
M ULTIAGENT SYSTEMS

Algorithmic, Game-Theoretic,
and Logical Foundations

Yoav Shoham

Stanford University

Kevin Leyton-Brown

University of British Columbia

Revision 1.1

Multiagent Systems is copyright © Shoham and Leyton-Brown, 2009, 2010. This version is
formatted differently than the book—and in particular has different page numbering—and has
not been fully copy edited. Please treat the printed book as the definitive version.

You are invited to use this electronic copy without restriction for on-screen viewing, but are
requested to print it only under one of the following circumstances:

• You live in a place that does not offer you access to the physical book;
• The cost of the book is prohibitive for you;
• You need only one or two chapters.

Finally, we ask you not to link directly to the PDF or to distribute it electronically. Instead, we
invite you to link tohttp://www.masfoundations.org. This will allow us to gauge the level of
interest in the book and to update the PDF to keep it consistent with reprintings of the book.

http://www.masfoundations.org

i

To my wife Noa and my daughters Maia, Talia and Ella —YS

To Jude —KLB

Contents

Credits and Acknowledgments xi

Introduction xiii

1 Distributed Constraint Satisfaction 1

1.1 Defining distributed constraint satisfaction problems 2
1.2 Domain-pruning algorithms 4
1.3 Heuristic search algorithms 8

1.3.1 The asynchronous backtracking algorithm 10
1.3.2 A simple example 12
1.3.3 An extended example: the four queens problem 13
1.3.4 Beyond the ABT algorithm 17

1.4 History and references 18

2 Distributed Optimization 19

2.1 Distributed dynamic programming for path planning 19
2.1.1 Asynchronous dynamic programming 19
2.1.2 Learning real-time A∗ 20

2.2 Action selection in multiagent MDPs 22
2.3 Negotiation, auctions and optimization 28

2.3.1 From contract nets to auction-like optimization 28
2.3.2 The assignment problem and linear programming 30
2.3.3 The scheduling problem and integer programming 36

2.4 Social laws and conventions 44
2.5 History and references 46

3 Introduction to Noncooperative Game Theory: Games in Normal Form 47

3.1 Self-interested agents 47
3.1.1 Example: friends and enemies 48
3.1.2 Preferences and utility 49

3.2 Games in normal form 54
3.2.1 Example: the TCP user’s game 54

iv Contents

3.2.2 Definition of games in normal form 55
3.2.3 More examples of normal-form games 56
3.2.4 Strategies in normal-form games 59

3.3 Analyzing games: from optimality to equilibrium 60
3.3.1 Pareto optimality 61
3.3.2 Defining best response and Nash equilibrium 62
3.3.3 Finding Nash equilibria 63
3.3.4 Nash’s theorem: proving the existence of Nash equilibria 65

3.4 Further solution concepts for normal-form games 73
3.4.1 Maxmin and minmax strategies 73
3.4.2 Minimax regret 76
3.4.3 Removal of dominated strategies 78
3.4.4 Rationalizability 81
3.4.5 Correlated equilibrium 83
3.4.6 Trembling-hand perfect equilibrium 85
3.4.7 ǫ-Nash equilibrium 85

3.5 History and references 87

4 Computing Solution Concepts of Normal-Form Games 89

4.1 Computing Nash equilibria of two-player, zero-sum games 89
4.2 Computing Nash equilibria of two-player, general-sum games 91

4.2.1 Complexity of computing a sample Nash equilibrium 91
4.2.2 An LCP formulation and the Lemke–Howson algorithm 93
4.2.3 Searching the space of supports 101
4.2.4 Beyond sample equilibrium computation 104

4.3 Computing Nash equilibria ofn-player, general-sum games 105
4.4 Computing maxmin and minmax strategies for two-player, general-sum games 108
4.5 Identifying dominated strategies 108

4.5.1 Domination by a pure strategy 109
4.5.2 Domination by a mixed strategy 110
4.5.3 Iterated dominance 112

4.6 Computing correlated equilibria 113
4.7 History and references 115

5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form
117

5.1 Perfect-information extensive-form games 117
5.1.1 Definition 118
5.1.2 Strategies and equilibria 119
5.1.3 Subgame-perfect equilibrium 121
5.1.4 Computing equilibria: backward induction 124

5.2 Imperfect-information extensive-form games 130
5.2.1 Definition 130

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Contents v

5.2.2 Strategies and equilibria 131
5.2.3 Computing equilibria: the sequence form 134
5.2.4 Sequential equilibrium 142

5.3 History and references 145

6 Richer Representations: Beyond the Normal and Extensive Forms 147

6.1 Repeated games 148
6.1.1 Finitely repeated games 149
6.1.2 Infinitely repeated games 150
6.1.3 “Bounded rationality": repeated games played by automata 153

6.2 Stochastic games 159
6.2.1 Definition 160
6.2.2 Strategies and equilibria 160
6.2.3 Computing equilibria 162

6.3 Bayesian games 163
6.3.1 Definition 164
6.3.2 Strategies and equilibria 167
6.3.3 Computing equilibria 170
6.3.4 Ex postequilibrium 173

6.4 Congestion games 174
6.4.1 Definition 174
6.4.2 Computing equilibria 175
6.4.3 Potential games 176
6.4.4 Nonatomic congestion games 178
6.4.5 Selfish routing and the price of anarchy 180

6.5 Computationally motivated compact representations 185
6.5.1 The expected utility problem 185
6.5.2 Graphical games 188
6.5.3 Action-graph games 190
6.5.4 Multiagent influence diagrams 192
6.5.5 GALA 195

6.6 History and references 196

7 Learning and Teaching 199

7.1 Why the subject of “learning” is complex 199
7.1.1 The interaction between learning and teaching 199
7.1.2 What constitutes learning? 201
7.1.3 If learning is the answer, what is the question? 202

7.2 Fictitious play 206
7.3 Rational learning 211
7.4 Reinforcement learning 215

7.4.1 Learning in unknown MDPs 215
7.4.2 Reinforcement learning in zero-sum stochastic games 216
7.4.3 Beyond zero-sum stochastic games 219

