive forms. In Section 6.1 we will begin by
considering the special case of extensive-form games that are constructed by re-
peatedly playing a normal-form game and then we will extend our consideration to
the case where the normal form is repeated infinitely. This will lead us to stochas-
tic games in Section 6.2, which are like repeated games but do not require that the
same normal-form game is played in each time step. In Section 6.3 we will consider
structure of a different kind: instead of considering time, we will consider games in-
volving uncertainty. Specifically, in Bayesian games agents face uncertainty—and
hold private information—about the game’s payoffs. Section 6.4 describes conges-
tion games, which model situations in which agents contend for scarce resources.
Finally, in Section 6.5 we will consider representations that are motivated primarily
by compactness and by their usefulness for permitting efficient computation (e.qg.,
of Nash equilibria). Such compact representations can extend any other existing
representation, such as normal-form games, extensive-form games, or Bayesian
games.

Repeated games

In repeated games, a given game (often thought of in normal form) is played mul-
tiple times by the same set of players. The game being repeated is calktddbe
game For example, Figure 6.1 depicts two players playing the Prisoner’s Dilemma
exactly twice in a row.

This representation of the repeated game, while intuitive, obscures some key
factors. Do agents see what the other agents played earlier? Do they remember
what they knew? And, while the utility of each stage game is specified, what is the
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utility of the entire repeated game?

We answer these questions in two steps. We first consider the case in which
the game is repeated a finite and commonly-known number of times. Then we
consider the case in which the game is repeated infinitely often, or a finite but
unknown number of times.

Finitely repeated games

One way to completely disambiguate the semantics of a finigglgated game is to
specify it as an imperfect-information game in extensive form. Figure 6.2 describes
the twice-played Prisoner’s Dilemma game in extensive form. Note that it captures
the assumption that at each iteration the players do not know what the other player
is playing, but afterward they do. Also note that the payoff function of each agent
is additive; that is, it is the sum of payoffs in the two-stage games.

(-5,—-1) (—4,-4) (-8,00 (-7,-3) (—4,—-4) (-3,-7) (-7,—-3) (—6,—6)

Figure 6.2: Twice-played Prisoner’s Dilemma in extensive form.

The extensive form also makes it clear that the strategy space of the repeated
game is much richer than the strategy space in the stage game. Certainly one strat-
egy in the repeated game is to adopt the same strategy in each stage game; clearly,
this memoryless strategy, calledstationary strategyis a behavioral strategy in
the extensive-form representation of the game. But in general, the action (or mix-
ture of actions) played at a stage game can depend on the history of play thus far.
Since this fact plays a particularly important role in infinitely repeated games, we
postpone further discussion of it to the next section. Indeed, in the finite, known
repetition case, we encounter again the phenomenon of backward induction, which
we first encountered when we introduced subgame-perfect equilibria. Recall that
in the Centipede game, discussed in Section 5.1.3, the unique SPE was to go down
and terminate the game at every node. Now consider a finitely repeated Prisoner’s
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Dilemma game. Again, it can be argued, in the last round it is a dominant strat-
egy to defect, no matter what happened so far. This is common knowledge, and
no choice of action in the preceding rounds will impact the play in the last round.
Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,
by induction, it can be argued that the only equilibrium in this case is to always
defect. However, as in the case of the Centipede game, this argument is vulnerable
to both empirical and theoretical criticisms.

Infinitely repeated games

When the infinitely repeated game is transformed into exterfsirm, the result

is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor
can they be defined as the sum of the payoffs in the stage games (which in general
will be infinite). There are two common ways of defining a player’s payoff in an
infinitely repeated game to get around this problem. The first is the average payoff
of the stage game in the linft.

Definition 6.1.1 (Average reward) Given an infinite sequence of paycﬂj‘?, rfz), .
for playeri, theaverage rewardf: is

k ()
lim 723‘:17"1' .

k—oo ]{,’

The future discounted rewartb a player at a certain point of the game is the
sum of his payoff in the immediate stage game, plus the sum of future rewards
discounted by a constant factor. This is a recursive definition, since the future
rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payolj‘%’, 7“52), .
for players, and a discount factof with0 < 3 < 1, thefuture discounted reward

ofiis 3250, pirt?.

The discount factor can be interpreted in two ways. First, it can be taken to
represent the fact that the agent cares more about his well-being in the near term
than in the long term. Alternatively, it can be assumed that the agent cares about
the future just as much as he cares about the present, but with some probability
the game will be stopped any given rourid:- 5 represents that probability. The
analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,
consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there
are many strategies other than stationary ones. One of the most fanioufois
Tat. TfT is the strategy in which the player starts by cooperating and thereafter

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One
can extend the definition to cover these cases by usinfiheup operator in Definition 6.1.1 rather than
lim.
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chooses in round + 1 the action chosen by the other player in royndBeside
being both simple and easy to compute, this strategy is notoriously hard to beat; it
was the winner in several repeated Prisoner’s Dilemma competitions for computer
programs.

Since the space of strategies is so large, a natural question is whether we can
characterize all the Nash equilibria of the repeated game. For example, if the dis-
count factor is large enough, both players playing TfT is a Nash equilibrium. But
there is an infinite number of others. For example, considetrihger strategy
This is a draconian version of TfT; in the trigger strategy, a player starts by coop-
erating, but if ever the other player defects then the first defects forever. Again, for
sufficiently large discount factor, the trigger strategy forms a Nash equilibrium not
only with itself but also with TfT.

The folk theorem—so-called because it was part of the common lore before it
was formally written down—helps us understand the space of all Nash equilibria
of an infinitely repeated game, by answering a related question. It does not char-
acterize the equilibrium strategy profiles, but rather the payoffs obtained in them.
Roughly speaking, it states that in an infinitely repeated game the set of average
rewards attainable in equilibrium are precisely those pairs attainable under mixed
strategies in a single-stage game, with the constraint on the mixed strategies that
each player’s payoff is at least the amount he would receive if the other players
adopted minmax strategies against him.

More formally, consider any:-player gameG = (N, A,u) and any payoff
profiler = (ry,rq,...,7,). Let

v; = min maxu;(S_;,S;).
¢ s_;E€ES_; s;€8; l( v l)

In words, v; is playeri’s minmax value: his utility when the other players play
minmax strategies against him, and he plays his best response.
Before giving the theorem, we provide some more definitions.

Definition 6.1.3 (Enforceable) A payoff profiler = (ry,rs,...,r,) is enforce-
ableif Vi S N, r; 2 (U

Definition 6.1.4 (Feasible)A payoff profiler = (ry,r,,...,r,) is feasibleif
there exist rational, nonnegative values such that for all¢, we can express; as

Y aea Cati(a), withy . a, = 1.

In other words, a payoff profile is feasible if it is a convex, rational combination
of the outcomes iid-.

Theorem 6.1.5 (Folk Theorem)Consider any n-player normal-form games
and any payoff profile: = (ry,7a,...,7,).

1. If r is the payoff profile for any Nash equilibriusrof the infinitely repeated”
with average rewards, then for each player; is enforceable.
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2. If r is both feasible and enforceable, thers the payoff profile for some Nash
equilibrium of the infinitely repeate@ with average rewards.

This proof is both instructive and intuitive. The first part uses the definition
of minmax and best response to show that an agent can never receive less than
his minmax value in any equilibrium. The second part shows how to construct an
equilibrium that yields each agent the average payoffs given in any feasible and
enforceable payoff profile. This equilibrium has the agents cycle in perfect lock-
step through a sequence of game outcomes that achieve the desired average payoffs.
If any agent deviates, the others punish him forever by playing their minmax strate-
gies against him.

Proof. Part 1: Supposer is not enforceable, that is; < wv; for somei.
Then consider an alternative strategyfoplaying BR(s_;(h)), wheres_;(h)

is the equilibrium strategy of other players given the curf@story & and
BR(s_;(h)) is a function that returns a best responseifar a given strategy
profile s_; in the (unrepeated) stage gae By definition of a minmax strat-
egy, player: receives a payoff of at least in every stage game if he plays
BR(s_;(h)), and soi’s average reward is also at least Thus, ifr; < v;
thens cannot be a Nash equilibrium.

Part 2: Sincer is a feasible enforceable payoff profile, we can write it
asr; = ZaeA(%)ui(G)’ wheref3, and  are nonnegative integers. (Recall
that o, were required to be rational. So we can takéo be their common
denominator.) Since the combination was convex, we have) ~ _ , (..

We are going to construct a strategy profile that will cycle through all out-
comesa € A of G with cycles of lengthy, each cycle repeating actian
exactly 3, times. Let(a') be such a sequence of outcomes. Let us define a
strategys; of playeri to be a trigger version of playin@:’): if nobody devi-
ates, thens; playsal in periodt. However, if there was a periad in which
some playey # i deviated, thes; will play (p_;);, where(p_;) is a solution
to the minimization problem in the definition of.

First observe that if everybody plays accordingsipthen, by construction,
playeri receives average payoff of (look at averages over periods of length
7). Second, this strategy profile is a Nash equilibrium. Suppmgerybody
plays according t@;, and player; deviates at some point. Then, forever after,
player j will receive hismin max payoffv;, < r;, rendering the deviation
unprofitable. [ |

The reader might wonder why this proof appealgtaninmax value rather than
his maxmin value. First, notice that the trigger strategies in Part 2 of the proof use
minmax strategies to punish ageénthis makes sense because even in cases where
i’'s minmax value is strictly greater than his maxmin vaiués minmax value is
the smallest amount that the other agents can guaranteeviiteceive. When

3. This can happen in games with more than two players, as discussed in Section 3.4.1.
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best responds to a minmax strategy played against himibye receives exactly
his minmax value; this is the deviation considered in Part 1.

Theorem 6.1.5 is actually an instance of a large family of folk theorems. As
stated, Theorem 6.1.5 is restricted to infinitely repeated games, to average reward,
to the Nash equilibrium, and to games of complete information. However, there
are folk theorems that hold for other versions of each of these conditions, as well
as other conditions not mentioned here. In particular, there are folk theorems for
infinitely repeated games with discounted reward (for a large enough discount fac-
tor), for finitely repeated games, for subgame-perfect equilibria (i.e., where agents
only administer finite punishments to deviators), and for games of incomplete in-
formation. We do not review them here, but the message of each of them is funda-
mentally the same: the payoffs in the equilibria of a repeated game are essentially
constrained only by enforceability and feasibility.

“Bounded rationality": repeated games played by autorata

Until now we have assumed that players can engage in arhjtdsep reasoning

and mutual modeling, regardless of their complexity. In particular, consider the
fact that we have tended to rely on equilibrium concepts as predictions of—or
prescriptions for—behavior. Even in the relatively uncontroversial case of two-
player zero-sum games, this is a questionable stance in practice; otherwise, for
example, there would be no point in chess competitions. While we will continue
to make this questionable assumption in much of the remainder of the book, we
pause here to revisit it. We ask what happens when agents are not perfectly rational
expected-utility maximizers. In particular, we ask what happens when we impose
specific computational limitations on them.

Consider (yet again) an instance of the Prisoner’s Dilemma, which is reproduced
in Figure 6.3. In the finitely repeated version of this game, we know that each
player's dominant strategy (and thus the only Nash equilibrium) is to choose the
strategyD in each iteration of the game. In reality, when people aciyaiy the
game, we typically observe a significant amount of cooperation, especially in the
earlier iterations of the game. While much of game theory is open to the criticism
that it does not match well with human behavior, this is a particularly stark example
of this divergence. What models might explain this fact?

C D

c | 3,3 0,4

D | 4,0 1,1

Figure 6.3: Prisoner’s Dilemma game.
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One early proposal in the literature is based on the notion efeguilibrium,
defined in Section 3.4.7. Recall that this is a strategy profile in which no agent can
gain more thare by changing his strategy; a Nash equilibrium is thus the speci
case of ad-equilibrium. This equilibrium concept is motivated by traea that
agents’ rationality may be bounded in the sense that they are willing to settle for
payoffs that are slightly below their best response payoffs. In the finitely repeated
Prisoner’s Dilemma game, as the number of repetitions increases, the correspond-
ing sets ofe-equilibria include outcomes with longer and longer seqesraf the
“cooperate” strategy.

Various other models of bounded rationality exist, but we will focus on what
has proved to be the richest source of results so far, namely, restricting agents’
strategies to those implemented by automata of the sort investigated in computer
science.

Finite-state automata

The motivation for using automata becomes apparent when we consider the repre-
sentation of a strategy in a repeated game. Recall that a finitely repeated game is
an imperfect-information extensive-form game, and that a strategy for plager

such a game is a specification of an action for every information set belonging to
that player. A strategy fok repetitions of ann-action game is thus a specifica-

tion of ’Zf_*ll different actions. However, a naive encoding of a strategy as a table
mapping each possible history to an action can be extremely inefficient. For exam-
ple, the strategy of choosing in every round can be represented using just the
single-stage strategy, and theTit-for-Tat strategy can be represented simply by
specifying that the player mimic what his opponent did in the previous round. One
representation that exploits this structure is timite-state automatqror Moore
machine The formal definition of a finite-state automaton in the context of a re-

peated game is as follows.

Definition 6.1.6 (Automaton) Given a game&z = (N, A, u) that will be played
repeatedly, an automataW; for playeri is a four-tuple(Q;, ¢°, ;, f;), where:

* (), is a set of states;
¢V is the start state;

* J; 1 Q; x A — Q;is atransition function mapping the current state and an
action profile to a new state; and

* fi : Q; — A, is a strategy function associating with every state an action for
players.

An automaton is used to represent each player’s repeated game strategy as fol-
lows. The machine begins in the start stafe and in the first round plays the
action given byf;(¢?). Using the transition function and the actions played by
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the other players in the first round, it then transitions automatically to the new
stated;(¢?, a4, . .. ,a,) before the beginning of round 2. It then plays the action
1i(6:(¢2,ai,...,a,))inround two, and so on. More generally, we can specify the
current strategy and state at roundsing the following recursive definitions.

a; = fi(q)
q;'H_l = 61(Qf7 awi’ s ,CL;)

Automaton representations of strategies are very intuitiken viewed graph-
ically. The following figures show compact automaton representations of some
common strategies for the repeated Prisoner’s Dilemma game. Each circle is a
state in the automaton and its label is the action to play at that state. The transi-
tions are represented as labeled arrows. From the current state, we transition along
the arrow labeled with the move the opponent played in the current game. The
unlabeled arrow enters the initial state.

The automaton represented by Figure 6.4 plays the conBtattategy, while
Figure 6.5 encodes the more interestifigfor-Tat strategy. It starts in th€' state,
and the transitions are constructed so that the automaton always mimics the oppo-
nent’s last action.

C,D

s

Figure 6.4: An automaton representing the repeBtef@ctaction.

=0

Figure 6.5: An automaton representing fhefor-Tat strategy.

We can now define a new class of games, caitedhine gamesn which each
player selects an automaton representing a repeated game strategy.

Definition 6.1.7 (Machine game)A two-player machine gan&" = ({1,2}, M, G)
of thek-period repeated gam@' is defined by:

* apair of players{1, 2};
* M = (M;, M;), whereM, is a set of available automata for playgrand
 anormal-form gamé& = ({1,2}, A, u).
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A pair M, € M, and M, € M, deterministically yield an outcome (M, M)
at each iterationt of the repeated game. ThuS™ induces a normal-form game
({1,2}, M, U), in which each playei chooses an automatah/; € M,, and

obtains utilityU; (My, My) = S5 w;(of (My, My)).

Note that we can easily replace theeriod repeated game with a discounted (or
limit of means) infinitely repeated game, with a corresponding charigg id; , M)
in the induced normal-form game.

In what follows, the functios : M — Z represents the number of states of an
automatonV/, and the functiorb(M;) = maxyse m, s(M) represents the size of
the largest automaton among a set of autonidta

Automata of bounded size

Intuitively, automata with fewer states repressimplerstrategies. Thus, one way
to bound the rationality of the player is by limiting the number of states in the
automaton.

Placing severe restrictions on the number of states not only induces an equilib-
rium in which cooperation always occurs, but also causes the always-defect equilib-
rium to disappear. This equilibrium in a finitely repeated Prisoner’s Dilemma game
depends on the assumption that each player cabadevard inductior(see Sec-
tion 5.1.4) to find his dominant strategy. In order to perform backward induction
in a k-period repeated game, each player needs to keep track afsak ldistinct
states: one state to represent the choice of strategy in each repetition of the game.
In the Prisoner’s Dilemma, it turns out thatdf < max(S(M,), S(M,)) < k,
then the constant-defect strategy does not yield a symmetric equilibrium, while the
Tit-for-Tat automaton does.

When the size of the automaton is not restricted to be lessithtne constant-
defect equilibrium does exist. However, there is still a large class of machine games
in which other equilibria exist in which some amount of cooperation occurs, as
shown in the following result.

Theorem 6.1.8 For any integerz, there exists an integef, such that for allk >

ko, any machine gam&* = ({1, 2}, M, G) of thek-period repeated Prisoner’s
Dilemma gamé, in whichk'/ < min{S(M,), S(M3)} < max{S(M,),S(M,)} <
k® holds has a Nash equilibrium in which the average payoffs to each player are
atleast3 — <.

Thus the average payoffs to each player can be much highe(thay in fact
they can be arbitrarily close t@®, 3), depending on the choice af While this
result uses pure strategies for both players, a stronger result can be proved through
the use of a mixed-strategy equilibrium.

Theorem 6.1.9 For everye > 0, there exists an integéf, such that for allk > kq,
any machine gam&* = ({1,2}, M, G) of the k-period repeated Prisoner’s
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Dilemma game in whichmin{S(M, ), S(M)} < 2755 has a Nash equilib-
rium in which the average payoffs to each player are at I8aste.

Thus, if even one of the players’ automata has a size that is less than exponential
in the length of the game, an equilibrium with some degree of cooperation exists.

Automata with a cost of complexity

Now, instead of imposing constraints on the complexity of the automata, we will
incorporate this complexity as a cost into the agent’s utility function. This could
reflect, for example, the implementation cost of a strategy or the cost to learn it.
While we cannot show theorems similar to those in the preceding section, it turns
out that we can get mileage out of this idea even when we incorporate it in a
minimal way. Specifically, an agent’s disutility for complexity will only play a
tie-breaking role.

Definition 6.1.10 (Lexicographic disutility for complexity) Agents havéexico-
graphic disutility for complexityn a machine game if their utility functioris; (-)
in the induced normal-form game are replaced by preference ordetingsich
that (M,, M,) =, (M, M}) whenever eithet/;(M,, M) > U;(M;, M)) or
Ui(Ml,MQ) = Ul(M{,Mé) andS(Mi) < S(Mll)

Consider a machine gan@" of the discounted infinitely repeated Prisoner’s
Dilemma in which both players have a lexicographic disutility for complexity.
The trigger strategy is an equilibrium strategy in the infinitely repeated Prisoner’s
Dilemma game with discounting. When the discount fagtds large enough, if
player 2 is using the trigger strategy, then player 1 cannot achieve a higher payoff
by using any strategy other than the trigger strategy himself. We can represent the
trigger strategy using the machidé shown in Figure 6.6. However, while no
other machine can give player 1 a higher payoff, there does exist another machine
that achieves theamepayoff and is less complex. Player 1's machienever
enters the statéd) during play; it is designed only as a threat to the other player
Thus the machine which contains only the statevill achieve the same payoff as
the machinel/, but with less complexity. As a result, the outcofdd, M) is not
aNash equilibrium of the machine gani"’ when agents have a lexicographic
disutility for complexity.