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

vi Contents

7.4.4 Belief-based reinforcement learning 220
7.5 No-regret learning and universal consistency 220
7.6 Targeted learning 222
7.7 Evolutionary learning and other large-population models 224

7.7.1 The replicator dynamic 224
7.7.2 Evolutionarily stable strategies 228
7.7.3 Agent-based simulation and emergent conventions 230

7.8 History and references 233

8 Communication 235

8.1 “Doing by talking” I: cheap talk 235
8.2 “Talking by doing”: signaling games 239
8.3 “Doing by talking” II: speech-act theory 241

8.3.1 Speech acts 242
8.3.2 Rules of conversation 243
8.3.3 A game-theoretic view of speech acts 245
8.3.4 Applications 248

8.4 History and references 251

9 Aggregating Preferences: Social Choice 253

9.1 Introduction 253
9.1.1 Example: plurality voting 253

9.2 A formal model 254
9.3 Voting 256

9.3.1 Voting methods 256
9.3.2 Voting paradoxes 258

9.4 Existence of social functions 260
9.4.1 Social welfare functions 260
9.4.2 Social choice functions 263

9.5 Ranking systems 267
9.6 History and references 271

10 Protocols for Strategic Agents: Mechanism Design 273

10.1 Introduction 273
10.1.1 Example: strategic voting 273
10.1.2 Example: buying a shortest path 274

10.2 Mechanism design with unrestricted preferences 275
10.2.1 Implementation 276
10.2.2 The revelation principle 277
10.2.3 Impossibility of general, dominant-strategy implementation 280

10.3 Quasilinear preferences 280
10.3.1 Risk attitudes 281
10.3.2 Mechanism design in the quasilinear setting 284

10.4 Efficient mechanisms 288

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Contents vii

10.4.1 Groves mechanisms 288
10.4.2 The VCG mechanism 292
10.4.3 VCG and individual rationality 295
10.4.4 VCG and weak budget balance 296
10.4.5 Drawbacks of VCG 297
10.4.6 Budget balance and efficiency 301
10.4.7 The AGV mechanism 302

10.5 Beyond efficiency 303
10.5.1 What else can be implemented in dominant strategies? 303
10.5.2 Tractable Groves mechanisms 305

10.6 Computational applications of mechanism design 307
10.6.1 Task scheduling 307
10.6.2 Bandwidth allocation in computer networks 309
10.6.3 Multicast cost sharing 312
10.6.4 Two-sided matching 316

10.7 Constrained mechanism design 321
10.7.1 Contracts 322
10.7.2 Bribes 323
10.7.3 Mediators 324

10.8 History and references 326

11 Protocols for Multiagent Resource Allocation: Auctions 329

11.1 Single-good auctions 329
11.1.1 Canonical auction families 330
11.1.2 Auctions as Bayesian mechanisms 332
11.1.3 Second-price, Japanese, and English auctions 333
11.1.4 First-price and Dutch auctions 335
11.1.5 Revenue equivalence 337
11.1.6 Risk attitudes 340
11.1.7 Auction variations 341
11.1.8 “Optimal” (revenue-maximizing) auctions 343
11.1.9 Collusion 345
11.1.10 Interdependent values 348

11.2 Multiunit auctions 351
11.2.1 Canonical auction families 351
11.2.2 Single-unit demand 352
11.2.3 Beyond single-unit demand 355
11.2.4 Unlimited supply: random sampling auctions 357
11.2.5 Position auctions 359

11.3 Combinatorial auctions 361
11.3.1 Simple combinatorial auction mechanisms 363
11.3.2 The winner determination problem 364
11.3.3 Expressing a bid: bidding languages 368
11.3.4 Iterative mechanisms 373

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

viii Contents

11.3.5 A tractable mechanism 375
11.4 Exchanges 377

11.4.1 Two-sided auctions 377
11.4.2 Prediction markets 378

11.5 History and references 380

12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory 383

12.1 Coalitional games with transferable utility 383
12.1.1 Definition 384
12.1.2 Examples 384
12.1.3 Classes of coalitional games 386

12.2 Analyzing coalitional games 387
12.2.1 The Shapley value 388
12.2.2 The core 391
12.2.3 Refining the core:ǫ-core, least core, and nucleolus 394

12.3 Compact representations of coalitional games 397
12.3.1 Weighted majority games and weighted voting games 398
12.3.2 Weighted graph games 399
12.3.3 Capturing synergies: a representation for superadditive games 401
12.3.4 A decomposition approach: multi-issue representation 402
12.3.5 A logical approach: marginal contribution nets 403

12.4 Further directions 405
12.4.1 Alternative coalitional game models 405
12.4.2 Advanced solution concepts 407

12.5 History and references 407

13 Logics of Knowledge and Belief 409

13.1 The partition model of knowledge 409
13.1.1 Muddy children and warring generals 409
13.1.2 Formalizing intuitions about the partition model 410

13.2 A detour to modal logic 413
13.2.1 Syntax 414
13.2.2 Semantics 414
13.2.3 Axiomatics 415
13.2.4 Modal logics with multiple modal operators 416
13.2.5 Remarks about first-order modal logic 416

13.3 S5: An axiomatic theory of the partition model 417
13.4 Common knowledge, and an application to distributed systems 420
13.5 Doing time, and an application to robotics 423

13.5.1 Termination conditions for motion planning 423
13.5.2 Coordinating robots 427

13.6 From knowledge to belief 429
13.7 Combining knowledge and belief (and revisiting knowledge) 431
13.8 History and references 436

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Contents ix

14 Beyond Belief: Probability, Dynamics and Intention 437
14.1 Knowledge and probability 437
14.2 Dynamics of knowledge and belief 442

14.2.1 Belief revision 442
14.2.2 Beyond AGM: update, arbitration, fusion, and friends 448
14.2.3 Theories of belief change: a summary 453

14.3 Logic, games, and coalition logic 453
14.4 Towards a logic of “intention” 455

14.4.1 Some preformal intuitions 456
14.4.2 The road to hell: elements of a formal theory of intention 458
14.4.3 Group intentions 461

14.5 History and references 463

Appendices: Technical Background 465

A Probability Theory 467
A.1 Probabilistic models 467
A.2 Axioms of probability theory 467
A.3 Marginal probabilities 468
A.4 Conditional probabilities 468

B Linear and Integer Programming 469
B.1 Linear programs 469
B.2 Integer programs 471

C Markov Decision Problems (MDPs) 475
C.1 The model 475
C.2 Solving known MDPs via value iteration 475

D Classical Logic 477
D.1 Propositional calculus 477
D.2 First-order logic 478

Bibliography 481

Index 503

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

Credits and Acknowledgments

We should start off by explaining the order of authorship. Yoav conceived of the
project, and started it, in late 2001, working on it alone and with several colleagues
(see below). Sometime in 2004 Yoav realized he needed help if the project were
ever to come to conclusion, and he enlisted the help of Kevin. The result was a true
partnership and a complete overhaul of the material. The current book is vastly
different from the draft that existed when the partnership was formed—in depth,
breadth, and form. Yoav and Kevin have made equal contributions to the book; the
order of authorship reflects the history of the book, but nothing else.

In six years of book-writing we accumulated many debts. The following is our
best effort to acknowledge those. If we omit any names it is due solely to our poor
memories and record keeping, and we apologize in advance.

When the book started out, Teg Grenager served as a prolific ghost writer. While
little of the original writing remains (though some does, for example, in Sec-
tion 8.3.1 on speech acts), the project would not have gotten off the ground without
him.

Several past and present graduate students made substantial contributions. Chap-
ter 12 (coalitional games) is based entirely on writing by Sam Ieong, who was also
closely involved in the editing. Section 3.3.4 (the existence of Nash equilibria) and
parts of Section 6.5 (compact game representations) are based entirely on writing
by Albert Xin Jiang, who also worked extensively with us to refine the material. Al-
bert also contributed to the proof of Theorem 3.4.4 (the minmax theorem). Some
of the material in Chapter 4 on computing solution concepts is based on writing by
Ryan Porter, who also contributed much of the material in Section 6.1.3 (bounded
rationality). The material in Chapter 7 (multiagent learning) is based in part on
joint work with Rob Powers, who also contributed text. Section 10.6.4 (mecha-
nisms for matching) is based entirely on text by Baharak Rastegari, and David R.
M. Thompson contributed material to Sections 10.6.3 (mechanisms for multicast
routing) and 6.3.4 (ex postequilibria). Finally, all of the past and present students
listed here offered invaluable comments on drafts. Other students also offered
valuable comments. Samantha Leung deserves special mention; we also received
useful feedback from Michael Cheung, Matthew Chudek, Farhad Ghassemi, Ryan
Golbeck, James Wright, and Erik Zawadzki. We apologize in advance to any others
whose names we have missed.

Several of our colleagues generously contributed material to the book, in addi-

xii Credits and Acknowledgments

tion to lending their insight. They include Geoff Gordon (Matlab code to generate
Figure 3.13, showing the saddle point for zero-sum games), Carlos Guestrin (ma-
terial on action selection in distributed MDPs in Section 2.2, and Figure 1.1, show-
ing a deployed sensor network), Michael Littman (Section 5.1.4 on computing all
subgame-perfect equilibria), Amnon Meisels (much of the material on heuristic
distributed constraint satisfaction in Chapter 1), Marc Pauly (material on coalition
logic in Section 14.3), Christian Shelton (material on computing Nash equilibria
for n-player games in Section 4.3), and Moshe Tennenholtz (material on restricted
mechanism design in Section 10.7). We thank Éva Tardos and Tim Roughgar-
den for making available notes that we drew on for our proofs of Lemma 3.3.14
(Sperner’s lemma) and Theorem 3.3.21 (Brouwer’s fixed-point theorem for simplo-
topes), respectively.

Many colleagues around the world generously gave us comments on drafts, or
provided counsel otherwise. Felix Brandt and Vince Conitzer deserve special men-
tion for their particularly detailed and insightful comments. Other colleagues to
whom we are indebted include Alon Altman, Krzysztof Apt, Navin A. R. Bhat, Ro-
nen Brafman, Yiling Chen, Konstantinos Daskalakis, Yossi Feinberg, Jeff Fletcher,
Nando de Freitas, Raul Hakli, Joe Halpern, Jason Hartline, Jean-Jacques Herings,
Ramesh Johari, Bobby Kleinberg, Daphne Koller, Fangzhen Lin, David Parkes,
David Poole, Maurice Queyranne, Tim Roughgarden, Tuomas Sandholm, Peter
Stone, Nikos Vlasis, Mike Wellman, Bob Wilson, Mike Wooldridge, and Dongmo
Zhang.

Many others pointed out errors in the first printing of the book through our er-
rata wiki: B.J.Buter, Nicolas Dudebout, Marco Guazzone, Joel Kammet, Nicolas
Lambert, Nimalan Mahendran, Mike Rogers, Ivomar Brito Soares, Michael Styer,
Sean Sutherland, Grigorios Tsoumakas, Steve Wolfman, and James Wright.

Several people provided critical editorial and production assistance of various
kinds. Most notably, David R. M. Thompson overhauled our figures, code format-
ting, bibliography and index. Chris Manning was kind enough to let us use the
LATEX macros from his own book, and Ben Galin added a few miracles of his own.
Ben also composed several of the examples, found some bugs, drew many figures,
and more generally for two years served as an intelligent jack of all trades on this
project. Erik Zawadzki helped with the bibliography and with some figures. Maia
Shoham helped with some historical notes and bibliography entries, as well as with
some copy-editing.

We thank all these friends and colleagues. Their input has contributed to a better
book, but of course they are not to be held accountable for any remaining short-
comings. We claim sole credit for those.

We also thank Cambridge University Press for publishing the book, and for their
enlightened online-publishing policy which has enabled us to provide the broad-
est possible access to it. Specific thanks to Lauren Cowles, an editor of unusual
intelligence, good judgment, and sense of humor.