C D
(o)
Figure 6.6: An automaton representing the Trigger strategy.

We can also show several interesting properties of the equilibria of machine
games in which agents have a lexicographic disutility for complexity. First, be-
cause machines in equilibrium must minimize complexity, they have no unused
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states. Thus we know that in an infinite game, every state must be visited in some
period. Second, the strategies represented by the machines in a Nash equilibrium
of the machine game also form a Nash equilibrium of the infinitely repeated game.

Computing best-response automata

In the previous sections we limited the rationality of agents in repeated games by
bounding the number of states that they can use to represent their strategies. How-
ever, it could be the case that the number of states used by the equilibrium strategies
is small, but the time required to compute them is prohibitively large. Furthermore,
one can argue (by introspection, for example) that bounding the computation of an
agentis a more appropriate means of capturing bounded rationality than bounding
the number of states.

It seems reasonable that an equilibrium must be at least verifiable by agents. But
this does not appear to be the case for finite automata. (The results that follow are
for the limit-average case, but can be adapted to the discounted case as well.)

Theorem 6.1.11Given a two-player machine gani#g" = (N, M, G) of a limit
average infinitely repeated two-player gaie= (N, A, u) with unknownV, and
achoice of automatd/,, . .., M, for all players, there does not exist a polynomial
time algorithm for verifying whethek/; is a best-response automaton for player
1.

The news is not all bad; if we hol@/ fixed, then the problem does belong to
P. We can explain this informally by noting that playedoes not have to scan
al of his possible strategies in order to decide whether automafprs the best
response; since he knows the strategies of the other players, he merely needs to
scan the actual path taken on the game tree, which is bounded by the length of the
game tree.

Notice that the previous result held even when the other players were assumed
to play pure strategies. The following result shows that the verification problem is
hard even in the two-player case when the players can randomize over machines.

Theorem 6.1.12Given a two-player machine gan@¢” = ({1,2}, M, G) of a
limit-average infinitely repeated gande = ({1,2}, A, u), and a mixed strategy
for player2 in which the set of automata that are played with positive pholity is
finite, the problem of verifying that an automatbfi is a best-response automaton
for player1 is NP-complete.

So far we have abandoned the bounds on the number of states in the automata,
and one might wonder whether such bounds could improve the worst-case com-
plexity. However, for the repeated Prisoner’s Dilemma game, it has the opposite
effect: limiting the size of the automata under consideration increases the complex-
ity of computing a best response. By Theorem 6.1.11 we know that when the size
of the automata under consideration are unbounded and the number of agents is

Uncorrected manuscript dfultiagent System®ublished by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.



6.2

6.2 Stochastic games 159

two, the problem of computing the best response is in the class P. The following
result shows that when the automata under consideration are instead bounded, the
problem becomes NP-complete.

Theorem 6.1.13Given a machine gam&" = ({1,2}, M, G) of the limit av-
erage infinitely repeated Prisoner’s Dilemma gadean automatonV/,, and an
integerk, the problem of computing a best-response automat@rfor player1,
such thats(M;) < k, is NP-complete.

From finite automata to Turing machines

Turing machines are more powerful than finite-state automata due to their infinite
memories. One might expect that in this richer model, unlike with finite automata,
game-theoretic results will be preserved. But they are not. For example, there is
strong evidence (if not yet proof) that a Prisoner’s Dilemma game of two Turing
machines can have equilibria that are arbitrarily close to the repéatealyoff.

Thus cooperative play can be approximated in equilibrium even if the machines
memorize the entire history of the game and are capable of counting the number of
repetitions.

The problem of computing a best response yields another unintuitive result.
Even if we restrict the opponent to strategies for which the best-response Turing
machine is computable, the general problem of finding the best response for any
such input is not Turing computable when the discount factor is sufficiently close
to one.

Theorem 6.1.14For the discounted, infinitely-repeated Prisoner’'s Dilemma game
G, there exists a discount factgt > 0 such that for any rational discount fac-

tor 5 € (fB,1) there is no Turing-computable procedure for computing a best
response to a strategy drawn from the set of all computable strategies that admit a
computable best response.

Finally, even before worrying about computing a best response, there is a more
basic challenge: the best response to a Turing machine may not be a Turing ma-
chine!

Theorem 6.1.15For the discounted, infinitely-repeated Prisoner’s Dilemma game
G, there exists a discount factgr > 0 such that for any rational discount factor

B € (B,1) there exists an equilibrium profilgs;, s,) such thats, can be imple-
mented by a Turing machine, but no best response t@n be implemented by a
Turing machine.

Stochastic games

Intuitively speaking, a stochastic game is a collection of normal-form games; the
agents repeatedly play games from this collection, and the particular game played
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at any given iteration depends probabilistically on the previous game played and
on the actions taken by all agents in that game.

Definition

Stochastic games are very broad framework, generalizing Matrkov decision
processes (MDPs; see Appendix C) and repeated games. An MDP is simply a
stochastic game with only one player, while a repeated game is a stochastic game
in which there is only one stage game.

Definition 6.2.1 (Stochastic game)A stochastic gamélso known as aMarkov
gamg is a tuple(Q, N, A, P, r), where:

* (@ is afinite set of games;
« N is afinite set oh players;
« A=A, x---x A,,whereA, is a finite set of actions available to player

e P:Qx Ax Q@+ |0,1] is the transition probability functionP(q, a, §) is
the probability of transitioning from statgto stateg after action profilen; and

* R=ry,...,r,, Wherer; : Q x A — R is a real-valued payoff function for
players.

In this definition we have assumed that the strategy space of the agents is the
same in all games, and thus that the difference between the games is only in the
payoff function. Removing this assumption adds notation, but otherwise presents
no major difficulty or insights. Restrictin@ and eachA; to be finite is a sub-
stantive restriction, but we do so for a reason; the infinite case raises a number of
complications that we wish to avoid.

We have specified the payoff of a player at each stage game (or in each state),
but not how these payoffs are aggregated into an overall payoff. To solve this prob-
lem, we can use solutions already discussed earlier in connection with infinitely
repeated games (Section 6.1.2). Specifically, the two most commonly used aggre-
gation methods araverage rewarandfuture discounted reward

Strategies and equilibria

We now define the strategy space of an agenthket (¢°,a’, ¢*,a',... a1, ¢")
denote a history of stages of a stochastic game, andHete the set of all possible
histories of this length. The set of deterministic strategies is the Cartesian product
Hth A;, which requires a choice for each possible history at each point in time.
As in the previous game forms, an agent's strategy can consist of any mixture over
deterministic strategies. However, there are several restricted classes of strategies
that are of interest, and they form the following hierarchy. The first restriction is
the requirement that the mixing take place at each history independently; this is the
restriction to behavioral strategies seen in connection with extensive-form games.
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Definition 6.2.2 (Behavioral strategy) A behavioral strategy;(h, a;,) returns
the probability of playing actiom;, for historyh.

A Markov strategy further restricts a behavioral strategy so that, for a given time
t, the distribution over actions depends only on the currexést

Definition 6.2.3 (Markov strategy) A Markov strategy; is a behavioral strategy
inwhichs;(h;,a;,) = si(hy, a;,) if ¢, = q;, whereg, and ¢; are the final states of
h; and h;, respectively.

The final restriction is to remove the possible dependence on the time

Definition 6.2.4 (Stationary strategy) A stationary strategy; is a Markov strat-
egy in whichs;(hy,, a;;) = s;(hy,, ai,) if ¢, = q;,, whereg,, andq;, are the final

states ofh,, and h;,, respectively.

Now we can consider the equilibria of stochastic games, a topic that turns out
to be fraught with subtleties. The discounted-reward case is the less problematic
one. In this case it can be shown that a Nash equilibrium exists in every stochastic
game. In fact, we can state a stronger property. A strategy profile is called a
Markov perfect equilibriunif it consists of only Markov strategies, and is a Nash
equilibrium regardless of the starting state. In a sense, MPE plays a role analogous
to the subgame-perfect equilibrium in perfect-information games.

Theorem 6.2.5 Everyn-player, general-sum, discounted-reward stochastic game
has a Markov perfect equilibrium.

The case of average rewards presents greater challenges. For one thing, the
limit average may not exist (i.e., although the stage-game payoffs are bounded,
their average may cycle and not converge). However, there is a class of stochastic
games that is well behaved in this regard. This is the classeofuciblestochastic
games. A stochastic game is irreducible if every strategy profile gives rise to an
irreducible Markov chain over the set of games, meaning that every game can be
reached with positive probability regardless of the strategy adopted. In such games
the limit averages are well defined, and we have the following theorem.

Theorem 6.2.6 Every two-player, general-sum, average reward, irreducible stochas-
tic game has a Nash equilibrium.

Indeed, under the same condition we can state a folk theorem similar to that
presented for repeated games in Section 6.1.2. That is, as long as we give each
player an expected payoff that is at least as large as his minmax value, any feasible
payoff pair can be achieved in equilibrium through the use of threats.

Theorem 6.2.7 For every two-player, general-sum, irreducible stochastic game,
and every feasible outcome with a payoff veotahat provides to each player

at least his minmax value, there exists a Nash equilibrium with a payoff vector
This is true for games with average rewards, as well as games with large enough
discount factors (or, with players that are sufficiently patient).
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Computing equilibria

The algorithms and results for stochastic games dependygoeaivhether we use
discounted reward or average reward for the agent utility function. We will discuss
both separately, starting with the discounted reward case. The first question to ask
about the problem of finding a Nash equilibrium is whether a polynomial proce-
dure is available. The fact that there exists an linear programming formulation for
solving MDPs (for both the discounted reward and average reward cases) gives us
a reason for optimism, since stochastic games are a generalization of MDPs. While
such a formulation does not exist for the full class of stochastic games, it does for
several nontrivial subclasses.

One such subclass is the set of two-player, general-sum, discounted-reward stochas-
tic games in which the transitions are determined by a single player.sihigte-
controller condition is formally defined as follows.

Definition 6.2.8 (Single-controller stochastic gameA stochastic game &ngle-
controllerif there exists a playet such thatvq, ¢’ € Q,Va € A, P(q,a,q') =
P(q,d,q) if a; = a.

The same results hold when we replace the single-controller restriction with the
following pair of restrictions: that the state and action profile have independent
effects on the reward achieved by each agent, and that the transition function only
depends on the action profile. Formally, this pair is calledsiyearable reward
state independent transitiarondition.

Definition 6.2.9 (SR-SIT stochastic gameA stochastic game separable reward
state independent transiti¢8R-SIT) if the following two conditions hold:

« there exist functions, v such thatvi,q € Q,Va € A it is the case that
ri(g, a) = a(q) + v(a); and

* Vq,q¢,q" € Q,Va € Aitisthe case tha’(q,a,q") = P(¢,a,q").

Even when the problem does not fall into one of these subclasses, practical so-
lutions still exist for the discounted case. One such solution is to apply a modified
version of Newton’s method to a nonlinear program formulation of the problem.
An advantage of this method is that no local minima exist. For zero-sum games,
an alternative is to use an algorithm developed by Shapley that is related to value
iteration, a commonly-used method for solving MDPs (see Appendix C).

Moving on to the average reward case, we have to impose more restrictions in
order to use a linear program than we did for the discounted reward case. Specif-
ically, for the class of two-player, general-sum, average-reward stochastic games,
the single-controller assumption no longer suffices—we also need the game to be
zero sum.

Even when we cannot use a linear program, irreducibility allows us to use an
algorithm that is guaranteed to converge. This algorithm is a combination of policy
iteration (another method used for solving MDPs) and successive approximation.
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Bayesian games

All of the game forms discussed so far assumed that all players know what game
is being played. Specifically, the number of players, the actions available to each
player, and the payoff associated with each action vector have all been assumed to
be common knowledge among the players. Note that this is true even of imperfect-
information games; the actual moves of agents are not common knowledge, but the
game itself is. In contrasBayesian game®r games of incomplete information,
allow us to represent players’ uncertainties about the very game being flayed.
This uncertainty is represented as a probability distribution over a set of possible
games. We make two assumptions.

1. All possible games have the same number of agents and the same strategy space
for each agent; they differ only in their payoffs.

2. The beliefs of the different agents are posteriors, obtained by conditioning a
common prior on individual private signals.

The second assumption is substantive, and we return to it shortly. The first is
not particularly restrictive, although at first it might seem to be. One can imag-
ine many other potential types of uncertainty that players might have about the
game—how many players are involved, what actions are available to each player,
and perhaps other aspects of the situation. It might seem that we have severely
limited the discussion by ruling these out. However, it turns out that these other
types of uncertainty can be reduced to uncertainty only about payoffs via problem
reformulation.

For example, imagine that we want to model a situation in which one player is
uncertain about the number of actions available to the other players. We can reduce
this uncertainty to uncertainty about payoffs by padding the game with irrelevant
actions. For example, consider the following two-player game, in which the row
player does not know whether his opponent has only the two strategind R or
also the third one”":

L R L C R
U 1,1 1,3 U 1,1 0,2 1,3
D 0,5 1,13 D 0,5 2,8 1,13

Now consider replacing the leftmost, smaller game by a padded version, in
which we add a new’ column.

4. ltis easy to confuse the term “incomplete information” with “imperfect information”; don't. ..
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L C R

U 1,1 |o,—100]| 1,3

D 0,5 2,-100 1,13

Clearly the newly added column is dominated by the others and will not par-
ticipate in any Nash equilibrium (or any other reasonable solution concept). In-
deed, there is an isomorphism between Nash equilibria of the original game and
the padded one. Thus the uncertainty about the strategy space can be reduced to
uncertainty about payoffs.

Using similar tactics, it can be shown that it is also possible to reduce uncertainty
about other aspects of the game to uncertainty about payoffs only. This is not a
mathematical claim, since we have given no mathematical characterization of all
the possible forms of uncertainty, but it is the case that such reductions have been
shown for all the common forms of uncertainty.

The second assumption about Bayesian games isattmenon-prior assumption
addressed in more detail in our discussion of multiagent probabilities and KP-
structures in Chapter 13. As discussed there, a Bayesian game thus defines not
only the uncertainties of agents about the game being played, but also their beliefs
about the beliefs of other agents about the game being played, and indeed an entire
infinite hierarchy of nested beliefs (the so-called epistemic type space). As also
discussed in Chapter 13, the common-prior assumption is a substantive assump-
tion that limits the scope of applicability. We nonetheless make this assumption
since it allows us to formulate the main ideas in Bayesian games, and without the
assumption the subject matter becomes much more involved than is appropriate for
this text. Indeed, most (but not all) work in game theory makes this assumption.

Definition

There are several ways of presenting Bayesian games; weffgilltbree different
definitions. All three are equivalent, modulo some subtleties that lie outside the
scope of this book. We include all three since each formulation is useful in different
settings and offers different intuition about the underlying structure of this family
of games.

Information sets

First, we present a definition that is based on information sets. Under this definition,
a Bayesian game consists of a set of games that differ only in their payoffs, a
common prior defined over them, and a partition structure over the games for each
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agent®

Bayesian game  Definition 6.3.1 (Bayesian game: information setsA Bayesian gamés a tuple
(N, G, P, I) where:

* N is a set of agents;

» (G is a set of games withV agents each such thatdf ¢’ € G then for each
agenti € N the strategy space igis identical to the strategy space if;

» P € II(G) is a common prior over games, whdi¢G) is the set of all proba-
bility distributions overG; and

o I =(Iy,...,Iy)is atuple of partitions o€, one for each agent.
Figure 6.7 gives an example of a Bayesian game. It consists oRfauy games

(Matching Pennies, Prisoner’s Dilemma, Coordination and Battle of the Sexes),
and each agent’s partition consists of two equivalence classes.

Is1 Is o
MP PD
[ 20]02 2,2 (0,3
I | ¥ !
! 0,2 | 2,0 ;; 3,0 | 1,1 !
3 p=03 ¥ p=01 3
3 Coord H BoS ‘
122100 2.1 10,0
Lo | X :
| 0,0 | 1,1 i 0,0 | 1,2 |
p=02 p=04

Figure 6.7: A Bayesian game.

Extensive form with chance moves

A second way of capturing the common prior is to hypothesize a special agent
called Nature who makes probabilistic choices. While we could have Nature's

5. This combination of a common prior and a set of partitions over states of the world turns out to correspond
to a KP-structure, defined in Chapter 13.
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choice be interspersed arbitrarily with the agents’ moves, without loss of general-
ity we assume that Nature makes all its choices at the outset. Nature does not have
a utility function (or, alternatively, can be viewed as having a constant one), and
has the unique strategy of randomizing in a commonly known way. The agents
receive individual signals about Nature’s choice, and these are captured by their
information sets in a standard way. The agents have no additional information; in
particular, the information sets capture the fact that agents make their choices with-
out knowing the choices of others. Thus, we have reduced games of incomplete
information to games of imperfect information, albeit ones with chance moves.
These chance moves of Nature require minor adjustments of existing definitions,
replacing payoffs by their expectations given Nature’s méves.

For example, the Bayesian game of Figure 6.7 can be represented in extensive
form as depicted in Figure 6.8.

Nature

(2,0) (0,2) (0,2) (2,0) (2,2) (0,3) (3,0) (1,1) (2,2) (0,0) (0,0) (1,1) (2,1) (0,0) (0,0) (1,2)

Figure 6.8: The Bayesian game from Figure 6.7 in extensive form.

Although this second definition of Bayesian games can be initially more intu-
itive than our first definition, it can also be more cumbersome to work with. This
is because we use an extensive-form representation in a setting where players are
unable to observe each others’ moves. (Indeed, for the same reason we do not rou-
tinely use extensive-form games of imperfect information to model simultaneous
interactions such as the Prisoner’s Dilemma, though we could do so if we wished.)
For this reason, we will not make further use of this definition. We close by noting
one advantage that it does have, however: it extends very naturally to Bayesian
games in which players move sequentially and do (at least sometimes) learn about
previous players’ moves.

Epistemic types

Recall that a game may be defined by a set of players, actions, and utility functions.
In our first definition agents are uncertain about which game they are playing; how-

6. Note that the special structure of this extensive-form game means that we do not have to agonize over the
refinements of Nash equilibrium; since agents have no information about prior choices made other than by
Nature, all Nash equilibria are also sequential equilibria.
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ever, each possible game has the same sets of actions and players, and so agents
are really only uncertain about the game’s utility function.

Our third definition uses the notion of @pistemic typeor simply atype as a
way of defining uncertainty directly over a game’s utility function.

Definition 6.3.2 (Bayesian game: typesp Bayesian gamis a tuple(N, A, ©, p, u)
where:

* N is a set of agents;

« A=A, x--- x A,,whereA, is the set of actions available to player
* ©®=0,; x...x 0,,whereO; is the type space of playér

* p: O — [0, 1] isa common prior over types; and

o u=(uy,...,u,), whereu; : A x © — R is the utility function for playet.

The assumption is that all of the above is common knowledge among the play-
ers, and that each agent knows his own type. This definition can seem mysterious,
because the notion of type can be rather opaque. In general, the type of agent
encapsulates all the information possessed by the agent that is not common knowl-
edge. This is often quite simple (e.g., the agent’'s knowledge of his private payoff
function), but can also include his beliefs about other agents’ payoffs, about their
beliefs about his own payoff, and any other higher-order beliefs.