Last, and certainly not the least, we thank our families, for supporting us through
this time-consuming project. We dedicate this book to them, with love.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Introduction

Imagine a personal software agent engaging in electronic commerce on your behalf.
Say the task of this agent is to track goods available for sale in various online
venues over time, and to purchase some of them on your behalf for an attractive
price. In order to be successful, your agent will need to embody your preferences
for products, your budget, and in general your knowledge about the environment
in which it will operate. Moreover, the agent will need to embody your knowledge
of other similar agents with which it will interact (e.g., agents who might compete
with it in an auction, or agents representing store owners)—including their own
preferences and knowledge. A collection of such agents forms a multiagent system.
The goal of this book is to bring under one roof a variety of ideas and techniques
that provide foundations for modeling, reasoning about, and building multiagent
systems.

Somewhat strangely for a book that purports to be rigorous, we will not give
a precise definition of a multiagent system. The reason is that many competing,
mutually inconsistent answers have been offered in the past. Indeed, even the
seemingly simpler question—What is a (single) agent?—has resisted a definitive
answer. For our purposes, the following loose definition will suffice: Multiagent
systems are those systems that include multiple autonomous entities with either
diverging information or diverging interests, or both.

Scope of the book

The motivation for studying multiagent systems often stems from interest in ar-
tificial (software or hardware) agents, for example software agents living on the
Internet. Indeed, the Internet can be viewed as the ultimate platform for interac-
tion among self-interested, distributed computational entities. Such agents can be
trading agents of the sort discussed above, “interface agents” that facilitate the in-
teraction between the user and various computational resources (including other
interface agents), game-playing agents that assist (or replace) human players in a
multiplayer game, or autonomous robots in a multi-robot setting. However, while
the material is written by computer scientists with computational sensibilities, it is
quite interdisciplinary and the material is in general fairly abstract. Many of the
ideas apply to—and indeed are often taken from—inquiries about human individu-
als and institutions.

xiv Introduction

The material spans disciplines as diverse as computer science (including arti-
ficial intelligence, theory, and distributed systems), economics (chiefly microe-
conomic theory), operations research, analytic philosophy, and linguistics. The
technical material includes logic, probability theory, game theory, and optimiza-
tion. Each of the topics covered easily supports multiple independent books and
courses, and this book does not aim to replace them. Rather, the goal has been
to gather the most important elements from each discipline and weave them to-
gether into a balanced and accurate introduction to this broad field. The intended
reader is a graduate student or an advanced undergraduate, prototypically, but not
necessarily, in computer science.

Since the umbrella of multiagent systems is so broad, the questions of what to
include in any book on the topic and how to organize the selected material are
crucial. To begin with, this book concentrates on foundational topics rather than
surface applications. Although we will occasionally make reference to real-world
applications, we will do so primarily to clarify the concepts involved; this is despite
the practical motivations professed earlier. And so this is the wrong text for the
reader interested in a practical guide into building this or that sort of software. The
emphasis is rather on important concepts and the essential mathematics behind
them. The intention is to delve in enough detail into each topic to be able to tackle
some technical material, and then to point the reader in the right directions for
further education on particular topics.

Our decision was thus to include predominantly established, rigorous material
that is likely to withstand the test of time, and to emphasize computational perspec-
tives where appropriate. This still left us with vast material from which to choose.
In understanding the selection made here, it is useful to keep in mind the following
keywords:coordination, competition, algorithms, game theory, andlogic. These
terms will help frame the chapter overview that follows.

Overview of the chapters

Starting with issues of coordination, we begin inChapter 1 andChapter 2 with
distributed problem solving. In these multiagent settings there is no question of
agents’ individual preferences; there is some global problem to be solved, but
for one reason or another it is either necessary or advantageous to distribute the
task among multiple agents, whose actions may require coordination. These chap-
ters are thus strongly algorithmic. The first one looks at distributed constraint-
satisfaction problems. The latter addresses distributed optimization and specifically
examines four algorithmic methods: distributed dynamic programming, action se-
lection in distributed MDPs, auction-like optimization procedures for linear and
integer programming, and social laws.

We then begin to embrace issues of competition as well as coordination. While
the area of multiagent systems is not synonymous with game theory, there is no
question that game theory is a key tool to master within the field, and so we devote

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

xv

several chapters to it.Chapters 3, 5 and6 constitute a crash course in noncooper-
ative game theory. They cover, respectively, the normal form, the extensive form,
and a host of other game representations. In these chapters, as in others which draw
on game theory, we culled the material that in our judgment is needed in order to be
a knowledgeable consumer of modern-day game theory. Unlike traditional game
theory texts, we also include discussion of algorithmic considerations. In the con-
text of the normal-form representation that material is sufficiently substantial to
warrant its own chapter,Chapter 4.

We then switch to two specialized topics in multiagent systems. InChapter 7
we cover multiagent learning. The topic is interesting for several reasons. First,
it is a key facet of multiagent systems. Second, the very problems addressed in
the area are diverse and sometimes ill understood. Finally, the techniques used,
which draw equally on computer science and game theory (as well as some other
disciplines), are not straightforward extensions of learning in the single-agent case.

In Chapter 8 we cover another element unique to multiagent systems, com-
munication. We cover communication in a game-theoretic setting, as well as in
cooperative settings traditionally considered by linguists and philosophers (except
that we see that there too a game-theoretic perspective can creep in).

Next is a three-chapter sequence that might be called “protocols for groups."
Chapters 9covers social-choice theory, including voting methods. This is a non-
strategic theory, in that it assumes that the preferences of agents are known, and
the only question is how to aggregate them properly.Chapter 10 covers mecha-
nism design, which looks at how such preferences can be aggregated by a central
designer even when agentsare strategic. Finally,Chapter 11 looks at the special
case of auctions.

Chapter 12covers coalitional game theory, in recent times somewhat neglected
within game theory and certainly underappreciated in computer science.

The material in Chapters 1–12 is mostly Bayesian and/or algorithmic in nature.
And thus the tools used in them include probability theory, utility theory, algo-
rithms, Markov decision problems (MDPs), and linear/integer programming. We
conclude with two chapters on logical theories in multiagent systems. InChap-
ter 13 we cover modal logic of knowledge and belief. This material hails from
philosophy and computer science, but it turns out to dovetail very nicely with the
discussion of Bayesian games in Chapter 6. Finally, inChapter 14 we extend the
discussion in several directions—we discuss how beliefs change over time, on log-
ical models of games, and how one might begin to use logic to model motivational
attitudes (such as “intention”) in addition to the informational ones (knowledge,
belief).