We can get further insight into the notion of a type by relating it to the for-
mulation at the beginning of this section. Consider again the Bayesian game in
Figure 6.7. For each of the agents we have two types, corresponding to his two
information sets. Denote player 1's actions as U and D, player 2's actions as L and
R. Call the types of the first ageéi ; and 6, », and those of the second agéht
and 0, ». The joint distribution on these types is as follows#, ;,6,:) = .3,
p(0171,92,2) = .1, p(91,2,0271) = .2, p(0172,92,2) = .4. The conditional prOb-
abilities for the first player ar@ (621 | 611) = 3/4, p(622 | 611) = 1/4,

p(021 | 012) = 1/3,andp(fs 5 | 612) = 2/3. Both players’ utility functions are
given in Figure 6.9.

Strategies and equilibria

Now that we have defined Bayesian games, we must explain hozason about
them. We will do this using the epistemic type definition given earlier, because
thatis the definition most commonly used in mechanism design (discussed in Chap-
ter 10), one of the main applications of Bayesian games. All of the concepts defined
below can also be expressed in terms of the first two Bayesian game definitions as
well.

The first task is to define an agent’s strategy space in a Bayesian game. Recall
that in an imperfect-information extensive-form game a pure strategy is a mapping
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a1 a2 O 02  ur  u2 a1 az O 0y w1l us
U L 6, 6. 2 0 D L 6, 6., 0 2
U L 611 620 2 2 D L 6, 62 3 0
U L 6o 621 2 2 D L 62 6. O O
U L 01,2 02,2 2 1 D L 9172 9272 0 0
U R 61 6. 0 2 D R 6, 6. 2 0
U R 61, 622 0 3 D R 611 620 1 1
U R 01,2 02,1 0 0 D R 9172 9271 1 1
U R 01,2 02,2 0 0 D R 9172 9272 1 2

Figure 6.9: Utility functionsas; and u, for the Bayesian game from Figure 6.7.

from information sets to actions. The definition is similar in Bayesian games: a
pure strategyy; : ©; — A; is amapping from every type agentould have to the
action he would play if he had that type. We can then define mixed strategies in the
natural way as probability distributions over pure strategies. As before, we denote
a mixed strategy fof ass; € 5;, whereS; is the set of all’s mixed strategies.
Furthermore, we use the notatien(a,|6;) to denote the probability under mixed
strategys; that ageny plays actiorz;, given thatj’s type is;.

Next, since we have defined an environment with multiple sources of uncer-
tainty, we will pause to reconsider the definition of an agent’s expected utility. In
a Bayesian game setting, there are three meaningful notions of expected eility:
post ex interimandex ante The first is computed based on all agents’ actual types,
the second considers the setting in which an agent knows his own type but not the
types of the other agents, and in the third case the agent does not know anybody’s

type.

Definition 6.3.3 (Ex posiexpected utility) Agenti’s ex postexpected utility in a
Bayesian gaméN, A, ©,p,u), where the agents’ strategies are given ognd
the agent’ types are given I8y is defined as

EUi(s,0) =) <H Sj(aj|9j)> u;(a, ). (6.1)

acA \JEN

In this case, the only uncertainty concerns the other agents’ mixed strategies,
since agent's ex postexpected utility is computed based on the other agents’ actual
types. Of course, in a Bayesian game no ageltknow the others’ types; while
that does not prevent us from offering the definition given, it might make the reader
guestion its usefulness. We will see that this notion of expected utility is useful both
for defining the other two and also for defining a specialized equilibrium concept.

Definition 6.3.4 (Ex interimexpected utility) Agenti’s ex interim expected util-
ity in a Bayesian gaméN, A, O, p, u), wherei’s type isf; and where the agents’
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strategies are given by the mixed-strategy profjles defined as

EU(s,0,) = > p(6-il6:)) (H 33‘(%"37‘)) ui(a,0;,0;), (6.2)

0_,€0_; a€A \jEN

or equivalently as

EUi(s,0;) = Z p(0-:10:) EU;i(s, (63,0-)). (6.3)

0_,e0_;

Thus, ¢ must consider every assignment of types to the other agentand
every pure action profile in order to evaluate his utility function;(a, 6;,6_;).
He must weight this utility value by two amounts: the probability that the other
players’ types would bé_; given that his own type i8;, and the probability that
the pure action profile would be realized given all players’ mixed strategies and
types. (Observe that agents’ types may be correlated.) Because uncertainty over
mixed strategies was already handled in #xepostcase, we can also writex
interimexpected utility as a weighted sum BT, (s, 6) terms.

Finally, there is theex antecase, where we compuitis expected utility under
the joint mixed strategy without observing any agents’ types.

ex anteexpected  Definition 6.3.5 (Ex anteexpected utility) Agenti’s ex anteexpected utility in
utility a Bayesian gaméN, A, ©, p, u), where the agents’ strategies are given by the
mixed-strategy profile, is defined as

EUi(s)=> p(6)>_ (H sj(ajl9j)> u;(a,0), (6.4)

0co a€A \JjEN

or equivalently as
EUi(s) = Y _ p(6)EUi(s,9), (6.5)
0co
or again equivalently as

EUi(s) = Z p(0:)EU;(s,6;). (6.6)

0,€0;

Next, we define best response.

Definition 6.3.6 (Best response in a Bayesian gamé@he set of agents best re-

best response in  sponseso mixed-strategy profile_; are given by
a Bayesian game
BR;(s_;) = argmax EU,(s, s_;). (6.7)

sL€S;
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Note thatBR; is a set because there may be many strategies tfoat yield
the same expected utility. It may seem odd tha® is calculated based ois
ex anteexpected utility. However, writd?U; (s) as) _, .o p(6;)EU;(s,0;) and
observe thatE'U; (s}, s_;, 6;) does not depend on strategies thatould play if
his type were not);. Thus, we are in fact performing independent maximization
of ¢'s ex interim expected utilities conditioned on each type that he could have.
Intuitively speaking, if a certain action is best after the signal is received, it is also
the best conditional plan devised ahead of time for what to do should that signal be
received.

We are now able to define the Bayes—Nash equilibrium.

Definition 6.3.7 (Bayes—Nash equilibrium) A Bayes—Nash equilibriuiis a mixed-
strategy profiles that satisfie/i s, € BR;(s_;).

This is exactly the definition we gave for the Nash equilibrium in Definition 3.3.4:
each agent plays a best response to the strategies of the other players. The differ-
ence from Nash equilibrium, of course, is that the definition of Bayes—Nash equilib-
rium is built on top of the Bayesian game definitions of best response and expected
utility. Observe that we would not be able to define equilibrium in this way if an
agent’s strategies were not defined for every possible type. In order for a given
agent; to play a best response to the other agentsi must know what strategy
each agent would play for each of his possible types. Without this information, it
would be impossible to evaluate the tefii/; (s, s_;) in Equation (6.7).

Computing equilibria

Despite its similarity to the Nash equilibrium, the Bayesshaquilibrium may

seem conceptually more complicated. However, as we did with extensive-form
games, we can construct a normal-form representation that corresponds to a given
Bayesian game.

As with games in extensive form, the induced normal form for Bayesian games
has an action for every pure strategy. That is, the actions for an agenthe dis-
tinct mappings fron®, to A;. Each agent's payoff given a pure-strategy profite
is hisex anteexpected utility undes. Then, as it turns out, the Bayes—Nash equi-
libria of a Bayesian game are precisely the Nash equilibria of its induced normal
form. This fact allows us to note that Nash’s theorem applies directly to Bayesian
games, and hence that Bayes—Nash equilibria always exist.

An example will help. Consider the Bayesian game from Figure 6.9. Note that in
this game each agent has four possible pure strategies (two types and two actions).
Then player 1's four strategies in the Bayesian game can be labéled D, DU,
and DD: UU means that 1 choosésregardless of his typé/ D that he chooses
U when he has typ#, ; and D when he has typé, », and so forth. Similarly, we
can denote the strategies of player 2 in the Bayesian gamdefyR L, LR, and
LL.
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We now define @ x 4 normal-form game in which these are the four strategies
of the two agents, and the payoffs are the expected payoffs in the individual games,
given the agents’ common prior beliefs. For example, playee®’anteexpected
utility under the strategy profil@/U, LL) is calculated as follows:

us(UU,LL) =Y p(0)us(U, L, 0)
G
:p(el,b92,1)”2(U>L791,1792,1) —I—p(9171, 92,2)”2(U>L>91,1792,2)+
P(91,2792,1)“2(U7L791,2792,1) —l—p(9172, 92,2)“2(U7L791,2792,2)
=0.3(0) + 0.1(2) + 0.2(2) + 0.4(1) = 1.
Continuing in this manner, the complete payoff matrix can bestructed as
shown in Figure 6.10.

LL LR RL RR

vu 2,1 1,0.7 1,1.2 0,0.9

UD |08,02]| 1,11 04,1 106,19

DU |15,14|05,11|17,04|0.7,01

DD |(03,06]05,15]11,02| 13,11

Figure 6.10: Induced normal form of the game from Figure 6.9.

Now the game may be analyzed straightforwardly. For example, we can deter-
mine that player 1's best responsefitd. is DU .

Given a particular signal, the agent can compute the posterior probabilities and
recompute the expected utility of any given strategy vector. Thus in the previous
example once the row agent gets the sighalhe can update the expected payoffs
and compute the new game shown in Figure 6.11.

Note that for the row playef)U is still a best response #8L; what has changed
is how much better it is compared to the other three strategies. In particular, the
row player's payoffs are now independent of his choice of which action to take
upon observing typé, »; in effect, conditional on observing tygh ; the player
needs only to select a single actibhor D. (Thus, we could have written thex
interiminduced normal form in Figure 6.11 as a table with four columns but only
two rows.)

Although we can use this matrix to find best responses for player 1, it turns out to
be meaningless to analyze the Nash equilibria in this payoff matrix. This is because
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LL LR RL RR
vu 2,05 15,0.75 0.5,2 0,2.25
UD 2,05 15,0.75 0.5,2 0,2.25
DU | 0.75,1.5|0.25,1.75| 2.25,0 | 1.75,0.25
DD | 075,15 | 0.25,1.75| 2.25,0 1.75,0.25

Figure 6.11:Ex interiminduced normal-form game, where player 1 observes type
91,1.

these expected payoffs are not common knowledge; if the column player were to
condition on his signal, he would arrive at a different set of numbers (though, again,
for him best responses would be preserved). Ironically, it is only in the induced
normal form, in which the payoffs do not correspond to arynterimassessment

of any agent, that the Nash equilibria are meaningful.

Other computational techniques exist for Bayesian games that also have tempo-
ral structure—that is, for Bayesian games written using the “extensive form with
chance moves” formulation, for which the game tree is smaller than its induced nor-
mal form. First, there is an algorithm for Bayesian games of perfect information
that generalizes backward induction (defined in Section 5.1.4), cateectimax
Intuitively, this algorithm is very much like the standard backward induction algo-
rithm given in Figure 5.6. Like that algorithm, expectimax recursively explores a
game tree, labeling each non-leaf nddeith a payoff vector by examining the la-
bels of each of’s child nodes—the actual payoffs when these child node<afe |
nodes—and keeping the payoff vector in which the agent who moveachieves
maximal utility. The new wrinkle is that chance nodes must also receive labels.
Expectimax labels a chance nobdevith a weighted sum of the labels of its child
nodes, where the weights are the probabilities that each child node will be selected.
The same idea of labeling chance nodes with the expected value of the next node’s
label can also be applied to extend the minimax algorithm (from which expectimax
gets its name) and alpha-beta pruning (see Figure 5.7) in order to solve zero-sum
games. This is a popular algorithmic framework for building computer players for
perfect-information games of chance such as Backgammon.

There are also efficient computational techniques for computing sample equi-
libria of imperfect-information extensive-form games with chance nodes. In par-
ticular, all the computational results for computing with the sequence form that
we discussed in Section 5.2.3 still hold when chance nodes are added. Intuitively,
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the only change we need to make is to replace our definition of the payoff function
(Definition 5.2.7) with an expected payoff that supplies the expected value, ranging
over Nature’s possible actions, of the payoff the agent would achieve by following

a given sequence. This means that we can sometimes achieve a substantial compu-
tational savings by working with the extensive-form representation of a Bayesian
game, rather than considering the game’s induced normal form.

Ex postequilibrium

Finally, working with ex postutilities allows us to define an equilibrium concept
that is stronger than the Bayes—Nash equilibrium.

Definition 6.3.8 (Ex postequilibrium) Anex postequilibrium is a mixed-strategy
profile s that satisfie&/0, Vi, s; € argmax,, .4 EU;(s;,5_;,0).

Observe that this definition does not presume that each agent actaatynow
the others’ types; instead, it says that no agent would ever want to deviate from his
mixed strategyeven if he knew the complete type vecttr This form of equilib-
rium is appealing because it is unaffected by perturbations in the type distribution
p(0). Said another way, aex postequilibrium does not ever require any agent to
believe that the others have accurate beliefs about his own type distribution. (Note
that a standard Bayes—Nash equilibrizamimply this requirement.) Thex post
equilibrium is thus similar in flavor to equilibria in dominant strategies, which do
not require agents to believe that other agents act rationally.
Indeed, many dominant strategy equilibria are &s@ostequilibria, making it
easy to believe that this relationship always holds. In fact, it does not, as the follow-
ing example shows. Consider a two-player Bayesian game where each agent has
two actions and two corresponding types(y¥, 4, = ©; = {H, L}) distributed
uniformly (V;en, P(0; = H) = 0.5), and with the same utility function for each
agent::
10 a; = 9_1' = 0“
ui(a,0) =< 2 a;=0_;#0;
0 otherwise.

In this game, each agent has a dominant strategy of choosing the action that cor-
responds to his type,; = ;. An equilibrium in these dominant strategies is not

ex postecause if either agent knew the other’s type, he would prefer to deviate to
playing the strategy that corresponds to the other agent's é¢ype,f_;.

Unfortunately, another sense in whielx postequilibria are in fact similar to
equilibria in dominant strategies is that neither kind of equilibrium is guaranteed
to exist.

Finally, we note that the termeX postequilibrium” has been used in several
different ways in the literature. One alternate usage requires that each agent’s
strategy constitute a best response not only to every podyindof the others,
but also to everpure strategy profilehat can be realized given the others’ mixed
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strategies. (Indeed, this solution concept has also been applied in settings where
there is no uncertainty about agents’ types.) A third usage even more stringently

requires that no agent ever play a mixed strategy. Both of these definitions can

be useful, e.g., in the context of mechanism design (see Chapter 10). However,
the advantage of Definition 6.3.8 is that of the three, it describes the most general

prior-free equilibrium concept for Bayesian games.

Congestion games

Congestion games are a restricted class of games that are useful for modeling some
important real-world settings and that also have attractive theoretical properties.
Intuitively, they simplify the representation of a game by imposing constraints on
the effects that a single agent’s action can have on other agents’ utilities.

Definition

Intuitively, in a congestion game each player chooses soingesdirom a set of
resources, and the cost of each resource depends on the number of other agents
who select it. Formally, a congestion game is single-shptayer game, defined

as follows.

Definition 6.4.1 (Congestion game)A congestion gamé a tuple (N, R, A, ¢),
where

* N is a set ofn agents;
* Ris a set ofr resources

¢« A=A x---x A, whered; C 25\ {0} is the set ofactionsfor agents;
and

e ¢c=(cy,...,¢.), Wherec, : N — R is acost functiorfor resourcek € R.

The players’ utility functions are defined in terms of the cost functipn®efine
# : R x A — NN as a function that counts the number of players who took any
action that involves resoureeunder action profile. For each resourde define a
cost functionc;, : IN — R. Now we are ready to state the utility functibryhich
is the same for all players. Given a pure-strategy prafite (a;,a_;),

u;(a) = — Z ¢ (#(r, a)).
reR|rea;

Observe that while the agents can have different actiontasaito them, they all
have the same utility function. Furthermore, observe that congestion games have
an anonymityproperty: players care abobhbw mayothers use a given resource,

7. This utility function is negated because the cost functions are historically understood as penalties that the
agents want to minimize. We note that #hefunctions are also permitted to be negative.
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but they do not care abowuthichothers do so.

One motivating example for this formulation is a computer network in which
several users want to send a message from one node to another at approximately
the same time. Each link connecting two nodes is a resource, and an action for a
user is to select a path of links connecting their source and target node. The cost
function for each resource expresses the latency on each link as a function of its
congestion.

As the name suggests, a congestion game typically features functiohshat
are increasing in the number of people who choose that resource, as would be the
case in the network example. However, congestion games can just as easily handle
positive externalities (or even cost functions that oscillate). A popular formulation
that captures both types of externalities is 8anta Fe (or, El Farol) Bar problem
in which each of a set of people independently selects whether or not to go to the
bar. The utility of attending increases with the number of other people who select
the same night, up to the capacity of the bar. Beyond this point, utility decreases
because the bar gets too crowded. Deciding not to attend yields a baseline utility
that does not depend on the actions of the participants.

Computing equilibria

Congestion games are interesting for reasons beyond théhttcthey can com-
pactly represent realistie-player games like the examples given earlier. One par-
ticular example is the following result.

Theorem 6.4.2 Every congestion game has a pure-strategy Nash equilibrium.

We defer the proof for the moment, though we note that the property is important
because mixed-strategy equilibria are open to criticisms that they are less likely
than pure-strategy equilibria to arise in practice. Furthermore, this theorem tells
us that if we want to compute a sample Nash equilibrium of a congestion game,
we can look for a pure-strategy equilibrium. Consider ttygopic best-response
process, described in Figure 6.12.

By the definition of equilibrium, MOPICBESTRESPONSEreturns a pure-strategy
Nash equilibrium if it terminates. Because this procedure is so simple, it is an ap-
pealing way to search for an equilibrium. However, in general gamesivcBE-
STRESPONSECan get caught in a cycle, even when a pure-strategy Nash equilib-
rium exists. For example, consider the game in Figure 6.13.

This game has one pure-strategy Nash equilibriidh, R). However, if we run
MYoPICBESTRESPONSEWIth a = (L, U) the procedure will cycle forever. (Do
you see why?) This suggests thavbPICBESTRESPONSEMay be too simplistic
to be useful in practice. Interestinglyjstuseful for congestion games.

8. Incidentally, this problem is typically studied in a repeated game context, in which (possibly boundedly
rational) agents must learn to play an equilibrium. It is famous partly for not having a symmetric pure-
strategy equilibrium, and has been generalized with the concepinafrity gamesin which agents get the
highest payoff for choosing a minority action.
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function MyoprPICBESTRESPONSE(game(, action profilea) returns a
while there exists an ageritfor whoma; is not a best response t0 ; do
a; < some best response byo a_;
L a — (agv afi)
return a

Figure 6.12: Myopic best response algorithm. It is invokexdtstg with an arbi-
trary (e.g., random) action profite

L C R

Ul -1,1 | 1,-1 | -2,-2

M| 1,-1 | -1,1 | -2,-2

D | -2-2|-2,-2| 272

Figure 6.13: A game on which ¥orPICBESTRESPONSECan fail to terminate.