Required background

The book is rigorous and requires mathematical thinking, but only basic back-
ground knowledge. In much of the book we assume knowledge of basic computer

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

xvi Introduction

science (algorithms, complexity) and basic probability theory. In more technical
parts we assume familiarity with Markov decision problems (MDPs), mathemati-
cal programming (specifically, linear and integer programming), and classical logic.
All of these (except basic computer science) are covered briefly inappendices, but
those are meant as refreshers and to establish notation, not as a substitute for back-
ground in those subjects. (This is true in particular of probability theory.) However,
above all, a prerequisite is a capacity for clear thinking.

How to teach (and learn) from this book

There are partial dependencies among the 13 chapters. To understand them, it is
useful to think of the book as consisting of the following “blocks".

Block 1, Chapters 1–2: Distributed problem solving

Block 2, Chapters 3–6: Noncooperative game theory

Block 3, Chapter 7: Learning

Block 4, Chapter 8: Communication

Block 5, Chapters 9–11: Protocols for groups

Block 6, Chapter 12: Coalitional game theory

Block 7, Chapters 13–14: Logical theories

Within every block there is a sequential dependence (except within Block 1,
in which the sections are largely independent of each other). Among the blocks,
however, there is only one strong dependence: Blocks 3, 4, and 5 each depend on
some elements of noncooperative game theory and thus on block 2 (though none
requires the entire block). Otherwise there are some interesting local pairwise
connections between blocks, but none that requires that both blocks be covered,
whether sequentially or in parallel.

Given this weak dependence among the chapters, there are many ways to craft
a course out of the material, depending on the background of the students, their
interests, and the time available. The book’s Web site

http://www.masfoundations.org

contains several specific syllabi that have been used by us and other colleagues, as
well as additional resources for both students and instructors.

On pronouns and gender

We use male pronouns to refer to agents throughout the book. We debated this
between us, not being happy with any of the alternatives. In the end we reluctantly

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

http://www.masfoundations.org

xvii

settled on the “standard” male convention rather than the reverse female convention
or the grammatically dubious “they.” We urge the reader not to read patriarchal
intentions into our choice.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

1 Distributed Constraint Satisfaction

In this chapter and the next we discuss cooperative situations in which agents col-
laborate to achieve a common goal. This goal can be viewed as shared between
the agents or, alternatively, as the goal of a central designer who is designing the
various agents. Of course, if such a designer exists, a natural question is why it
matters that there are multiple agents; they can be viewed merely as end sensors
and effectors for executing the plan devised by the designer. However, there exist
situations in which a problem needs to be solved in a distributed fashion, either
because a central controller is not feasible or because one wants to make good
use of the distributed resources. A good example is provided bysensor networks.sensor network
Such networks consist of multiple processing units, each with local sensor capabil-
ities, limited processing power, limited power supply, and limited communication
bandwidth. Despite these limitations, these networks aim to provide some global
service. Figure 1.1 shows an example of a fielded sensor network used for mon-
itoring environmental quantities like humidity, temperature and pressure in an of-
fice environment. Each sensor can monitor only its local area and, similarly, can
communicate only with other sensors in its local vicinity. The question is what al-
gorithm the individual sensors should run so that the center can still piece together
a reliable global picture.

Distributed algorithms have been widely studied in computer science. We con-
centrate on distributed problem-solving algorithms of the sort studied in artificial
intelligence. We divide the discussion into two parts. In this chapter we cover
distributed constraint satisfaction, where agents attempt in a distributed fashion to
find a feasible solution to a problem with global constraints. In the next chapter
we look at agents who try not only to satisfy constraints, but also to optimize some
objective function subject to these constraints.

Later in this book we will encounter additional examples of distributed problem
solving. Each of them requires specific background, however, which is why they
are not discussed here. Two of them stand out in particular.

• In Chapter 7 we encounter a family of techniques that involve learning, some
of them targeted at purely cooperative situations. In these situations the agents
learn through repeated interactions how to coordinate a choice of action. This
material requires some discussion of noncooperative game theory (discussed in

2 1 Distributed Constraint Satisfaction

SERVER

LAB

PHONEQUIET

Figure 1.1: Part of a real sensor network used for indoor environmental monitoring.

Chapter 3) as well as general discussion of multiagent learning (discussed in
Chapter 7).

• In Chapter 13 we discuss the use of logics of knowledge (introduced in that
chapter) to establish the knowledge conditions required for coordination, in-
cluding an application to distributed control of multiple robots.

1.1 Defining distributed constraint satisfaction problems

A constraint satisfaction problem (CSP)is defined by a set of variables, domainsconstraint
satisfaction
problem (CSP)

for each of the variables, and constraints on the values that the variables might take
on simultaneously. The role of constraint satisfaction algorithms is to assign values
to the variables in a way that is consistent with all the constraints, or to determine
that no such assignment exists.

Constraint satisfaction techniques have been applied in diverse domains, includ-
ing machine vision, natural language processing, theorem proving, and planning
and scheduling, to name but a few. Here is a simple example taken from the do-
main of sensor networks. Figure 1.2 depicts a three-sensor snippet from the sce-
nario illustrated in Figure 1.1. Each of the sensors has a certain radius that, in
combination with the obstacles in the environment, gives rise to a particular cover-

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.1 Defining distributed constraint satisfaction problems 3

age area. These coverage areas are shown as ellipses in Figure 1.2. As you can see,
some of the coverage areas overlap. We consider a specific problem in this setting.
Suppose that each sensor can choose one of three possible radio frequencies. All
the frequencies work equally well so long as no two sensors with overlapping cov-
erage areas use the same frequency. The question is which algorithms the sensors
should employ to select their frequencies, assuming that this decision cannot be
made centrally.

Figure 1.2: A simple sensor net problem.

The essence of this problem can be captured as a graph-coloring problem. Fig-
ure 1.3 shows such a graph, corresponding to the sensor network CSP above. The
nodes represent the individual units; the different frequencies are represented by
colors; and two nodes are connected by an undirected edge if and only if the cov-
erage areas of the corresponding sensors overlap. The goal of graph coloring is to
choose one color for each node so that no two adjacent nodes have the same color.

����

����

�����
�

�
�

�
�� S

S
S

S
S

SS

X1

X2 X3

{ red, blue, green}

{red, blue, green} {red, blue, green}6=

6= 6=

Figure 1.3: A graph-coloring problem equivalent to the sensor net problem of Fig-
ure 1.2.

Formally speaking, a CSP consists of a finite set of variablesX = {X1, . . . ,Xn},

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

4 1 Distributed Constraint Satisfaction

a domainDi for each variableXi, and a set of constraints{C1, . . . , Cm}. Al-
though in general CSPs allow infinite domains, we assume here that all the domains
are finite. In the graph-coloring example above there were three variables, and they
each had the same domain,{red, green, blue}. Each constraint is a predicate on
some subset of the variables, say,Xi1 , . . . ,Xij

; the predicate defines a relation
that is a subset of the Cartesian productDi1 × · · · × Dij

. Each such constraint
restricts the values that may be simultaneously assigned to the variables participat-
ing in the constraint. In this chapter we restrict the discussion tobinaryconstraints,
each of which constrains exactly two variables. For example, in the map-coloring
case, each “not-equal” constraint applied to two nodes.

Given a subsetS of the variables, aninstantiation ofS is an assignment of a
unique domain value for each variable inS; it is legal if it does not violate any
constraint that mentions only variables inS. A solution to a network is a legal
instantiation of all variables. Typical tasks associated with constraint networks are
to determine whether a solution exists, to find one or all solutions, to determine
whether a legal instantiation of some of the variables can be extended to a solution,
and so on. We will concentrate on the most common task, which is to find one
solution to a CSP, or to prove that none exists.

In a distributedCSP, each variable is owned by a different agent. The goal is
still to find a global variable assignment that meets the constraints, but each agent
decides on the value of his own variable with relative autonomy. While he does
not have a global view, each agent can communicate with his neighbors in the
constraint graph. A distributed algorithm for solving a CSP has each agent engage
in some protocol that combines local computation with communication with his
neighbors. A good algorithm ensures that such a process terminates with a legal
solution (or with a realization that no legal solution exists) and does so quickly.

We discuss two types of algorithms. Algorithms of the first kind embody a least-
commitment approach and attempt to rule out impossible variable values without
losing any possible solutions. Algorithms of the second kind embody a more adven-
turous spirit and select tentative variable values, backtracking when those choices
prove unsuccessful. In both cases we assume that the communication between
neighboring nodes is perfect, but nothing about its timing; messages can take more
or less time without rhyme or reason. We do assume, however, that if nodei sends
multiple messages to nodej, those messages arrive in the order in which they were
sent.

1.2 Domain-pruning algorithms

Under domain-pruning algorithms, nodes communicate with their neighbors in or-
der to eliminate values from their domains. We consider two such algorithms. In
the first, thefiltering algorithm, each node communicates its domain to its neigh-filtering

algorithm bors, eliminates from its domain the values that are not consistent with the values
received from the neighbors, and the process repeats. Specifically, each nodexi

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.2 Domain-pruning algorithms 5

with domainDi repeatedly executes the procedureRevise(xi, xj) for each neigh-
borxj .

procedure Revise(xi, xj)
forall vi ∈ Di do

if there is no valuevj ∈ Dj such thatvi is consistent withvj then
deletevi fromDi

The process, known also under the general termarc consistency, terminatesarc consistency
when no further elimination takes place, or when one of the domains becomes
empty (in which case the problem has no solution). If the process terminates with
one value in each domain, that set of values constitutes a solution. If it terminates
with multiple values in each domain, the result is inconclusive; the problem might
or might not have a solution.

Clearly, the algorithm is guaranteed to terminate, and furthermore it is sound (in
that if it announces a solution, or announces that no solution exists, it is correct), but
it is not complete (i.e., it may fail to pronounce a verdict). Consider, for example,
the family of very simple graph-coloring problems shown in Figure 1.4. (Note that
problem (d) is identical to the problem in Figure 1.3.)

�
�� �
��

�
�� �
��

�
�� �
��

�
�� �
��

�
�� �
��

�
�� �
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

S
S

S
S

SS

S
S

S
S

SS

S
S

S
S

SS

S
S

S
S

SS

X1 X1

X1 X1

X2 X2

X2 X2

X3 X3

X3 X3

6= 6=

6= 6=

6= 6=

6= 6=

6= 6=

6= 6=

(d)(c)

(b)(a)

{red, blue, green}

{red, blue, green} {red, blue, green}

{red}

{red, blue} {red, blue}

{red, blue}

{red, blue} {red, blue}

{red}

{red, blue} {red, blue, green}

Figure 1.4: A family of graph coloring problems

In this family of CSPs the three variables (i.e., nodes) are fixed, as are the “not-

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

6 1 Distributed Constraint Satisfaction

equal” constraints between them. What are not fixed are the domains of the vari-
ables. Consider the four instances of Figure 1.4.

(a) Initially, as the nodes communicate with one another, onlyx1’s messages
result in any change. Specifically, when eitherx2 or x3 receivex1’s message
they removered from their domains, ending up withD2 = {blue} andD3 =
{blue, green}. Then, whenx2 communicates his new domain tox3, x3 further
reduces his domain to{green}. At this point no further changes take place and
the algorithm terminates with a correct solution.

(b) The algorithm starts as before, but oncex2 andx3 receivex1’s message they
each reduce their domains to{blue}. Now, when they update each other on
their new domains, they each reduce their domains to{}, the empty set. At this
point the algorithm terminates and correctly announces that no solution exists.

(c) In this case the initial set of messages yields no reduction in any domain. The
algorithm terminates, but all the nodes have multiple values remaining. And so
the algorithm is not able to show that the problem is overconstrained and has no
solution.