Theorem 6.4.3The MYOPICBESTRESPONSEprocedure is guaranteed to find a
pure-strategy Nash equilibrium of a congestion game.

Potential games

To prove the two theorems from the previous section, it isuldefintroduce the
concept of potential gamés.

Definition 6.4.4 (Potential game)A gameG = (N, A, u) is a potential gamef
there exists a functio? : A — IR such that, foralli € N, alla_;, € A_; and
a;,a, € Aj, ui(a;,a_;) —ui(al,a_;) = Pla;,a_;) — P(a),a_;).

It is easy to prove the following property.

Theorem 6.4.5Every (finite) potential game has a pure-strategy Nash equilibrium.

9. The potential games we discuss here are more formally knovexaxg potential gameghough it is

correct to shorten their name to the tepoiential gamesThere are other variants with somewhat different
properties, such aseighted potential gameand ordinal potential gamesThese variants differ in the ex-
pression that appears in Definition 6.4.4; for example, ordinal potential games generalize potential games
with the conditionu; (a;, a—;) — u;(aj,a_;) > 0iff P(a;,a_;) — P(aj,a_;) > 0. More can be learned

about these distinctions by consulting the reference given in the chapter notes; most importantly, potential
games of all these variants are still guaranteed to have pure-strategy Nash equilibria.
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Proof. Let a* = argmax,., P(a). Clearly for any other action profile’,
P(a*) > P(d’). Thus by the definition of a potential function, for any agent
i who can change the action profile frarhto a’ by changing his own action,
u;(a*) > wu;(a’). [ ]

LetI,,, be an indicator function that returrisif » € a; for a given actionu,,
and 0 otherwise. We also overload the notatigrto give the expressio#(r,a_;)
its obvious meaning. Now we can show the following result.

Theorem 6.4.6 Every congestion game is a potential game.

Proof. We demonstrate that every congestion game has the potential function
Pla) =3, cx Zf:(’{’“) ¢,(4). To accomplish this, we must show that for any
agenti and any action profileg;, a_;) and(a}, a_;), the difference between

the potential function evaluated at these action profiles is the saffsedifer-

ence in utility.

P(a;,a_;) — P(al,a_;)

i #(r.(ai,a-1)) #(r,(aj,a-1))
=D N cr(j)] D> el
lreR  j=1 reR  j=1
i #(r.(a—1))
= Z (( Z CT(])) +]IT€aicr(j + 1)) -
LreR j=1
#(r,(a-:))
[Z (( > cr(j)> + Leajer (5 + 1))
reR j=1
= ZHT‘GaiCT(#(T7 afi) + 1) - [Z Hrea;cr(#(na*i) + 1)
LreR reR
= Y a#r(a,a)| = | D el#n(a,a0)
_rER|7‘6a¢ reR|real
= u;(a;,a;) — ui(a;, a_;) u

Now that we have this result, the proof to Theorem 6.4.2 (stating that every
congestion game has a pure-strategy Nash equilibrium) follows directly from The-
orems 6.4.5 and 6.4.6. Furthermore, though we do not state this result formally, it
turns out that the mapping given in Theorem 6.4.6 also holds in the other direction:
every potential game can be represented as a congestion game.

Potential games (along with their equivalence to congestion games) also make
it easy to prove Theorem 6.4.3 (stating thatd&PICBESTRESPONSEWIll always
find a pure-strategy Nash equilibrium), which we had previously deferred.
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Proof of Theorem 6.4.3.By Theorem 6.4.6 it is sufficient to show thatyMm
oPICBESTRESPONSEfinds a pure-strategy Nash equilibrium of any potential
game. With every step of the while loop)(a) strictly increases, because by
constructionu; (a;,a_;) > u;(a;,a—;), and thus by the definition of a poten-
tial function P(a},a_;) > P(a;,a_;). Since there are only a finite number of
action profiles, the algorithm must terminate. [ |

Thus, when given a congestion gamer&ICBESTRESPONSEWIll converge
regardless of the cost functions (e.g., they do not need to be monotonic), the action
profile with which the algorithm is initialized, and which agent we choose as agent
1 in the while loop (when there is more than one agent who is raptipd a best
response). Furthermore, we can see from the proof that it is not even necessary
that agentdest respondat every step. The algorithm will still converge to a pure-
strategy Nash equilibrium by the same argument as long as agents deviate to a
betterresponse. On the other hand, it has recently been shown that the problem
of finding a pure Nash equilibrium in a congestion game is PLS-complete: as hard
to find as any other object whose existence is guaranteed by a potential function
argument. Intuitively, this means that our problem is as hard as finding a local
minimum in a traveling salesman problem using local search. This cautions us to
expect that MopPICBESTRESPONSEWIll be inefficient in the worst case.

Nonatomic congestion games

A nonatomic congestion game is a congestion game that isglayan uncount-

ably infinite number of players. These games are used to model congestion scenar-
ios in which the number of agents is very large, and each agent’s effect on the level
of congestion is very small. For example, consider modeling traffic congestion in

a freeway system.

Definition 6.4.7 (Nonatomic congestion gamef nonatomic congestion gane
atuple(N, u, R, A, p,c), where:

« N ={1,...,n} is a set oftypesof players;

o = (u1,...,u,); foreachi € N there is a continuum of players represented
by the intervall0, y];

* Ris a set ofk resources

¢« A=A x---x A,, whered; C 2%\ {0} is the set ofactionsfor agents of
typet;

* p=(p1,...,pn), Where for each € N, p; : A; x R — R, denotes the
amount of congestion contributed to a given resouree R by players of type
i selecting a given actioa; € A;; and
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e c=(cy,...,c), wheree, : Ry — R is acost functiorfor resourcer € R,
andc, is nonnegative, continuous and nondecreasing.

To simplify notation, assume that,, ..., A,, are disjoint; denote their union
asA. LetS = R, M. An action distributions € S indicates how many play-
ers choose each action; I3ya;), denote the element afthat corresponds to the
measure of the set of players of typaho select actiom; € A;. An action dis-
tribution s must have the properties that all entries are nonnegatiVeoeabers
andthaty ., s(a;) = ;. Note thatp;(a;,r) = 0 whenr ¢ a,;. Overloading
notation, we write as,. the amount of congestion induced on resource R by

action distributions:
5, = Z Z pia;,r)s(a;).

i€EN a;€EA;

We can now express the utility function. As in (atomic) corigesgames, all
agents have the same utility function, and the function depends only on how many
agents choose each action rather than on these agents’ identities, Bye de-
note the cost, under an action distributigrio agents of typeé who choose action

a,;. Then
cals) = 3 plasr)en(s,),

rea;

and so we have;(a;, s) = —c,,(s). Finally, we can define thsocial costof an
action profile as the total cost born by all the agents,

C(s) =Y > s(ai)ea,(s).

i€EN a; €EA;

Despite the fact that we have an uncountably infinite numbagehts, we can
still define a Nash equilibrium in the usual way.

Definition 6.4.8 (Pure-strategy Nash equilibrium of a nonatomic congestion game)
An action distributions arises in a pure-strategy equilibrium of a nonatomic con-
gestion game if for each player typec N and each pair of actiong,, a, € A;

with s(ay) > 0, u;(ay, s) > u;(asz, s) (@and hence,, (s) < cq4,(8)).

A couple of warnings are in order. First, the attentive reader will have noticed
that we have glossed over the difference between actions and strategies. This is
to simplify notation, and because we will only be concerned with pure-strategy
equilibria. We do note that results exist concerning mixed-strategy equilibria of
nonatomic congestion games; see the references cited at the end of the chapter.
Second, we say only that an action distributasises inan equilibrium because an
action distribution does not identify the action taken by every individual agent, and
hence cannotonstitutean equilibrium. Nevertheless, from this point on we will
ignore these issues.

We can now state some properties of nonatomic congestion games.
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Theorem 6.4.9 Every nonatomic congestion game has a pure-strategy Nash equi-
librium.

Furthermore, limiting ourselves by considering only pure-strategy equilibria is
in some sense not restrictive.

Theorem 6.4.10All equilibria of a nonatomic congestion game have equal social
cost.

Intuitively, because the players are nonatomic, any mixed-strategy equilibrium
corresponds to an “equivalent” pure-strategy equilibrium where the number of
agents playing a given action is the expected number under the original equilib-
rium.

Selfish routing and the price of anarchy

Selfish routings a model of how self-interested agents would route traffic through

a congested network. This model was studied as early as 1920—Ilong before game
theory developed as a field. Today, we can understand these problems as nonatomic
congestion games.

Defining selfish routing

First, let us formally define the problem. L& = (V, E) be a directed graph
havingn source-sink pair§si, t1), ..., (sn,t,). Some volume of traffic must be
routed from each source to each sink. For a given source—sinkspatr) let P;
denote the set of simple paths fromto ¢;,. We assume tha® # () for all 7; it is
permitted for there to be multiple “parallel” edges between the same pair of nodes
in V, and for paths fronP; and P; (j # 1) to share edges. Let € R’} denote a
vector oftraffic rates u; denotes the amount of traffic that must be routed frgm
to t;. Finally, every edge € F is associated with a cost functiep : R, — R
(think of it an amount of delay) that can depend on the amount of traffic carried by
the edge. The problem in selfish routing is to determine how the given traffic rates
will lead traffic to flow along each edge, assuming that agents are selfish and will
direct their traffic to minimize the sum of their own costs.

Selfish routing problems can be encoded as nonatomic congestion games as fol-
lows:

e N is the set of source—sink pairs;
» uis the set of traffic rates;

e Risthe set of edgeF;

» A, isthe set of path®; froms; to ¢;;
* p;isalwaysl; and

* ¢, isthe edge cost function.
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The price of anarchy

From the above reduction to nonatomic congestion games and from Theorems 6.4.9
and 6.4.10 we can conclude that every selfish routing problem has at least one pure-
strategy Nash equilibriurtf, and that all of a selfish routing problem’s equilibria
have equal social cost. These properties allow us to ask an interesting question:
how similar is the optimal social cost to the social cost under an equilibrium action
distribution?

Definition 6.4.11 (Price of anarchy) Theprice of anarchyf a nonatomic conges-
tion game(N, u, R, A, p, ¢) having equilibriums and social cost minimizing ac-
tion distributions* is defined a% unlessC(s*) = 0, in which case the price
of anarchy is defined to be

Intuitively, the price of anarchy is the proportion of additional social cost that
is incurred because of agents’ self-interested behavior. When this ratio is close
to 1 for a selfish routing problem, one can conclude that the agents are routing
traffic about as well as possible, given the traffic rates and network structure. When
this ratio is large, however, the agents’ selfish behavior is causing significantly
suboptimal network performance. In this latter case one might want to seek ways
of changing either the network or the agents’ behavior in order to reduce the social
cost.

To gain a better understanding of the price of anarchy, and to lay the groundwork
for some theoretical results, consider the examples in Figure 6.14.

c(z)=1 c(z)=1
c(z)=z c(z)=aP

Figure 6.14: Pigou’s example: a selfish routing problem with an interesting price
of anarchy. Left: linear version; right: nonlinear version.

In this example there is only one type of agent£nl) and the rate of traffic is
1(u, = 1). There are two paths fromto ¢, one of which is relatively slow but
immune to congestion, and the other of which has congestion-dependent cost.
Consider first the linear version of the problem given in Figure 6.14 (left). It
is not hard to see that the Nash equilibrium is for all agents to choose the lower
edge—indeed, this is a Nash equilibrium in dominant strategies. The social cost
of this Nash equilibrium isl. Consider what would happen if we required half
of the agents to choose the upper edge, and the other half of the agents to choose
the lower edge. In this case the social cost woul® & because half the agents
would continue to pay a cost df while half the agents would now pay a cost of

10. In the selfish routing literature these equilibria are known as Wardrop equilibria, after the author who
first proposed their use. For consistency we avoid that term here.
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only 1/2. Itis easy to show that this is the smallest social cost thabesachieved
in this example, meaning that the price of anarchy hedg 3s

Now consider the nonlinear problem given in Figure 6.14 (right), wheig
some large value. Again in the Nash equilibrium all agents will choose the lower
edge, and again the social cost of this equilibriunt.isSocial cost is minimized
when the marginal costs of the two edges are equalized; this occurs wipeh a
1)~1/? fraction of the agents choose the lower edge. In this case the social cost is
1—p-(p+1)~®+D/? which approaches 0 as— oco. Thus we can see that the
price of anarchy tends to infinity in the nonlinear version of Pigou’s exampte as
grows.

Bounding the price of anarchy

These examples illustrate that the price of anarchy is unbounded for unrestricted
cost functions. On the other hand, it turns out to be possible to offer bounds in the
case where cost functions are restricted to a particuldt.géirst, we must define

the so-called Pigou bound:

r-c(r)

a(C) = sup su .
© celc)m,ugo x-c(x)+ (r—a)e(r)
Whena(C) evaluates tcg, we define it to be 1. We can now state a surprisingly
strong result.

Theorem 6.4.12The price of anarchy of a selfish routing problem whose cost func-
tions are taken from the sétis never more than(C).

Observe that Theorem 6.4.12 makes a very broad statement, bounding a self-
ish routing problem’s price of anarchy regardless of network structure and for any
given family of cost functions. Becauseappears difficult to evaluate, one might
find it hard to get excited about this result. Howevercan be evaluated for a
variety of interesting sets of cost functions. For example, whénthe set of lin-
ear functionsax + b with a,b > 0, a(C) = 4/3. Indeed,«(C) takes the same
value wherC is the set of all convex functions. This means that the bouoh fr
Theorem 6.4.12 is tight for this set of functions: Pigou’s linear example from Fig-
ure 6.14 (left) uses only convex cost functions and we have already shown that this
problem has a price of anarchy of precisél{8. The linear version of Pigou’s
example thus serves as a worst case for the price of anarchy among all selfish rout-
ing problems with convex cost functions. Because the price of anarchy is relatively
close to 1 for networks with convex edge costs, this result indicates that centralized
control of traffic offers limited benefit in this case.

What about other families of cost functions, such as polynomials with nonneg-
ative coefficients and bounded degree? It turns out that the Pigou bound is also
tight for this family and that the nonlinear variant of Pigou’s example offers the
worst-possible price of anarchy in this case (wheie the bound on the polyno-
mials’ degree). For this family(C) = [1 —p- (p + 1)~ ®+1/?]=1, To give some
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examples, this means that the price of anarchy is abdufor p = 2, about2.2
for p = 4, aboutl8 for p = 100 and—as it was earlie—unbounded@as- co.

Results also exist bounding the price of anarchy for general nonatomic conges-
tion games. It is beyond the scope of this section to state these results formally,
but we note that they are qualitatively similar to the results given above. More
information can be found in the references cited in the chapter notes.

Reducing the social cost of selfish routing

When the equilibrium social cost is undesirably high, a network operator might
want to intervene in some way in order to reduce it. First, we give an example to
show that such interventions are possible, knowBragss’ paradox

Figure 6.15: Braess’ paradox: removing an edge that has zero cost can improve
social welfare. Left: original network; Right: after edge removal.

Consider first the example in Figure 6.15 (Left). This selfish routing problem
is essentially a more complicated version of the linear version of Pigou’s example
from Figure 6.14 (left). Agaim = 1 andu; = 1. Agents have a weakly dominant
strategy of choosing the pathv-w-t, and so in equilibrium all traffic will flow
along this path. The social cost in equilibrium is therefore 1. Minimal social cost
is achieved by having half of the agents choose the pattt and having the other
half of the agents choose the pathu-t; the social cost in this case 3g4. Like
the linear version of Pigou’s example, therefore, the price of anarchyBis

The interesting thing about this new example is the role played by thewedge
w. One might intuitively believe that zero-cost edges can dwdip in routing
problems, because they provide agents with a costless way of routing traffic from
one node to another. At worst, one might reason, such edges would be ignored.
However, this intuition is wrong. Consider the network in Figure 6.15 (right). This
network was constructed from the network in Figure 6.15 (left) by removing the
zero-cost edge-w. In this modified problem agents no longer have a dominant
strategy; the equilibrium is for half of them to choose each path. This is also the
optimal action distribution, and hence the price of anarchy in this casé/ie can
now see the (apparent) paradox: removing even a zero-cost edge can transform a
selfish routing problem from the very worst (a network having the highest price of
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anarchy possible given its family of cost functions) to the very best (a network in
which selfish agents will choose to route themselves optimally).

A network operator facing a high price of anarchy might therefore want to re-
move one or more edges in order to improve the network’s social cost in equilib-
rium. Unfortunately, however, the problem of determining which edges to remove
is computationally hard.

Theorem 6.4.131t is NP-complete to determine whether there exists any set of
edges whose removal from a selfish routing problem would reduce the social cost
in equilibrium.

In particular, this result implies that identifying the optimal set of edges to re-
move from a selfish routing problem in order to minimize the social cost in equi-
librium is also NP-complete.

Of course, it is always possible to reduce a network’s social cost in equilibrium
by reducing all of the edge costs. (This could be done in an electronic network, for
example, by installing faster routers.) Interestingly, even in the case where the edge
functions are unconstrained and the price of anarchy is therefore unbounded, a rela-
tively modest reduction in edge costs can outperform the imposition of centralized
control in the original network.

Theorem 6.4.14Let I" be a selfish routing problem, and IEt be identical toI’
except that each edge cast(x) is replaced by, (x) = c.(x/2)/2. The social
cost in equilibrium ofl” is less than or equal to theptimalsocial cost inl".

This result suggests that when it is relatively inexpensive to speed up a network,
doing so can have more significant benefits than getting agents to change their
behavior.

Finally, we will briefly mention two other methods of reducing social cost in
equilibrium. First, in so-calle&tackelberg routing small fraction of agents are
routed centrally, and the remaining population of agents is free to choose their own
actions. It should already be apparent from the example in Figure 6.14 (right) that
such an approach can be very effective in certain networks. Second, taxes can be
imposed on certain edges in the graph in order to encourage agents to adopt more
socially beneficial behavior. The dominant idea here is to charge agents according
to “marginal cost pricing"—each agent pays the amount his presence cost other
agents who are using the same edfgender certain assumptions taxes can be set
up in away that induces optimal action distributions; however, the taxes themselves
can be very large. Various papers in the literature elaborate on and refine both of
these ideas.

11. Here we anticipate the idea wfechanism designntroduced in Chapter 10, and especially the VCG
mechanism from Section 10.4.
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Computationally motivated compact representations

So far we have examined game representations that are motivated primarily by the
goals of capturing relevant details of real-world domains and of showing that all
games expressible in the representation share useful theoretical properties. Many
of these representations—especially the normal and extensive forms—suffer from
the problem that their encodings of interesting games are so large as to be impracti-
cal. For example, when you describe to someone the rules of poker, you do not give
them a normal or extensive-form description; such a description would fill volumes
and be almost unintelligible. Instead, you describe the rules of the game in a very
compact form, which is possible because of the inherent structure of the game. In
this section we explore some computationally motivated alternative representations
that allow certain large games to be compactly described and also make it possible
to efficiently find an equilibrium. The first two representations, graphical games
and action-graph games, apply to normal-form games, while the following two,
multiagent influence diagrams and the GALA language, apply to extensive-form
games.

The expected utility problem

We begin by defining a problem that is fundamental to the d&onsf computa-
tionally motivated compact representations.

Definition 6.5.1 (EXPECTEDUTILITY ) Given a game (possibly represented in a
compact form), a mixed-strategy profdéeand: € N, the EXPECTEDUTILITY
problem s to comput&U;(s), the expected utility of playémunder mixed-strategy
profile s.

Our chief interest in this section will be in the computational complexity of the
EXPECTEDUTILITY problem for different game representations. When we consid-
ered normal-form games, we showed (in Definition 3.2.7) tha&tECTEDUTILITY
can be computed as

n

EU;(s) = Z u;(a) H sj(a;). (6.8)
acA j=1

If we interpret Equation (6.8) as a simple algorithm, we have a way of solving
EXPECTEDUTILITY in time exponential in the number of agents. This algorithm is
exponential because, assuming for simplicity that all agents have the same number
of actions, the size ofd is |4;|". However, since the representation size of a
normal-form game is itself exponential in the number of agents (@(s4;|")),
the problem can in fact be solved in time linear in the size of the representation.
Thus EXPECTEDUTILITY does not appear to be very computationally difficult.

Interestingly though, as game representations become exponentially more com-
pact than the normal form, it grows more challenging to solve thReeeTEDU-

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book at t p: / / ww. masf oundat i ons. or g.


http://www.masfoundations.org

polynomial type

186 6 Richer Representations: Beyond the Normal and Extensive Forms

TiILITY problem efficiently. This is because our simple algorithm given by Equa-
tion (6.8) requires time exponential in the size of such more compact representa-
tions. The trick with compact representations, therefore, will not be simply finding
some way of representing payoffs compactly—indeed, there are any number of
schemes from the compression literature that could achieve this goal. Rather, we
will want the additional property that the compactness of the representation can be
leveraged by an efficient algorithm for computing®=CTEDUTILITY .

The first challenge is to ensure that the inputs t®®ECTEDUTILITY can be
specified compactly.

Definition 6.5.2 (Polynomial type) A game representation hamolynomial type
if the number of agents and the sizes of the action sét4;| are polynomially
bounded in the size of the representation.

Representations always have polynomial type when their action sets are specified
explicitly. However, some representations—such as the extensive form—implicitly
specify action spaces that are exponential in the size of the representation and so
do not have polynomial type.

When we combine the polynomial type requirement with a further requirement
about XPECTEDUTILITY being efficiently computable, we obtain the following
theorem.

Theorem 6.5.3If a game representation satisfies the following properties:
1. the representation has polynomial type; and

2. EXPECTEDUTILITY can be computed using an arithmetic binary circuit con-
sisting of a polynomial number of nodes, where each node evaluates to a con-
stant value or performs addition, subtraction or multiplication on its inputs;

then the problem of finding a Nash equilibrium in this representation can be re-
duced to the problem of finding a Nash equilibrium in a two-player normal-form
game that is only polynomially larger.

We know from Theorem 4.2.1 in Section 4.2 that the problem of finding a Nash
equilibrium in a two-player normal-form game is PPAD-complete. Therefore this
theorem implies that if the above condition holds, the problem of finding a Nash
equilibrium for a compact game representation is in PPAD. This should be under-
stood as a positive result: if a game in its compact representation is exponentially
smaller than its induced normal form, and if computing an equilibrium for this rep-
resentation belongs to the same complexity class as computing an equilibrium of
a normal-form game, then equilibria can be computed exponentially more quickly
using the compact representation.

Observe that the second condition in Theorem 6.5.3 implies thatxhe &=
DUTILITY algorithm takes polynomial time; however, not every polynomial-time
algorithm will satisfy this condition. Congestion games are an example of games
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that do meet the conditions of Theorem 6.5.3. We will see two more such represen-
tations in the next sections.

What about extensive-form games, which do not have polynomial type—might
it be harder to compute their Nash equilibria? Luckily we can use behavioral strate-
gies, which can be represented linearly in the size of the game tree. Then we obtain
the following result.

Theorem 6.5.4 The problem of computing a Nash equilibrium in behavioral strate-
gies in an extensive-form game can be polynomially reduced to finding a Nash
equilibrium in a two-player normal-form game.

This shows that the speedups we achieved by using the sequence form in Sec-
tion 5.2.3 were not achieved simply because of inefficiency in our algorithms for
normal-form games. Instead, there is a fundamental computational benefit to work-
ing with extensive-form games, at least when we restrict ourselves to behavioral
strategies.

Fast algorithms for solving PECTEDUTILITY are useful for more than just
demonstrating the worst-case complexity of finding a Nash equilibrium for a game
representation. XPECTEDUTILITY is also a bottleneck step in several practical
algorithms for computing Nash equilibria, such as the Govindan—-Wilson algorithm
or simplicial subdivision methods (see Section 4.3). Plugging a fast method for
solving EXPECTEDUTILITY into one of these algorithms offers a simple way of
more quickly computing a Nash equilibrium of a compactly represented game.

The complexity of the EPECTEDUTILITY problem is also relevant to the com-
putation of solution concepts other than the Nash equilibrium.

Theorem 6.5.51f a game representation has polynomial type and has a polyno-
mial algorithm for computindEXPECTEDUTILITY , then a correlated equilibrium
can be computed in polynomial time.

The attentive reader may recall that we have already showed (in Section 4.6)
that correlated equilibria can be identified in polynomial time by solving a linear
program (Equations (4.52)—(4.54)). Thus, Theorem 6.5.5 may not seem very inter-
esting. The catch, as with expected utility, is that while this LP has size polynomial
in size of the normal form, its size would be exponential in the size of many com-
pact representations. Specifically, there is one variable in the linear program for
each action profile, and so overall the linear program has size exponential in any
representation for which the simplexBECTEDUTILITY algorithm discussed ear-
lieris inadequate. Indeed, in these cases espresenting correlated equilibrium
using these probabilities of action profiles would be exponential. Theorem 6.5.5 is
thus a much deeper result than it may first seem. Its proof begins by showing that
there exists a correlated equilibrium of every compactly represented game that can
be written as the mixture of a polynomial numbempobduct distributionswhere
a product distribution is a joint probability distribution over action profiles aris-
ing from each player independently randomizing over his actions (i.e., adopting a
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mixed-strategy profile). Since the theorem requires that the game representation
has polynomial type, each of these product distributions can be compactly repre-
sented. Thus a polynomial mixture of product distributions can also be represented
polynomially. The rest of the proof appeals to linear programming duality and to
properties of the ellipsoid algorithm.

Graphical games

Graphical gamesare a compact representation of normal-form games that use
graphical models to capture thayoff independencgtructure of the game. In-
tuitively, a player’s payoff matrix can be written compactly if his payoff is affected
only by a subset of the other players.

Let us begin with an example, which we call the Road game. Considgents,
each of whom has purchased a piece of land alongside a road. Each agent has to
decide what to build on his land. His payoff depends on what he builds himself,
what is built on the land to either side of his own, and what is built across the road.
Intuitively, the payoff relationships in this situation can be understood using the
graph shown in Figure 6.16, where each node represents an agent.

----- S

Figure 6.16: Graphical game representation of the Road game.

Now let us define the representation formally. First, we define a neighborhood
relation on a graph: the set of nodes connected to a given node, plus the node itself.

Definition 6.5.6 (Neighborhood relation) For a graph defined on a set of nodes
N and edged?, for everyi € N define theneighborhood relatiow : N — 2V

asv(i) = {i} U{jl(j.7) € E}.
Now we can define the graphical game representation.
Definition 6.5.7 (Graphical game) A graphical gamés a tuple(N, E, A, u), where:
« N is a set ofn vertices, representing agents;
» Fis a set of undirected edges connecting the nddes
« A=A, x---x A,,whereA, is the set of actions available to agenand

ou=(ug,...,up) u;: A9 +— R, whereA® =[] A;.

JeV(3)
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An edge between two vertices in the graph can be interpreted as meaning that the
two agents are able to affect each other’s payoffs. In other words, whenever two
nodes andj arenot connected in the graph, ageémust always receive the same
payoff under any action profile@:;, a_;) and(a’;,a_;), a;,a’; € A;. Graphical
games can represent any game, but of course they are not always compact. The
space complexity of the representation is exponential in the size of the lafggst
In the example above the size of the largeét) is 4, and this is independent
of the total number of agents. As a result, the graphical game representation of
the example requires space polynomiahinwhile a normal-form representation
would require space exponentialin

The following is sufficient to show that the properties we discussed above in
Section 6.5.1 hold for graphical games.

Lemma 6.5.8 The EXPECTEDUTILITY problem can be computed in polynomial
time for graphical games, and such an algorithm can be translated to an arithmetic
circuit as required by Theorem 6.5.3.

The way that graphical games capture payoff independence in games is similar
to the way that Bayesian networks and Markov random fields capture conditional
independence in multivariate probability distributions. It should therefore be unsur-
prising that many computations on graphical games can be performed efficiently us-
ing algorithms similar to those proposed in the graphical models literature. For ex-
ample, when the graphV, F) defines a tree, a message-passing algorithm called
NAsSHPRoOP can compute ag-Nash equilibrium in time polynomial ih/e and the
size of the representation. ASHPROP consists of two phases: a “downstream”
pass in which messages are passed from the leaves to the root and then an “up-
stream” pass in which messages are passed from the root to the leaves. When the
graph is a path, a similar algorithm can find an exact equilibrium in polynomial
time.

We may also be interested in finding pure-strategy Nash equilibria. Determining
whether a pure-strategy equilibrium exists in a graphical game is NP-complete.
However, the problem can be formulated as a constraint satisfaction problem (or
alternatively as a Markov random field) and solved using standard algorithms. In
particular, when the graph has constaaewidth'? the problem can be solved in
polynomial time.

Graphical games have also been useful as a theoretical tool. For example, they
are instrumental in the proof of Theorem 4.2.1, which showed that finding a sample
Nash equilibrium of a normal-form game is PPAD-complete. Intuitively, graphical
games are important to this proof because such games can be constructed to simu-
late arithmetic circuits in their equilibria.

12. A graph’streewidthis a measure of how similar the graph is to a tree. It is defined usingreébe
decompositiorof the graph. Many NP-complete problems on graphs can be solved efficiently when a graph
has small treewidth.
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Action-graph games

Consider a scenario similar to the Road game given in Sect®g,6ut with one

major difference: instead of deciding what to build, here agents need to decide
whereto build. Suppose each of theagents is interested in opening a business
(say a coffee shop), and can choose to locate in any block along either side of a
road. Multiple agents can choose the same block. Agepiayoff depends on the
number of agents who chose the same block as he did, as well as the numbers of
agents who chose each of the adjacent blocks of land. This game has an obvious
graphical structure, which is illustrated in Figure 6.17. Here nodes correspond to
actions, and each edge indicates that an agent who takes one action affects the
payoffs of other agents who take some second action.

Figure 6.17: Modified Road game.

Notice that any pair of agents can potentially affect each other’'s payoffs by
choosing the same or adjacent locations. This means that the graphical game repre-
sentation of this game is a clique, and the space complexity of this representation
is the same as that of the normal form (exponentiakjn The problem is that
graphical games are only compact for games wgittict payoff independencies
that is, where there exist pairs of players who can never (directly) affect each other.
This game exhibitsontext-specific independeniostead: whether two agents are
able to affect each other’s payoffs depends on the actions they choose. The action-
graph game (AGG) representation exploits this kind of context-specific indepen-
dence. Intuitively, this representation is built around the graph structure shown in
Figure 6.17. Since this graph has actions rather than agents serving as the nodes, it
is referred to as an action graph.

Definition 6.5.9 (Action graph) An action graphs a tuple(A, E), whereA is a
set of nodes corresponding to actions afids a set of directed edges.

We want to allow for settings where agents have different actions available to
them, and hence where an agent’s action set is not identighl (Bor example, no
two agents could be able to take the “same” action, or every agent could have the
same action set as in Figure 6.17.) We thus define as usual a set of action profiles
A=A x---xA,,andthenletd = | J,_y A;. If two actions by different agents
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have the same name, they will collapse to the same eleme#i otherwise they
will correspond to two different elements &f.

Given an action graph and a set of agents, we can further defiaefegyuration
which is a possible arrangement of agents over nodes in an action graph.

Definition 6.5.10 (Configuration) Given an action graplj.4, ) and a set of ac-
tion profilesA, a configurationc is a tuple of|.4| nonnegative integers, where the
k™ elementc,, is interpreted as the number of agents who chosekthection
o € A, and where there exists somec A that would give rise te. Denote the
set of all configurations a§’.

Observe that multiple action profiles might give rise to the same configuration,
because configurations simply count the number of agents who took each action
without worrying about which agent took which action. For example, in the Road
game all action profiles in which exactly half of the agents take adtiband ex-
actly half the agents take actidBS give rise to the same configuration. Intuitively,
configurations will allow AGGs to compactly represamonymitystructure: cases
where an agent’s payoffs depend on the aggregate behavior of other agents, but not
on which particular agents take which actions. Recall that we saw such structure
in congestion games (Section 6.4).

Intuitively, we will use the edges of the action graph to denote context-specific
independence relations in the game. Just as we did with graphical games, we will
define a utility function that depends on the actions taken in some local neighbor-
hood. As it was for graphical games, the neighborhoadll be defined by the
edgesE; indeed, we will use exactly the same definition (DefinitioB.6). In
action graph games the idea will be that the payoff of a player playing an action
a € A only depends on the configuration over the neighbora.6t We must
therefore define notation for such a configuration over a neighborhood. et
denote the set of all restrictions of configurations to the elements corresponding to
the neighborhood of € A. (That s, eacle € C@ is a tuple of lengthv(a)|.)
Thenu,, the utility for anyagent who takes actiam € A, is a mapping fronC(®)
to the real numbers.

Summing up, we can state the formal definition of action-graph games as fol-
lows.

Definition 6.5.11 Anaction-graph game (AGG3 a tuple(V, A, (A, E), u), where
« N is the set of agents;
« A=A, x---x A,,whereA, is the set of actions available to agent

. (/é, E) is an action graph, whergl = |, A; is the set of distinct actions;
an

13. We use the notation rather tharu to denote an element of in order to emphasize that we speak about
a single action rather than an action profile.
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o u={us|la € A}, u, : O — R.

Since each utility function is a mapping only from the possible configurations
over the neighborhood of a given action, the utility function can be represented
concisely. In the Road game, since each node has at most four incoming edges, we
only need to stor€®(n*) numbers for each node, ai¥{|.4|n*) numbers for the
entire game. In general, when the in-degree of the action graph is bounded by a
constant, the space complexity of the AGG representation is polynomial in

Like graphical games, AGGs are fully expressive. Arbitrary normal-form games
can be represented as AGGs with nonoverlapping action sets. Graphical games can
be encoded in the same way, but with a sparser edge structure. Indeed, the AGG
encoding of a graphical game is just as compact as the original graphical game.

Although it is somewhat involved to show why this is true, AGGs have the theo-
retical properties we have come to expect from a compact representation.

Theorem 6.5.12Given an AGGEXPECTEDUTILITY can be computed in time
polynomial in the size of the AGG representation by an algorithm represented as
an arithmetic circuit as required by Theorem 6.5.3. In particular, if the in-degree
of the action graph is bounded by a constant, the time complexity is polynomial in
n.

The AGG representation can be extended to includetion nodeswhich are
special nodes in the action graph that do not correspond to actions. For each func-
tion nodep, c, is defined as a deterministic function of the configuration of its
neighbors/(p). Function nodes can be used to represent a utility functiates-
mediate parameters, allowing the compact representation of games with additional
forms of independence structure. Computationally, when a game with function
nodes has the property that each player affects the configuratimependently,
EXPECTEDUTILITY can still be computed in polynomial time. AGGs can also be
extended to exploit additivity in players’ utility functions. Given both of these ex-
tensions, AGGs are able to compactly represent a broad array of realistic games,
including congestion games.

Multiagent influence diagrams

Multiagent influence diagran{81AIDs) are a generalization afifluence diagrams

(IDs), a compact representation for decision-theoretic reasoning in the single-agent
case. Intuitively, MAIDs can be seen as a combination of graphical games and
extensive-form games with chance moves (see Section 6.3). Not all variables
(moves by nature) and action nodes depend on all other variables and action nodes,
and only the dependencies need to be represented and reasoned about.

We will give a brief overview of MAIDs using the following example. Alice is
considering building a patio behind her house, and the patio would be more valu-
able to her if she could get a clear view of the ocean. Unfortunately, there is a tree
in her neighbor Bob’s yard that blocks her view. Being somewhat unscrupulous,
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Alice considers poisoning Bob's tree, which might cause it to become sick. Bob
cannot tell whether Alice has poisoned his tree, but he can tell if the tree is getting
sick, and he has the option of calling in a tree doctor (at some cost). The attention
of a tree doctor reduces the chance that the tree will die during the coming win-
ter. Meanwhile, Alice must make a decision about building her patio before the
weather gets too cold. When she makes this decision, she knows whether a tree
doctor has come, but she cannot observe the health of the tree directly. A MAID
for this scenario is shown in Figure 6.18.

TreeDoctor -

‘
Tems e A

Figure 6.18: A multiagent influence diagram. Nodes for Alice are in dark gray,
while Bob’s are in light gray.

Chance variables are represented as ovals, decision variables as rectangles, and
utility variables as diamonds. Each variable has a set of parents, which may be
chance variables or decision variables. Each chance node is characterized by a
conditional probability distribution, which defines a distribution over the variable’s
domain for each possible instantiation of its parents. Similarly, each utility node
records the conditional value for the corresponding agent. If multiple utility nodes
exist for the same agent, as they do for in this example for Bob, the total utility is
simply the sum of the values from each node. Decision variables differ in that their
parents (connected by dotted arrows) are the variables that an agent observes when
making his decision. This allows us to represent the information sets in a compact
way.

For each decision node, the corresponding agent constructs a decision rule, which
is a distribution over the domain of the decision variable for each possible instan-
tiation of this node’s parents. A strategy for an agent consists of a decision rule
for each of his decision nodes. Since a decision node acts as a chance node once
its decision rule is set, we can calculate the expected utility of an agent given a
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strategy profile. As you would expect, a strategy profile is a Nash equilibrium in a
MAID if no agent can improve its expected utility by switching to a different set
of decision rules.

This example shows several of the advantages of the MAID representation over
the equivalent extensive-form game representation. Since there are a total of five
chance and decision nodes and all variables are binary, the game tree would have
32 leaves, each with a value for both agents. In the MAID, however, we only need
four values for each agent to fill tables for the utility nodes. Similarly, redundant
chance nodes of the game tree are replaced by small conditional probability tables.
In general, the space savings of MAIDs can be exponential (although it is possible
that this relationship is reversed if the game tree is sufficiently asymmetric).

The most important advantage of MAIDs is that they allow more efficient algo-
rithms for computing equilibria, as we will informally show for the example. The
efficiency of the algorithm comes from exploiting the propertysthtegic rele-
vancein a way that is related to backward induction in perfect-information games.
A decision nodeD, is strategically relevant to another decision nddgif, to
optimize the rule aD,, the agent needs to consider the rulelat We omit a
formal definition of strategic relevance, but point out that it can be computed in
polynomial time.