(d) Filtering can also fail when a solution exists. For similar reasons as in instance
(c), the algorithm is unable to show that in this case the problemdoeshave a
solution.

In general, filtering is a very weak method and, at best, is used as a preprocess-
ing step for more sophisticated methods. The algorithm is directly based on the
notion ofunit resolutionfrom propositional logic. Unit resolution is the followingunit resolution
inference rule:

A1

¬(A1 ∧A2 ∧ · · · ∧An)

¬(A2 ∧ · · · ∧An)

To see how the filtering algorithm corresponds to unit resolution, we must first
write the constraints as forbidden value combinations, calledNogoods. For exam-Nogood
ple, the constraint thatx1 andx2 cannot both take the value “red” would give rise
to the propositional sentence¬(x1 = red∧x2 = red), which we write as the No-
good{x1, x2}. In instance (b) of Figure 1.4, agentX2 updated his domain based
on agentX1’s announcement thatx1 = red and the Nogood{x1 = red, x2 =
red}.

x1 = red
¬(x1 = red ∧ x2 = red)

¬(x2 = red)

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.2 Domain-pruning algorithms 7

Unit resolution is a weak inference rule, and so it is not surprising that the filter-
ing algorithm is weak as well.Hyper-resolutionis a generalization of unit resolu-hyper-resolution
tion and has the following form:

A1 ∨A2 ∨ · · · ∨Am

¬(A1 ∧A1,1 ∧A1,2 ∧ · · ·)
¬(A2 ∧A2,1 ∧A2,2 ∧ · · ·)
...
¬(Am ∧Am,1 ∧Am,2 ∧ · · ·)

¬(A1,1 ∧ · · · ∧A2,1 ∧ · · · ∧Am,1 ∧ · · ·)

Hyper-resolution is both sound and complete for propositional logic, and indeed
it gives rise to a complete distributed CSP algorithm. In this algorithm, each agent
repeatedly generates new constraints for his neighbors, notifies them of these new
constraints, and prunes his own domain based on new constraints passed to him by
his neighbors. Specifically, he executes the following algorithm, whereNGi is the
set of all Nogoods of which agenti is aware andNG∗

j is a set of new Nogoods
communicated from agentj to agenti.

procedure ReviseHR(NGi,NG
∗
j)

repeat
NGi ← NGi

⋃
NG∗

j

letNG∗
i denote the set of new Nogoods thati can derive fromNGi and

his domain using hyper-resolution
if NG∗

i is nonemptythen
NGi ← NGi

⋃
NG∗

i

send the NogoodsNG∗
i to all neighbors ofi

if {} ∈ NG∗
i then

stop

until there is no change ini’s set of NogoodsNGi

The algorithm is guaranteed to converge in the sense that after sending and re-
ceiving a finite number of messages, each agent will stop sending messages and
generating Nogoods. Furthermore, the algorithm is complete. The problem has
a solution iff, on completion, no agent has generated the empty Nogood. (Obvi-
ously, every superset of a Nogood is also forbidden, and thus if a single node ever
generates an empty Nogood then the problem has no solution.)

Consider again instance (c) of the CSP problem in Figure 1.4. In contrast to
the filtering algorithm, the hyper-resolution-based algorithm proceeds as follows.
Initially, x1 maintains four Nogoods—{x1 = red, x2 = red}, {x1 = red, x3 =
red},
{x1 = blue, x2 = blue}, {x1 = blue, x3 = blue}—which are derived directly

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

8 1 Distributed Constraint Satisfaction

from the constraints involvingx1. Furthermore,x1 must adopt one of the values in
his domain, sox1 = red ∨ x1 = blue. Using hyper-resolution,x1 can reason:

x1 = red ∨ x1 = blue
¬(x1 = red ∧ x2 = red)
¬(x1 = blue ∧ x3 = blue)

¬(x2 = red ∧ x3 = blue)

Thus,x1 constructs the new Nogood{x2 = red, x3 = blue}; in a similar way
he can also construct the Nogood{x2 = blue, x3 = red}. x1 then sends both
Nogoods to his neighborsx2 andx3. Using his domain, an existing Nogood and
one of these new Nogoods,x2 can reason:

x2 = red ∨ x2 = blue
¬(x2 = red ∧ x3 = blue)
¬(x2 = blue ∧ x3 = blue)

¬(x3 = blue)

Using the other new Nogood fromx1, x2 can also construct the Nogood{x3 =
red}. These two singleton Nogoods are communicated tox3 and allow him to
generate the empty Nogood. This proves that the problem does not have a solution.

This example, while demonstrating the greater power of the hyper-resolution-
based algorithm relative to the filtering algorithm, also exposes its weakness; the
number of Nogoods generated can grow to be unmanageably large. (Indeed, we
only described the minimal number of Nogoods needed to derive the empty No-
good; many others would be created as all the agents processed each other’s mes-
sages in parallel. Can you find an example?) Thus, the situation in which we find
ourselves is that we have one algorithm that is too weak and another that is im-
practical. The problem lies in the least-commitment nature of these algorithms;
they are restricted to removing only provably impossible value combinations. The
alternative to such “safe” procedures is to explore a subset of the space, making
tentative value selections for variables, and backtracking when necessary. This is
the topic of the next section. However, the algorithms we have just described are
not irrelevant; the filtering algorithm is an effective preprocessing step, and the
algorithm we discuss next is based on the hyper-resolution-based algorithm.