No decision nodes are strategically relevarBtoldPatiofor Alice, because she
observes both of the decision nodes (Poison@ragTreeDocto) that could affect
her utility before she has to make this decision. Thus, when finding an equilibrium,
we can optimize this decision rule independently of the others and effectively con-
vert it into a chance node. Next, we observe tRaisonTrees not strategically
relevant toTreeDoctor because any influence tHadisonTreéhas on a utility node
for Bob must go througfireeSickwhich is a parent ofreeDoctor After optimiz-
ing this decision node, we can obviously optimBasonTredy itself, yielding an
equilibrium strategy profile.

Obviously not all games allow such a convenient decomposition. However, as
long as there exists some subset of the decision nodes such that no node outside
of this subset is relevant to any node in the subset, then we can achieve some com-
putational savings by jointly optimizing the decision rules for this subset before
tackling the rest of the problem. Using this general idea, an equilibrium can often
be found exponentially more quickly than in standard extensive-form games.

An efficient algorithm also exists for computingkBECTEDUTILITY for MAIDs.

Theorem 6.5.13The EXPECTEDUTILITY problem for MAIDs can be computed
in time polynomial in the size of the MAID representation.

Unfortunately the only known algorithm for efficiently solvingkEECTEDU-
TILITY in MAIDS uses division and so cannot be directly translated to an arith-
metic circuit as required in Theorem 6.5.3, which does not allow division opera-
tions. It is unknown whether the problem of finding a Nash equilibrium in a MAID
can be reduced to finding a Nash equilibrium in a two-player game. Nevertheless
many other applications for computing<EECTEDUTILITY we discussed in Sec-
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tion 6.5.1 apply to MAIDs. For example, thexBECTEDUTILITY algorithm can
be used as a subroutine to Govindan and Wilson’s algorithm for computing Nash
equilibria in extensive-form games (see Section 4.3).

GALA

While MAIDs allow us to capture exactly the relevant inforinatneeded to make

a decision at each point in the game, we still need to explicitly record each choice
point of the game. When, instead of modeling real-world setting, we are modeling

a board or card game, this task would be rather cumbersome, if notimpossible. The
key property of these games that is not being exploited is their repetitive nature—
the game alternates between the opponents whose possible moves are independent
of the depth of the game tree, and can instead be defined in terms of the current
state of the game and an unchanging set of rules. The Prolog-based laGf\la%e
exploits this fact to allow concise specifications of large, complex games.

We present the main ideas of the language using the code in Figure 6.19 for an
imperfect-information variant of Tic-Tac-Toe. Each player can mark a square with
either an “x” or an “0,” but the opponent sees only the position of the mark, not its
type. A player wins if his move creates a line of the same type of mark.

gane(blind_tic_tac_toe, (1)
[ players : [a,b], (2)
objects : [grid_board : array(‘$size, ‘$size’ )], (3)
parans : [size], (4)
flow: (take_turns(mark,unless(full),until(wn))), (5)
mark :  (choose(* $player’, (X Y, Mark), (6)
(enpty(X, Y), menber(Mark, [x,0]))), (7

reveal (* $opponent’, (X, V)), (8)

place((X, Y), Mark)), (9)

full : (\+(enmpty(_,_)) — outcone(draw)), (10)
win: (straight_line(_, ,length = 3, (11)

contai ns(Mark)) — outconme(w ns(‘ $player’)))]). (12)

Figure 6.19: A GALA description of Blind Tic-Tac-Toe.

Lines 3 and 5 define the central components of the representation—the object
gri d_boar d that records all marks, and the flow of the game, which is defined
as two players alternating moves until either the board is full or one of the them
wins the game. Lines 6—12 then provide the definitions of the terms used in line
5. Three of the functions found in these lines are particularly important because of
their relation to the corresponding extensive-form gaateose (line 8) defines
the available actions at each nodeyeal (line 6) determines the information sets
of the players, andut corre (lines 10 and 12) defines the payoffs at the leaves.

Reading through the code in Figure 6.19, one finds not only primitives like
arr ay, but also several high-level modules, liker ai ght _I i ne, that are not
defined. The GALA language contains many such predicates, built up from primi-
tives, that were added to handle conditions common to games people play. For ex-
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ample, the high-level predicase r ai ght _I i ne is defined using the intermediate-
level predicatechai n, which in turn is defined to take a predicate and a set as
input and return true if the predicate holds for the entire set. The idea behind
intermediate-level predicates is that they make it easier to define the high-level
predicates specific to a game. For exampleai n can be used in poker to define

a flush.

On top of the language, the GALA system was implemented to take a description
of a game in the GALA language, generate the corresponding game tree, and then
solve the game using the sequence form of the game (defined in Section 5.2.3).

Since we lose the space savings of the GALA language when we actually solve
the game, the main advantage of the language is the ease with which it allows a
human to describe a game to the program that will solve it.

History and references

Some of the earliest and most influential work on repeated games is Luce and
Raiffa [1957a] and Aumann [1959]. Of particular note is that the former provided
the main ideas behind the folk theorem and that the latter explored the theoreti-
cal differences between finitely and infinitely repeated games. Aumann’s work on
repeated games led to a Nobel Prize in 2005. Our proof of the folk theorem is
based on Osborne and Rubinstein [1994]. For an extensive discussion of the Tit-
for-Tat strategy in repeated Prisoner's Dilemma, and in particular this strategy’s
strong performance in a tournament of computer programs, see Axelrod [1984].
While most game theory textbooks have material on so-called bounded rationality,
the most comprehensive repository of results in the area was assembled by Ru-
binstein [1998]. Some of the specific references are as follows. Theorem 6.1.8
is due to Neyman [1985], while Theorem 6.1.9 is due to Papadimitriou and Yan-
nakakis [1994]. Theorem 6.1.11 is due to Gilboa [1988], and Theorem 6.1.12 is
due to Ben-Porath [1990]. Theorem 6.1.13 is due to Papadimitriou [1992]. Finally,
Theorems 6.1.14 and 6.1.15 are due to Nachbar and Zame [1996].

Stochastic games were introduced in Shapley [1953]. The state of the art re-
garding them circa 2003 appears in the edited collection Neyman and Sorin [2003].
Filar and Vrieze [1997] provide a rigorous introduction to the topic, integrating
MDPs (or single-agent stochastic games) and two-person stochastic games.

Bayesian games were introduced by Harsanyi [1967—1968]; in 1994 he received
a Nobel Prize, largely because of this work.

Congestion games were first defined by Rosenthal [1973]; later potential games
were introduced by Monderer and Shapley [1996a] and were shown to be equiv-
alent to congestion games (up to isomorphism). The PLS-completeness result is
due to Fabrikant et al. [2004]. Nonatomic congestion games are due to Schmeidler
[1973]. Selfish routing was first studied as early as 1920 [Pigou, 1920; Beckmann
et al., 1956]. Pigou’s example comes from the former reference; Braess’ para-
dox was introduced in Braess [1968]. The Wardrop equilibrium is due to Wardrop
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[1952]. The concept of the price of anarchy is due to Koutsoupias and Papadim-
itriou [1999]. Most of the results in Section 6.4.5 are due to Roughgarden and his
coauthors; see his recent book Roughgarden [2005]. Similar results have also been
shown for broader classes of nonatomic congestion games; see Roughgarden and
Tardos [2004] and Correa et al. [2005].

Theorems 6.5.3 and 6.5.4 are due to Daskalakis et al. [2006a]. Theorem 6.5.5
is due to Papadimitriou [2005]. Graphical games were introduced in Kearns et al.
[2001]. The problem of finding pure Nash equilibria in graphical games was an-
alyzed in Gottlob et al. [2003] and Daskalakis and Papadimitriou [2006]. Ac-
tion graph games were defined in Bhat and Leyton-Brown [2004] and extended in
Jiang and Leyton-Brown [2006]. Multiagent influence diagrams were introduced
in Koller and Milch [2003], which also contains the running example we used for

game network that section. A related notion @ame networksvas concurrently developed by
La Mura [2000]. Theorem 6.5.13 is due to Blum et al. [2006]. GALA is described
in Koller and Pfeffer [1995], which also contained the sample code for the Tic-Tac-
Toe example.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book at t p: / / ww. masf oundat i ons. or g.


http://www.masfoundations.org
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7.1.1

Learning and Teaching

The capacity to learn is a key facet of intelligent behavior, and it is no surprise that
much attention has been devoted to the subject in the various disciplines that study
intelligence and rationality. We will concentrate on techniques drawn primarily
from two such disciplines—atrtificial intelligence and game theory—although those
in turn borrow from a variety of disciplines, including control theory, statistics,
psychology and biology, to name a few. We start with an informal discussion
of the various subtle aspects of learning in multiagent systems and then discuss
representative theories in this area.

Why the subject of “learning” is complex

The subject matter of this chapter is fraught with subtleties, and so we begin with
an informal discussion of the area. We address three issues—the interaction be-
tween learning and teaching, the settings in which learning takes place and what
constitutes learning in those settings, and the yardsticks by which to measure this
or that theory of learning in multiagent systems.

The interaction between learning and teaching

Most work in artificial intelligence concerns the learningfpemed by an indi-
vidual agent. In that setting the goal is to design an agent that learns to function
successfully in an environment that is unknown and potentially also changes as the
agent is learning. A broad range of techniques have been developed, and learning
rules have become quite sophisticated.

In a multiagent setting, however, an additional complication arises, since the en-
vironment contains (or perhaps consists entirely of) other agents. The problem is
not only that the other agents’ learning will change the environment for our protag-
onist agent—dynamic environments feature already in the single-agent case—but
that these changes will depend in part on the actions of the protagonist agent. That
is, the learning of the other agents will be impacted by the learning performed by
our protagonist.
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The simultaneous learning of the agents means that every learning rule leads to
a dynamical system, and sometimes even very simple learning rules can lead to
complex global behaviors of the system. Beyond this mathematical fact, however,
lies a conceptual one. In the context of multiagent systems one cannot separate the
phenomenon diarningfrom that ofteaching when choosing a course of action,
an agent must take into account not only what he has learned from other agents’
past behavior, but also how he wishes to influence their future behavior.

The following example illustrates this point. Consider the infinitely repeated
game with average reward (i.e., where the payoff to a given agent is the limit aver-
age of his payoffs in the individual stage games, as in Definition 6.1.1), in which
the stage game is the normal-form game shown in Figure 7.1.

L R

T | 1,0 | 3,2

B | 21 4,0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, naBely
Also note that(B, L) is the unique Nash equilibrium of the game. Indeed, if
player 1 were to playB repeatedly, it is reasonable to expect that player 2 would
aways respond withl. Of course, if player 1 were to choo§éinstead, then
player 2’s best response would i yielding player 1 a payoff of 3 which is
greater than player 1's Nash equilibrium payoff. In a single-stage game it would
be hard for player 1 to convince player 2 that he (player 1) will flagince it is
astrictly dominated strategyHowever, in a repeated-game setting agent 1 has an
opportunity to put his payoff where his mouth is, and adopt the role of a teacher.
That is, player 1 could repeatedly pldy presumably, after a while player 2, if he
has any sense at all, would get the message and start responding.with

In the preceding example it is pretty clear who the natural candidate for adopting
the teacher role is. But consider now the repetition of the Coordination game, re-
produced in Figure 7.2. In this case, either player could play the teacher with equal
success. However, if both decide to play teacher and happen to select uncoordi-
nated actiongLeft, Right) or (Right Left) then the players will receive a payoff
of zero forever Is there a learning rule that will enable them to coordinate without
an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.
2. Thisis reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking
toward you while he is doing the same thing, the result being that you keep blocking each other.
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Left Right

Left | 1,1 | 0,0

Right | 0,0 | 1,1

Figure 7.2: Who's the teacher here?

What constitutes learning?

In the preceding examples the setting was a repeated game.oNg&er this a
“learning” setting because of the temporal nature of the domain, and the regularity
across time (at each time the same players are involved, and they play the same
game as before). This allows us to consider strategies in which future action is
selected based on the experience gained so far. When discussing repeated games
in Chapter 6 we mentioned a few simple strategies. For example, in the context
of repeated Prisoner’s Dilemma, we mentioned the Tit-for-Tat (TfT) and trigger
strategies. These, in particular TfT, can be viewed as very rudimentary forms of
learning strategies. But one can imagine much more complex strategies, in which
an agent’s next choice depends on the history of play in more sophisticated ways.
For example, the agent could guess that the frequency of actions played by his
opponentin the past might be his current mixed strategy, and play a best response
to that mixed strategy. As we shall see in Section 7.2, this basic learning rule is
calledfictitious play

Repeated games are not the only context in which learning takes place. Cer-
tainly the more general category of stochastic games (also discussed in Chapter 6)
is also one in which regularity across time allows meaningful discussion of learn-
ing. Indeed, most of the techniques discussed in the context of repeated games are
applicable more generally to stochastic games, though specific results obtained for
repeated games do not always generalize.

In both cases—repeated and stochastic games—there are additional aspects of
the settings worth discussing. These have to do with whether the (e.g., repeated)
game is commonly known by the players. If it is, any “learning” that takes place
is only about the strategies employed by the other. If the game is not known, the
agent can in addition learn about the structure of the game itself. For example,
in a stochastic game setting, the agent may start out not knowing the payoff func-
tions at a given stage game or the transition probabilities, but learn those over time
in the course of playing the game. It is most interesting to consider the case in
which the game being played is unknown; in this case there is a genuine process
of discovery going on. (Such a setting could be modeled as a Bayesian game, as
described in Section 6.3, though the formal modeling details are not necessary for
the discussion in this chapter.) Some of the remarkable results are that, with certain
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Yield Dare

Yield | 2,2 | 1,3

Dare | 3,1 0,0

Figure 7.3: The game of Chicken.

learning strategies, agents can sometimes converge to an equilibrium of the game
even without knowing the game being played. Additionally, there is the question
of whether the game isbservabledo the players see each others’ actions, and/or
each others’ payoffs? (Of course, in the case of a known game, the actions also
reveal the payoffs.)

While repeated and stochastic games constitute the main setting in which we will
investigate learning, there are other settings as well. Chief among them are models
of large populations. These models, which were largely inspired by evolutionary
models in biology, are superficially quite different from the setting of repeated or
stochastic games. Unlike the latter, which involve a small number of players, the
evolutionary models consist of a large number of players, who repeatedly play a
given game among themselves (e.g., pairwise in the case of two-player games).
A closer look, however, shows that these models are in fact closely related to the
models of repeated games. We discuss this further in the last section of this chapter.

If learning is the answer, what is the question?

Itis very important to be clear on why we study learning in riagient systems, and
how we judge whether a given learning theory is successful or not. These might
seem like trivial questions, but in fact the answers are not obvious, and not unique.

First, note that in the following, when we speak about learning strategies, these
should be understood as complete strategies, which involve learning in the sense
of choosing action as well as updating beliefs. One consequence is that learning
in the sense of “accumulated knowledge" is not always beneficial. In the abstract,
accumulating knowledge never hurts, since one can always ignore what has been
learned. But when one precommits to a particular strategy for acting on accumu-
lated knowledge, sometimes less is more.

This point is related to the inseparability of learning from teaching, discussed
earlier. For example, consider a protagonist agent planning to play an infinitely
repeated game @hicken depicted in Figure 7.3. In the presence of any opponent
who attempts to learn the protagonist agent’s strategy and play a best response, an
optimal strategy is to play the stationary policy of always daring; this is the “watch
out: I'm crazy” policy. The opponent will learn to always yield, a worse outcome
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for him than never learning anythirig.
Broadly speaking, we can divide theories of learning in multiagent systems into
two categories-descriptive theorieandprescriptive theories

Descriptive theories

Descriptive theories attempt to study the way learning takes place in real life—
usually by people, but sometimes by other entities such as organizations or animal
species. The goal here is to show experimentally that a certain model of learning
agrees with behavior (typically, in laboratory experiments) and then to identify
interesting properties of the formal model.

The ideal descriptive theory would have two properties.

Property 7.1.1 (Realism) There should be a good match between the formal the-
ory and the natural phenomenon being studied.

Property 7.1.2 (Convergence)The formal theory should exhibit interesting be-
havioral properties, in particular convergence of the strategy profile being played
to some solution concept (e.g., equilibrium) of the game being played.

One approach to demonstrating realism is to apply the experimental methodol-
ogy of the social sciences. While we will not focus on this approach, there are
several good examples of it in economics and game theory. But there can be other
reasons for studying a given learning process. For example, to the extent that one
accepts the Bayesian model as at least an idealized model of human decision mak-
ing, this model provides support for the ideaaftional learning which we discuss
later.

Convergence properties come in various flavors. Here we survey four of them.

First of all, the holy grail has been showing convergence to stationary strategies
which form a Nash equilibrium of the stage game. In fact often this is the hidden
motive of the research. It has been noted that game theory is somewhat unusual in
having the notion of an equilibrium without associated dynamics that give rise to
the equilibrium. Showing that the equilibrium arises naturally would correct this
anomaly?

A second approach recognizes that actual convergence to Nash equilibria is a
rare occurrence under many learning processes. It pursues an alternative: not re-
quiring that the agents converge to a strategy profile that is a Nash equilibrium,
but rather requiring that the empirical frequency of play converge to such an equi-
librium. For example, consider a repeated game of Matching Pennies. If both
agents repeatedly played (H,H) and (T,T), the frequency of both their plays would

3. The literary-minded reader may be reminded of the quote from Oscar WAld&@man of No Importance

“[...] the worst tyranny the world has ever known; the tyranny of the weak over the strong. It is the only

tyranny that ever lasts.” Except here it is the tyranny of the simpleton over the sophisticated.

4. However, recent theoretical progress on the complexity of computing a Nash equilibrium (see Sec-
tion 4.2.1) raises doubts about whether any such procedure could be guaranteed to converge to an equilibrium,
at least within polynomial time.
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converge td.5, .5), the strategy in the unique Nash equilibrium, even though the
payoffs obtained would be very different from the equilibrium payoffs.

Third and yet more radically, we can give up entirely on Nash equilibrium as the
relevant solution concept. One alternative is to seek convergencedoedated
equilibrium of the stage game. This is interesting in a number of ways. No-regret
learning, which we discuss later, can be shown to converge to correlated equilibria
in certain cases. Indeed, convergence to a correlated equilibrium provides a justi-
fication for the no-regret learning concept; the “correlating device" in this case is
not an abstract notion, but the prior history of play.

Finally, we can give up on convergence to stationary policies, but require that
the non-stationary policies converge to an interesting state. In particular, learning
strategies that include building an explicit model of the opponents’ strategies (as we
shall see, these are calletbdel-basedearning rules) can be required to converge
to correct models of the opponents’ strategies.

Prescriptive theories

In contrast with descriptive theories, prescriptive theories ask how agents—people,
programs, or otherwiseshouldlearn. A such they are not required to show a
match with real-world phenomena. By the same token, their main focus is not
on behavioral properties, though they may investigate convergence issues as well.
For the most part, we will concentrate strategicnormative theories, in which
individual agents are self-motivated.

In zero-sum games, and even in repeated or stochastic zero sum games, it is
meaningful to ask whether an agent is learning in an optimal fashion. But in gen-
eral this question is not meaningful, since the answer depends not only on the
learning being done but also on the behavior of other agents in the system. When
all agents adopt the same strategy (e.g., they all adopt TfT, or all adopt reinforce-
ment learning, to be discussed shortly), this is caflelf-play One way to judge
learning procedures is based on their performance in self-play. However, learning
agents can be judged also by how they do in the context of other types of agents;
a TfT agent may perform well against another TfT agent, but less well against an
agent using reinforcement learning.

No learning procedure is optimal against all possible opponent behaviors. This
observation is simply an instance of the general move in game theory away from the
notion of “optimal strategy” and toward “best response” and equilibrium. Indeed,
in the broad sense in which we use the term, a “learning strategy” is simply a
strategy in a game that has a particular structure (namely, the structure of a repeated
or stochastic game) that happens to have a component that is naturally viewed as
adaptive.

So how do we evaluate a prescriptive learning strategy? There are several an-
swers. The first is to adopt the standard game-theoretic stance: give up on judging
a strategy in isolation, and instead ask which learning rules are in equilibrium with
each other. Note that requiring that repeated-game learning strategies be in equilib-
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rium with each other is very different from the convergence requirements discussed
above; those speak about equilibrium in the stage game, not in the repeated game.
For example, TfT is in equilibrium with itself in an infinitely repeated Prisoner’s
Dilemma game, but does not lead to the repeated Defect play, the only Nash equi-
librium of the stage game. This “equilibrium of learning strategies” approach is
not common, but we shall see one example of it later on.

A more modest, but by far more common and perhaps more practical approach
is to ask whether a learning strategy achieves payoffs that are “high enough.” This
approach is both stronger and weaker than the requirement of “best response.” Best
response requires that the strategy yield the highest possible payoff against a partic-
ular strategy of the opponent(s). A focus on “high enough” payoffs can consider a
broader class of opponents, but makes weaker requirements regarding the payoffs,
which are allowed to fall short of best response.

There are several different versions of such high-payoff requirements, each adopt-
ing and/or combining different basic properties.

Property 7.1.3 (Safety) A learning rule is safe if it guarantees the agent at least

its maxmin payoff, or “security value” (Recall that this is the payoff the agent
can guarantee to himself regardless of the strategies adopted by the opponents; see
Definition 3.4.1.)

Property 7.1.4 (Rationality) A learning rule is rational if whenever the opponent
settles on a stationary strategy of the stage game (i.e., the opponent adopts the
same mixed strategy each time, regardless of the past), the agent settles on a best
response to that strategy.

Property 7.1.5 (No-regret, informal) A learning rule isuniversally consistenor
Hannan consistendr exhibitsno regre(these are all synonymous terms), if, loosely
speaking, against any set of opponents it yields a payoff that is no less than the
payoff the agent could have obtained by playing any one of his pure strategies
throughout. We give a more formal definition of this condition later in the chapter.

Some of these basic requirements are quite strong, and can be weakened in a
variety of ways. One way is to allow slight deviations, either in terms of the magni-
tude of the payoff obtained, or the probability of obtaining it, or both. For example,
rather than require optimality, one can requiré-optimality, meaning that with
probability of at leastl — § the agent’s payoff comes within of the payoff ob-
tained by the best response. Another way of weakening the requirements is to limit
the class of opponents against which the requirement holds. For example, attention
can be restricted to the case of self play, in which the agent plays a copy of itself.
(Note that while the learning strategies are identical, the game being played may
not be symmetric.) For example, one might require that the learning rule guarantee
convergence in self play. More broadly, as in the cagargleted optimalitywhich
we discuss later, one might require a best response only against a particular class
of opponents.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book at t p: / / ww. masf oundat i ons. or g.


http://www.masfoundations.org

7.2

fictitious play

206 7 Learning and Teaching

In the next sections, as we discuss several learning rules, we will encounter
various versions of these requirements and their combinations. For the most part
we will concentrate on repeated, two-player games, though in some cases we will
broaden the discussion and discuss stochastic games and games with more than
two players.

Fictitious play

Fictitious playis one of the earliest learning rules. It was actually not proposed
initially as a learning model at all, but rather as an iterative method for computing
Nash equilibria in zero-sum games. It happens to not be a particularly effective
way of performing this computation, but since it employs an intuitive update rule,
itis usually viewed as a model of learning, albeit a simplistic one, and subjected to
convergence analyses of the sort discussed above.

Fictitious play is an instance of model-based learning, in which the learner ex-
plicitly maintains beliefs about the opponent’s strategy. The structure of such tech-
niques is straightforward.

Initialize beliefs about the opponent’s strategy

repeat
Play a best response to the assessed strategy of the opponent

Observe the opponent’s actual play and update beliefs accordingly

Note that in this scheme the agent is oblivious to the payoffs obtained or ob-
tainable by other agents. We do however assume that the agent knows his own
payoff matrix in the stage game (i.e., the payoff he would get in each action profile,
whether or not encountered in the past).

In fictitious play, an agent believes that his opponent is playing the mixed strat-
egy given by the empirical distribution of the opponent’s previous actions. That is,
if A is the set of the opponent’s actions, and for every A we letw(a) be the
number of times that the opponent has played acticdhen the agent assesses the
probability of a in the opponent’s mixed strategy as

w(a)
Za’GA w(a/) .

For example, in a repeated Prisoner’s Dilemma game, if therogmt has played
C,C,D,C, D in the first five games, before the sixth game he is assumed to be
playing the mixed strategf0.6, 0.4). Note that we can represent a player’s beliefs
with either a probability measure or with the set of count$a, ), . .., w(ax)).

We have not fully specified fictitious play. There exist different versions of fic-
titious play which differ on the tie-breaking method used to select an action when
there is more than one best response to the particular mixed strategy induced by

P(a) =

Uncorrected manuscript dfultiagent System®ublished by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.



7.2 Fictitious play 207

Heads Tails

Heads | 1,—-1 | —1,1

Tails | —1,1 | 1,-1

Figure 7.4: Matching Pennies game.

an agent’s beliefs. In general the tie-breaking rule chosen has little effect on the
results of fictitious play.

On the other hand, fictitious play is very sensitive to the players’ initial beliefs.
This choice, which can be interpreted as action counts that were observed before
the start of the game, can have a radical impact on the learning process. Note that
one must pick some nonempty prior belief for each agent; the prior beliefs cannot
be(0,...,0) since this does not define a meaningful mixed strategy.

Fictitious play is somewhat paradoxical in that each agent assumes a stationary
policy of the opponent, yet no agent plays a stationary policy except when the pro-
cess happens to converge to one. The following example illustrates the operation
of fictitious play. Recall the Matching Pennies game from Chapter 3, reproduced
here as Figure 7.4. Two players are playing a repeated game of Matching Pennies.
Each player is using the fictitious play learning rule to update his beliefs and select
actions. Player 1 begins the game with the prior belief that player 2 has played
heads 1.5 times and tails 2 times. Player 2 begins with the prior belief that player 1
has played heads 2 times and tails 1.5 times. How will the players play?

The first seven rounds of play of the game is shown in Table 7.1.

Round 1'saction 2'saction 1'sbeliefs 2's beliefs

0 (1.5,2) (2,1.5)
1 T T (1.5,3) (2,2.5)
2 T H (2.5,3) (2,3.5)
3 T H (3.5,3) (2,4.5)
4 H H (4.5,3) (3,4.5)
5 H H (5.5,3) (4,4.5)
6 H H (6.5,3) (5,4.5)
7 H T

(6.5,4) (6,4.5)

Table 7.1: Fictitious play of a repeated game of Matching Pennies.

As you can see, each player ends up alternating back and forth between playing
heads and tails. In fact, as the number of rounds tends to infinity, the empiri-
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cal distribution of the play of each player will converge(th5,0.5). If we take
this distribution to be the mixed strategy of each player, the play converges to the
unique Nash equilibrium of the normal form stage game, that in which each player
plays the mixed strategy).5, 0.5).

Fictitious play has several nice properties. First, connections can be shown to
pure-strategy Nash equilibria, when they exist.

Definition 7.2.1 (Steady state)An action profiles is a steady stat€or absorbing
statg of fictitious play if it is the case that wheneveis played at round it is also
played at round + 1 (and hence in all future rounds as well).

The following two theorems establish a tight connection between steady states
and pure-strategy Nash equilibria.

Theorem 7.2.21f a pure-strategy profile is a strict Nash equilibrium of a stage
game, then it is a steady state of fictitious play in the repeated game.

Note that the pure-strategy profile must bestect Nash equilibrium, which
means that no agent can deviate to another action without strictly decreasing its
payoff. We also have a converse result.

Theorem 7.2.31f a pure-strategy profile is a steady state of fictitious play in the
repeated game, then it is a (possibly weak) Nash equilibrium in the stage game.

Of course, one cannot guarantee that fictitious play always converges to a Nash
equilibrium, if only because agents can only play pure strategies and a pure-strategy
Nash equilibrium may not exist in a given game. However, while the stage game
strategies may not converge, the empirical distribution of the stage game strategies
over multiple iterations may. And indeed this was the case in the Matching Pen-
nies example given earlier, where the empirical distribution of the each player’s
strategy converged to their mixed strategy in the (unique) Nash equilibrium of the
game. The following theorem shows that this was no accident.

Theorem 7.2.41f the empirical distribution of each player’s strategies converges
in fictitious play, then it converges to a Nash equilibrium.

This seems like a powerful result. However, notice that although the theorem
gives sufficient conditions for the empirical distribution of the players’ actions to
converge to a mixed-strategy equilibrium, we have not made any claims about the
distribution of the particular outcomes played.

To better understand this point, consider the following example. Consider the
Anti-Coordination gamshown in Figure 7.5.

Clearly there are two pure Nash equilibria of this gatg,B) and(B, A), and
one mixed Nash equilibrium, in which each agent mixeand B with probability
0.5. Either of the two pure-strategy equilibria earns each playgayoff of 1, and
the mixed-strategy equilibrium earns each player a payoff of 0.5.
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A | 00 1,1

B | 1,1 0,0

Figure 7.5: The Anti-Coordination game.

Now let us see what happens when we have agents play the repeated Anti-
Coordination game using fictitious play. Let us assume that the weight function
for each player is initialized t¢1, 0.5). The play of the first few rounds is shown
in Table 7.2.

Round 1'saction 2'saction 1'sbeliefs 2's beliefs

0 (1,0.5) (1,0.5)
1 B B (1,1.5) (1,1.5)
2 A A (2,1.5) (2,1.5)
3 B B (2,2.5) (2,2.5)
4 A A

(3,2.5) (3,2.5)

Table 7.2: Fictitious play of a repeated Anti-Coordination game.

As you can see, the play of each player converges to the mixed stfatég§.5),
which is the mixed strategy Nash equilibrium. However, the payoff received by
each player is 0, since the players never hit the outcomes with positive payoff.
Thus, although the empirical distribution of the strategies converges to the mixed
strategy Nash equilibrium, the players may not receive the expected payoff of the
Nash equilibrium, because their actions are miscorrelated.

Finally, the empirical distributions of players’ actions need not converge at all.
Consider the game in Figure 7.6. Note that this example, due to Shapley, is a
moadification of the rock-paper-scissors game; this game is not constant sum.

The unique Nash equilibrium of this game is for each player to play the mixed
strategy(1/3,1/3,1/3). However, consider the fictitious play of the game when
player 1's weight function has been initialized ({®, 0, 0.5) and player 2's weight
function has been initialized t@, 0.5,0). The play of this game is shown in
Table 7.3. Although it is not obvious from these first few rounds, it can be shown
that the empirical play of this game never converges to any fixed distribution.

For certain restricted classes of gamesameguaranteed to reach convergence.
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Rock Paper  Scissors
Rock 0,0 0,1 1,0
Paper| 1,0 0,0 0,1
Scissors 0,1 1,0 0,0

Figure 7.6: Shapley’s Almost-Rock-Paper-Scissors game.

Round 1'saction 2'saction 1'sbeliefs 2's beliefs

0 (0,0,0.5) (0,0.5,0)
1 Rock Scissors (0,0,1.5) (1,0.5,0)
2 Rock Paper (0,1,1.5) (2,0.5,0)
3 Rock Paper (0,2,1.5) (3,0.5,0)
4 Scissors Paper (0,3,1.5) (3,0.5,1)
5

Scissors Paper (0,1.5,0) (1,0,0.5)

Table 7.3: Fictitious play of a repeated game of the Almost-Rock-Paper-Scissors
game.

Theorem 7.2.5Each of the following is a sufficient condition for the empirical
frequencies of play to converge in fictitious play:

¢ The game is zero sum;
« The game is solvable by iterated elimination of strictly dominated strategies;
« The game is a potential ganie;

« The game i€ x n and has generic payoffs.

Overall, fictitious play is an interesting model of learning in multiagent systems
not because it is realistic or because it provides strong guarantees, but because it

5. Actually an even more more general condition applies here, that the players have “identical interests," but
we will not discuss this further here.

6. Full discussion of genericity in games lies outside the scope of this book, but here is the essential idea, at
least for games in normal form. Roughly speaking, a game in normal form is generic if it does not have any
interesting property that does not also hold with probability 1 when the payoffs are selected independently
from a sufficiently rich distribution (e.g., the uniform distribution over a fixed interval). Of course, to make
this precise we would need to define “interesting” and “sufficiently.” Intuitively, though, this means that the
payoffs do not have accidental properties. A game whose payoffs are all distinct is necessarily generic.
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is very simple to state and gives rise to nontrivial properties. But it is very limited;
its model of beliefs and belief update is mathematically constraining, and is clearly
implausible as a model of human learning. There exist various variants of fictitious
play that score somewhat better on both fronts. We will mention one of them—
calledsmooth fictitious play-when we discuss no-regret learning methods.

7.3 Rational learning

rational learning  Rational learninglalso sometimes calléBayesian learningadopts the same gen-
eral model-based scheme as fictitious play. Unlike fictitious play, however, it al-

Bayesian lows players to have a much richer set of beliefs about opponents’ strategies. First,
learning . . .
the set of strategies of the opponent can include repeated-game strategies such as
TfT in the Prisoner’s Dilemma game, not only repeated stage-game strategies. Sec-
ond, the beliefs of each player about his opponent’s strategies may be expressed by
any probability distribution over the set of all possible strategies.
As in fictitious play, each player begins the game with some prior beliefs. After
Bayesian each round, the player usBayesian updatingp update these beliefs. LSt ; be
updating the set of the opponent’s strategies considered possible by pleyed H be the

set of possible histories of the game. Then we can use Bayes'’ rule to express the
probability assigned by playérto the event in which the opponent is playing a
particular strategy_; € S* ; given the observation of historly € H, as

Pi(h|s_;)Pi(s_;)
ZSLiESii Pi(h|s” ;) Pi(s",)

For example, consider two players playing the infinitely egpd Prisoner’s
Dilemma game, reproduced in Figure 7.7.

Pi(si|h) =

C D

c | 3,3 0,4

D | 4,0 1,1

Figure 7.7: Prisoner’s Dilemma game

Suppose that the support of the prior belief of each player (i.e., the strategies of
the opponentto which the player ascribes nonzero probability; see Definition 3.2.6)
consists of the strategies, g-, . . . g, defined as followsg.,, is thetrigger strat-
trigger strategy ~ egythat was presented in Section 6.1.2. A player using the trigger strategy begins
the repeated game by cooperating, and if his opponent defects in any round, he
defects in every subsequent round. FoK oo, gr coincides withg,, at all his-
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tories shorter thaff” but prescribes unprovoked defection starting from tifhen.
Following this convention, strategy, is the strategy of constant defection.

Suppose furthermore that each player happens indeed to select a best response
from amonggy, g1, - - -, go- (There are of course infinitely many additional best
responses outside this set.) Thus each round of the game will be played according
to some strategy profileyr, , 97, )-

After playing each round of the repeated game, each player performs Bayesian
updating. For example, if playéhas observed that playghas always cooperated,
the Bayesian updating after histoky € H of lengtht reduces to

0 if T <t;
Pi(gT|ht) = mPi(gT) if T > t.

k=t+1 P;(gx)

Rational learning is a very intuitive model of learning, but its analysis is quite
involved. The formal analysis focuses on self-play, that is, on properties of the
repeated game in which all agents employ rational learning (though they may start
with different priors). Broadly, the highlights of this model are as follows.

« Under some conditions, in self-play rational learning results in agents having
close to correct beliefs about the observable portion of their opponent’s strategy.

« Under some conditions, in self-play rational learning causes the agents to con-
verge toward a Nash equilibrium with high probability.

» Chief among these “conditions” @bsolute continuitya strong assumption.

In the remainder of this section we discuss these points in more detail, starting
with the notion of absolute continuity.

Definition 7.3.1 (Absolute continuity) Let X be a set and let:, i/ € TI(X) be
probability distributions overX. Then the distribution: is said to beabsolutely
continuouswith respect to the distributiop’ iff for z C X that is measurableit
is the case that ifi(z) > 0 theny/(x) > 0.

Note that the players’ beliefs and the actual strategies each induce probability
distributions over the set of historié$. Lets = (sq,. .., s,,) be a strategy profile.
If we assume that these strategies are used by the players, we can calculate the prob-
ability of each history of the game occurring, thus inducing a distribution &ker
We can also induce such a distribution with a player’s beliefs about players’ strate-
gies. LetS! be a set of strategies thabelieves possible fof, and P! € II(S?)
be the distribution ovef’ believed by playei. Let P, = (P},...,P}) be the
tuple of beliefs about the possible strategies of every player. Now, if piager
sumes that all players (including himself) will play according to his beliefs, he can

7. Recall that a probability distribution over a domaindoes not necessarily give a value for all subsets of
X, but only over somer-algebra ofX, the collection of measurable sets.
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also calculate the probability of each history of the game occurring, thus inducing a
distribution overH. The results that follow all require that the distributioreohis-
tories induced by the actual strategies is absolutely continuous with respect to the
distribution induced by a player’s beliefs; in other words, if there is a positive prob-
ability of some history given the actual strategies, then the player’s beliefs should
also assign the history positive probability. (Colloquially, it is sometimes said that
the beliefs of the players must contaig@in of truth) Although the results that
follow are very elegant, it must be said that the absolute continuity assumption is a
significant limitation of the theoretical results associated with rational learning.

In the Prisoner’s Dilemma example discussed earlier, it is easy to see that the
distribution of histories induced by the actual strategies is absolutely continuous
with respect to the distribution predicted by the prior beliefs of the players. All
positive probability histories in the game are assigned positive probability by the
original beliefs of both players: if the true strategies are, gr,, players assign
positive probability to the history with cooperation up to tithe< min (77, 73)
and defection in all times exceeding then (7}, T3).

The rational learning model is interesting because it has some very desirable
properties. Roughly speaking, players satisfying the assumptions of the rational
learning model will have beliefs about the play of the other players that converge
to the truth, and furthermore, players will in finite time converge to play that is
arbitrarily close to the Nash equilibrium. Before we can state these results we need
to define a measure of the similarity of two probability measures.

Definition 7.3.2 (ecloseness)Given ane > 0 and two probability measures
andy’ on the same space, we say thais e-close toy' if there is a measurable set

Q satisfying:
* u(Q) andy/(Q) are each greater thaih — ¢; and

» For every measurable set C @, we have that
(1+e)p'(A) = u(A) = (1 —e)u'(A).

Now we can state a result about the accuracy of the beliefs ¢dyepusing
rational learning.

Theorem 7.3.3 (Rational learning and belief accuracy) et s be a repeated-game
strategy profile for a givem-player gamé, and letP = P,, ..., P, be a tuple of
probability distributions over such strategy profiles; (Binterpreted as playei's
beliefs). Letu, and up be the distributions over infinite game histories induced by
the strategy profile and the belief tuple?, respectively. If we have that

« at each round, each playéiplays a best response strategy given his beligfs
« after each round each playeémupdatesP; using Bayesian updating; and

8. That s, a tuple of repeated-game strategies, one for each player.
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* L is absolutely continuous with respectg,

then for every > 0 and for almost every history in the supportof (i.e., every
possible history given the actual strategy profile there is a timel’ such that
for all t > T, the playup, predicted by the playet’s beliefs ise-close to the
distribution of playu, predicted by the actual strategies.

Thus a player’s beliefs will eventually converge to the truth if he is using Bayesian
updating, is playing a best response strategy, and the play predicted by the other
players’ real strategies is absolutely continuous with respect to that predicted by
his beliefs. In other words, he will correctly predict the on-path portions of the
other players’ strategies.

Note that this result doawot state that players will learn the true strategy being
played by their opponents. As stated earlier, there are an infinite number of possible
strategies that their opponent could be playing, and each player begins with a prior
distribution that assigns positive probability to only some subset of the possible
strategies. Instead, players’ beliefs will accurately predict the play of the game,
and no claim is made about their accuracy in predicting the off-path portions of the
opponents’ strategies.

Consider again the two players playing the infinitely repeated Prisoner’s Dilemma
game, as described in the previous example. Let us verify that, as Theorem 7.3.3
dictates, the future play of this game will be correctly predicted by the players. If
Ty < T then from timeT; + 1 on, player 2's posterior beliefs will assign prob-
ability 1 to player 1's strategyyr,. On the other hand, player 1 will never fully
know player 2’s strategy, but will know thdt, > 7;. However, this is sufficient
information to predict that player 2 will always choose to defect in the future.

A player’s beliefs must converge to the truth even when his strategy space is
incorrect (does not include the opponent’s actual strategy), as long as they satisfy
the absolute continuity assumption. Suppose, for instance, that player 1 is playing
the trigger strategy.., and player 2 is playing tit-for-tat, but that player 1 believes
that player 2 is also playing the trigger strategy. Thus player 1's beliefs about
player 2’s strategy are incorrect. Nevertheless, his beliefs will correctly predict the
future play of the game.

We have so far spoken about the accuracy of beliefs in rational learning. The
following theorem addresses convergence to equilibrium. Note that the conditions
of this theorem are identical to those of Theorem 7.3.3, and that the definition
refers to the concept of ariNash equilibrium from Section 3.4.7, as well as to
e-closeness as defined earlier.

Theorem 7.3.4 (Rational Learning and Nash)Let s be a repeated-game strat-
egy profile for a givem-player game, and leP = P,,..., P, be a a tuple of
probability distributions over such strategy profiles. Letand up be the distri-
butions over infinite game histories induced by the strategy profiled the belief
tuple P, respectively. If we have that

 at each round, each playéiplays a best response strategy given his beli&fs
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« after each round each playémupdatesP; using Bayesian updating; and
* L is absolutely continuous with respectg,

then for every > 0 and for almost every history in the supportef there is a
timeT" such that for every > T there exists am-equilibriums* of the repeated
game in which the play p, predicted by playei’s beliefs ise-close to the playi,-
of the equilibrium.

In other words, if utility-maximizing players start with individual subjective be-
liefs with respect to which the true strategies are absolutely continuous, then in the
long run, their behavior must be essentially the same as a behavior described by an
e-Nash equilibrium.

Of course, the space of repeated-game equilibria is huge, which leaves open the
question of which equilibrium will be reached. Here notice a certain self-fulfilling
property: players’ optimism can lead to high rewards, and likewise pessimism can
lead to low rewards. For example, in a repeated Prisoner’s Dilemma game, if both
players begin believing that their opponent will likely play the TfT strategy, they
each will tend to cooperate, leading to mutual cooperation. If, on the other hand,
they each assign high prior probability to constant defection, or to the grim-trigger
strategy, they will each tend to defect.

Reinforcement learning

In this section we look at multiagent extensions of learning in MDPs, that is, in
single-agent stochastic games (see Appendix C for a review of MDP essentials).
Unlike the first two learning techniques discussed, and with one exception dis-
cussed in section 7.4.&inforcement learningloes not explicitly model the oppo-
nent's strategy. The specific family of techniques we look at are derived from the
Q-learning algorithm for learning in unknown (single-ageMtpPs. ()-learning

is described in the next section, after which we present its extension to zero-sum
stochastic games. We then briefly discuss the difficulty in extending the methods
to general-sum stochastic games.

Learning in unknown MDPs

First, consider (single-agent) MDPs. Value iteration, ascdbed in Appendix C,
assumes that the MDP is known. What if we do not know the rewards or transition
probabilities of the MDP? It turns out that, if we always know what State are

in and the reward received in each iteration, we can still converge to the correct
Q-values.

9. For consistency with the literature on reinforcement learning, in this section we use the netation
S for a state and set of states respectively, rather than for a strategy profile and set of strategy profiles as
elsewhere in the book.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book at t p: / / ww. masf oundat i ons. or g.


http://www.masfoundations.org

7.4.2

216 7 Learning and Teaching

Definition 7.4.1 ((*learning) -learning is the following procedure:

Initialize the@-function andV” values (arbitrarily, for example)

repeatuntil convergence
Observe the current statg

Select actioru; and and take it.

Observe the reward(s;, a;)

Perform the following updates (and do not update any athealues):
Qir1(8t,a¢) — (1 — a)Qy (54, 1) + i (r(se, ar) + BVi(5141))
Vir1(s) « max, Q:(s,a)

Theorem 7.4.2 Q-learning guarantees that th@ and V' values converge to those

of the optimal policy, provided that each state-action pair is sampled an infinite
number of times, and that the time-dependent learningdatabeysd < a; < 1,
Yo ap=occandd ; af < .

The intuition behind this approach is that we approximate the unknown transition
probability by using the actual distribution of states reached in the game itself.
Notice that this still leaves us a lot of room in designing the order in which the
algorithm selects actions.

Note that this theorem says nothing about the rate of convergence. Furthermore,
it gives no assurance regarding the accumulation of optimal future discounted re-
wards by the agent; it could well be, depending on the discount factor, that by the
time the agent converges to the optimal policy it has paid too high a cost, which
cannot be recouped by exploiting the policy going forward. This is not a concern if
the learning takes place during training sessions, and only when learning has con-
verged sufficiently is the agent unleashed on the world (e.qg., think of a fighter pilot
being trained on a simulator before going into combat). But in gerdgilalrning
should be thought of as guaranteeing good learning, but neither quick learning nor
high future discounted rewards.

Reinforcement learning in zero-sum stochastic games

In order to adapt the method presented from the setting of MiDRtochastic
games, we must make a few modifications. The simplest possible modification is
to have each agent ignore the existence of the other agent (recall that zero-sum
games involve only two agents). We then def@pg : S x A; — R to be the

value for player: if the two players follow strategy profile after starting in state

s and playeri chooses the actiom. We can now apply th€)-learning algorithm.

As mentioned earlier in the chapter, the multiagent setting forces us to forego our
search for an “optimal” policy, and instead to focus on one that performs well
against its opponent. For example, we might require than it satisfy Hannan con-
sistency (Property 7.1.5). Indeed, tgelearning procedure can be shown to be
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Hannan-consistent for an agent in a stochastic game against opponents playing sta-
tionary policies. However, against opponents using more complex strategies, such
as@-learning itself, we do not obtain such a guarantee.

The above approach, assuming away the opponent, seems unmotivated. Instead,
if the agentis aware of what actions its opponent selected at each pointin its history,
we can use a modifie@-function,Q7 : S x A — R, defined over states and action
profiles, whereA = A; x A,. The formula to update Q is simple to modify and
would be the following for a two-player game.

Qits1(s,ae,00) = (1 — ) Qi i (¢, ar, 0) + o (15(5¢, ar, 00) + BVi(Se41))

Now that the actions range over both our agent’s actions atafhts competitor,

how can we calculate the value of a state? Recall that for (two-player) zero-sum
games, the policy profile where each agent plays its maxmin strategy forms a Nash
equilibrium. The payoff to the first agent (and thus the negative of the payoff to the
second agent) is called thalueof the game, and it forms the basis for our revised
value function for-learning,

Vi(s) = max min Q; ,(s,11;(s), 0).

Like the basia-learning algorithm, the aboweinimax-() learning algorithm is
guaranteed to converge in the limit of infinite samples of each state and action
profile pair. While this will guarantee the agent a payoff at least equal to that of
its maxmin strategy, it no longer satisfies Hannan consistency. If the opponent
is playing a suboptimal strategy, minimaxa@ll be unable to exploit it in most
games.

The minimax-Qalgorithm is described in Figure 7.8. Note that this alganith
specifies not only how to update tdgandV” values, but also how to update the
strategyll. There are still some free parameters, such as how to updstsiming
parameterq. One way of doing so is to simply use a decay rate, sodhiatset
to a * decay after each()-value update, for some value @écay < 1. Another
possibility from theQ-learning literature is to keep separate for each state and
action profile pair. In this case, a common method is to ase 1/k, wherek
equals the number of times that particulavalue has been updated including the
current one. So, when first encountering a reward for a stathere an action
profile a was played, th&)-value is set entirely to the observed reward plus the
discounted value of the successor state{d). On the next time that state—action
profile pair is encountered, it will be set to be half of the @leialue plus half of
the new reward and discounted successor state value.

We now look at an example demonstrating the operation of miniméeaéping
in a simple repeated game: repeated Matching Pennies (see Figure 7.4) against
an unknown opponent. Note that the convergence resultQ{i@arning impose
only weak constraints on how to select actions and visit states. In this example, we
follow the given algorithm and assume that the agent chooses an action randomly
some fraction of the time (denotettplor), and plays according to his current
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/ Initialize:
forall s € S,a € A,ando € O do
| Q(s,a,0) « 1
forall sin Sdo
L Vi(s) <1
forall s € Sanda € A do
L (s, a) < 1/|A]
a«— 1.0
/l Take an action:
when in states, with probability explor choose an action uniformly at random,
and with probability(1 — explor) choose actiom with probabilityI1(s, a)
/I Learn:
after receiving reward-ew for moving from states to s’ via actiona and
opponent’s actiom
Q(s,a,0) — (1 —a) * Q(s,a,0) + ax* (rew +vyx V(s))
(s, ) « arg maxyy, , y(ming Y, (I(s,a’) x Q(s,a’,0)))
/I The above can be done, for example, by linear programming
V(s) — ming (3, (I(s, ') * Q(s,a’, o))
Updatex

Figure 7.8: The minimax-@lgorithm.

best strategy otherwise. For updating the learning rate, we have chosen the second
method discussed earlier, with= 1/k, wherek is the number of times the state
and action profile pair has been observed. Assume thapthelues are initialized
to 1 and that the discount factor of the game is 0.9.

Table 7.4 shows the values of player @sfunction in the first few iterations of
this game as well as his best strategy at each step. We see that the value of the
game, 0, is being approached, albeit slowly. This is not an accident.

Theorem 7.4.3Under the same conditions that assure convergenéglefarning
to the optimal policy in MDPs, in zero-sum games Minimaxd@pverges to the
value of the game in self play.

Here again, no guarantee is made about the rate of convergence or about the
accumulation of optimal rewards. We can achieve more rapid convergence if we
are willing to sacrifice the guarantee of finding a perfectly optimal maxmin strategy.
In particular, we can consider the frameworkpmbbably approximately correct
(PAC) learning In this setting, choose some> 0 and1 > § > 0, and seek
an algorithm that can guarantee—regardless of the opponent—a payoff of at least
that of the maxmin strategy minaswith probability (1 — ¢). If we are willing to
settle for this weaker guarantee, we gain the property that it will always hold after
a polynomially-bounded number of time steps.
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t  Actions Reward; Qi(H,H) Q¢H,T) Q¢T,H) Q¢T,T) V(s) i(H)

0 1 1 1 1 1 0.5

1 (H4H) 1 1.9 1 1 1 1 0.5

2 (T,H) 1 1.9 1 0.1 1 1 0.55

3 (1.7 1 1.9 1 0.1 1.9 1.279  0.690

4 (H*T) 1 1.9 0.151 0.1 1.9 0.967 0.534

5 (T,H) -1 1.9 0.151 -0.115 1.9 0.964  0.535

6 (1.7 1 1.9 0.151 -0.115 1.884 0.960 0.533

7 (T.H) -1 1.9 0.151 -0.122 1.884 0.958  0.534

8 (H,T) 1 1.9 0.007 -0.122 1.884 0.918 0.514
100  (HH) 1 1.716 -0.269 -0.277 1.730 0.725  0.503
1000  (T,T) 1 1.564 -0.426 -0.415 1.564 0.574  0.500

Table 7.4: Minimax-(Jearning in a repeated Matching Pennies game.

One example of such an algorithm is the model-based learning algdrthmax
It first initializes its estimate of the value of each state to be the highest reward
that can be returned in the game (hence the name). This philosophy has been
referred to agptimism in the face of uncertaingyd helps guarantee that the agent
will explore its environment to the best of its ability. The agent then uses these
optimistic values to calculate a maxmin strategy for the game. Unlike na@mal
learning, the algorithm does not update its values for any state and action profile
pair until it has visited them “enough” times to have a good estimate of the reward
and transition probabilities. Using a theoretical method calledrnoff boundst
is possible to polynomially bound the number of samples necessary to guarantee
that the accuracy of the average over the samples deviates from the true average
by at moste with probability (1 — §) for any selected value of andé. The
polynomialis inX, k, T, 1/¢, and1/5, whereX. is the number of states (or games)
in the stochastic gamg,is the number of actions available to each agentin a game
(without loss of generally we can assume that this is the same for all agents and all
games), and’ is thee-returnmixing timeof the optimal policy, that is, the smallest
length of time after which the optimal policy is guaranteed to yield an expected
payoff at most away from optimal. The notes at the end of the chapter point to
further reading on R-max, and a predecessor algorithm caBggronounced “E
cubed”).

Beyond zero-sum stochastic games

So far we have shown results for the class of zero-sum staclyashes. Although
the algorithms discussed, in particular minimax-ée still well defined in the
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general-sum case, the guarantee of achieving the maxmin strategy payoff is less
compelling. Another subclass of stochastic games that has been addressed is that
of common-payoff (pure coordination) games, in which all agents receive the same
reward for an outcome. This class has the advantage of reducing the problem
to identifying an optimal action profile and coordinating with the other agents to
play it. In many ways this problem can really be seen as a single-agent problem
of distributed control. This is a relatively well-understood problem, and various
algorithms exist for it, depending on precisely how the problem is defined.
Expanding reinforcement learning algorithms to the general-sum case is quite
problematic, on the other hand. There have been attempts to genéjdéaening
to general-sum games, but they have not yet been truly successful. As was dis-
cussed at the beginning of this chapter, the question of what it means to learn in
general-sum games is subtle. One yardstick we have discussed is convergence
to Nash equilibrium of the stage game during self play. No generalizati@p of
learning has been put forward that has this property.

Belief-based reinforcement learning

There is also a version of reinforcement learning that inetuekplicit modeling of
the other agent(s), given by the following equations.

Qrr1(81,ar) — (1 — a)Qi(s1,ar) + ar(r(se, ar) + BVi(se41))
Vi(s) « max > Qs (ai,a_))Pri(a_;)

a_;CA_;

In this version, the agent updates the value of the game ukagrobability
he assigns to the opponent(s) playing each action profile. Of course, the belief
function must be updated after each play. How it is updated depends on what the
function is. Indeed, belief-based reinforcement learning is not a single procedure
but a family, each member characterized by how beliefs are formed and updated.
For example, in one version the beliefs are of the kind considered in fictitious play,
and in another they are Bayesian in the style of rational learning. There are some
experimental results that show convergence to equilibrium in self-play for some
versions of belief-based reinforcement learning and some classes of games, but no
theoretical results.

No-regret learning and universal consistency

As discussed above, a learning rule is universally consistent or (equivalently) ex-
hibits no regret if, loosely speaking, against any set of opponents it yields a payoff
that is no less than the payoff the agent could have obtained by playing any one of
his pure strategies throughout.

More precisely, leta! be the average per-period reward the agent received up
until time ¢, and leta’ (s;) be the average per-period reward the agemild have
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received up until time had he played pure strategyinstead, assuming all other
agents continue to play as they did.

Definition 7.5.1 (Regret) Theregretan agent experiences at timéor not having
playeds is R'(s) = o' — o!(s).

Observe that this is conceptually the same as the definitioegvét we offered
in Section 3.4 (Definition 3.4.5).

A learning rule is said to exhibito regret? if it guarantees that with high prob-
ability the agent will experience no positive regret.

Definition 7.5.2 (No-regret learning rule) A learning rule exhibitso regreff for
any pure strategy of the agesit holds thatPr([lim inf R*(s)] < 0) = 1.

The quantification is over all of the agent’s pure strategiethe stage game,
but note that it would make no difference if instead one quantified over all mixed
strategies of the stage game. (Do you see why?) Note also that this guarantee is
only in expectation, since the agent'’s strategy will in general be mixed, and thus
the payoff obtained at any given time+t—is uncertain.

It is important to realize that this “in hindsight" requirement ignores the possi-
bility that the opponents’ play might change as a result of the agent’s own play.
This is true for stationary opponents, and might be a reasonable approximation in
the context of a large number of opponents (such as in a public securities market),
but less in the context of a small number of agents, of the sort game theory tends
to focus on. For example, in the finitely-repeated Prisoner’s Dilemma game, the
only strategy exhibiting no regret is to always defect. This precludes strategies
that capitalize on cooperative behavior by the opponent, such as Tit-for-Tat. In this
connection see our earlier discussion of the inseparability of learning and teaching.

Over the years, a variety of no-regret learning techniques have been developed.
Here are tworegret matchingandsmooth fictitious play

« Regret matchingAt each time step each action is chosen with probability pro-
portional to its regret. That s,

t+1(g) — R'(s)
i ( ) - Zs/esi Rt(s,)a

(s) is the probability that agernitplays pure strategy at timet + 1.

g

t+1

%

whereo

« Smooth fictitious play Instead of playing the best response to the empirical
frequency of the opponent’s play, as fictitious play prescribes, one introduces a
perturbation that gradually diminishes over time. That is, rather than adopt at
timet+1 a pure strategy; that maximizes; (s;, P*) whereP" is the empirical

10. There are actually several versions of regret. The one described here iextdedl regretn computer
science, andinconditional regretn game theory.
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distribution of opponent’s play until time t, agenadopts a mixed strategy;
that maximizes;(s;, P*)+ Av;(o0;). HereX is any constant, and is a smooth,
concave function with boundaries at the unit simplex. For examplean be
the entropy functiony; (0;) = — > ¢ 0i(s;) log o4(s;).

Regret matching can be shown to exhibit no regret, and smooth fictitious play
approaches no regret astends to zero. The proofs are based on Blackwell's
Approachability Theorem; the notes at the end of the chapter provide pointers for
further reading on it, as well as on other no-regret techniques.

Targeted learning

No-regret learning was one approach to ensuring good rewards, but as we discussed
this sense of “good” has some drawbacks. Here we discuss an alternative sense of
“good,” which retains the requirement 