1.3 Heuristic search algorithms

A straightforwardcentralizedtrial-and-error solution to a CSP is to first order the
variables (e.g., alphabetically). Then, given the orderingx1, x2, . . . , xn, invoke
the procedure ChooseValue(x1, {}). The procedure ChooseValue is defined recur-
sively as follows, where{v1, v2, . . . , vi−1} is the set of values assigned to variables
x1, . . . , xi−1.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.3 Heuristic search algorithms 9

procedure ChooseValue(xi, {v1, v2, . . . , vi−1})
vi ← value from the domain ofxi that is consistent with{v1, v2, . . . , vi−1}
if no such value existsthen

backtrack1

else if i = n then
stop

else
ChooseValue(xi+1, {v1, v2, . . . , vi})

This exhaustive search of the space of assignments has the advantage of com-chronological
backtracking pleteness. But it is “distributed” only in the uninteresting sense that the different

agents execute sequentially, mimicking the execution of a centralized algorithm.
The following attempt at a distributed algorithm has the opposite properties; it

allows the agents to execute in parallel and asynchronously, is sound, but is not
complete. Consider the following naive procedure, executed by all agents in paral-
lel and asynchronously.

select a value from your domain
repeat

if your current value is consistent with the current values of your
neighbors, or if none of the values in your domain are consistent with them
then

do nothing
else

select a value in your domain that is consistent with those of your
neighbors and notify your neighbors of your new value

until there is no change in your value

Clearly, when the algorithm terminates because no constraint violations have
occurred, a solution has been found. But in all other cases, all bets are off. If the
algorithm terminates because no agent can find a value consistent with those of his
neighbors, there might still be a consistent global assignment. And the algorithm
may never terminate even if there is a solution. For example, consider example (d)
of Figure 1.4: if every agent cycles sequentially between red, green, and blue, the
algorithm will never terminate.

We have given these two straw-man algorithms for two reasons. Our first rea-
son is to show that reconciling true parallelism and asynchrony with soundness
and completeness is likely to require somewhat complex algorithms. And second,

1. There are various ways to implement the backtracking in this procedure. The most straightforward way
is to undo the choices made thus far in reverse chronological order, a procedure known aschronological
backtracking. It is well known that more sophisticated backtracking procedures can be more efficient, but
that does not concern us here.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

10 1 Distributed Constraint Satisfaction

the fundamental heuristic algorithm for distributed CSPs—the asynchronous back-
tracking (or ABT) algorithm—shares much with the two algorithms. From the firstABT algorithm
algorithm it borrows the notion of a global total ordering on the agents. From the
second it borrows a message-passing protocol, albeit a more complex one, which
relies on the global ordering. We will describe the ABT in its simplest form. After
demonstrating it on an extended example, we will point to ways in which it can be
improved upon.

1.3.1 The asynchronous backtracking algorithm

As we said, the asynchronous backtracking (ABT) algorithm assumes a total order-
ing (the “priority order") on the agents. Each binary constraint is known to both
the constrained agents and is checked in the algorithm by the agent with the lower
priority between the two. A link in the constraint network is always directed from
an agent with higher priority to an agent with lower priority.

Agents instantiate their variables concurrently and send their assigned values to
the agents that are connected to them by outgoing links. All agents wait for and
respond to messages. After each update of his assignment, an agent sends his new
assignment along all outgoing links. An agent who receives an assignment (from
the higher-priority agent of the link), tries to find an assignment for his variable
that does not violate a constraint with the assignment he received.

ok? messages are messages carrying an agent’s variable assignment. When an
agentAi receives anok? message from agentAj , Ai places the received assign-
ment in a data structure calledagent_view, which holds the last assignmentAi

received from higher-priority neighbors such asAj . Next,Ai checks if his current
assignment is still consistent with hisagent_view. If it is consistent,Ai does
nothing. If not, thenAi searches his domain for a new consistent value. If he finds
one, he assigns his variable that value and sendsok? messages to all lower-priority
agents linked to him informing them of this value. Otherwise,Ai backtracks.

The backtrack operation is executed by sending a Nogood message. Recall
that a Nogood is simply an inconsistent partial assignment, that is, assignments of
specific values to some of the variables that together violate the constraints on those
variables. In this case, the Nogood consists ofAi’sagent_view.2 The Nogood is
sent to the agent with the lowest priority among the agents whose assignments are
included in the inconsistent tuple in the Nogood. AgentAi who sends a Nogood
message to agentAj assumes thatAj will change his assignment. Therefore,Ai

removes from hisagent_view the assignment ofAj and makes an attempt to find
an assignment forAj ’s variable that is consistent with the updatedagent_view.

Because of its reliance on building up a set of Nogoods, the ABT algorithm
can be seen as a greedy version of the hyper-resolution algorithm of the previous
section. In the latter, all possible Nogoods are generated by each agent and commu-
nicated to all neighbors, even though the vast majority of these messages are not

2. We later discuss schemes that achieve better performance by avoiding always sending this entire set.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.3 Heuristic search algorithms 11

useful. Here, agents make tentative choices of a value for their variables, only gen-
erate Nogoods that incorporate values already generated by the agents above them
in the order, and—importantly—communicate new values only to some agents and
new Nogoods to only one agent.

Below is the pseudocode of the ABT algorithm, specifying the protocol for agent
Ai.

when received (Ok?, (Aj , dj)) do
add (Aj , dj) to agent_view
check_agent_view

when received (Nogood, nogood) do
addnogoodto Nogood list
forall (Ak, dk) ∈ nogood, if Ak is not a neighbor ofAi do

add (Ak, dk) to agent_view
requestAk to addAi as a neighbor

check_agent_view

procedure check_agent_view
whenagent_viewandcurrent_valueare inconsistentdo

if no value inDi is consistent withagent_viewthen
backtrack

else
selectd ∈ Di consistent withagent_view
current_value← d
send (ok?, (Ai, d)) to lower-priority neighbors

procedure backtrack
nogood← some inconsistent set, using hyper-resolution or similar procedure
if nogoodis the empty setthen

broadcast to other agents that there is no solution
terminate this algorithm

else
select(Aj, dj) ∈ nogoodwhereAj has the lowest priority innogood
send (Nogood, nogood) toAj

remove(Aj , dj) from agent_view
check_agent_view

Notice a certain wrinkle in the pseudocode, having to do with the addition of
edges. Since the Nogood can include assignments of some agentAj , whichAi was
not previously constrained with, after addingAj ’s assignment to itsagent_view

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

12 1 Distributed Constraint Satisfaction

Ai sends a message toAj asking it to addAi to its list of outgoing links. Further-
more, after adding the link,Aj sends anok? message toAi each time it reassigns
its variable. After storing the Nogood,Ai checks if its assignment is still consistent.
If it is, a message is sent to the agent the Nogood was received from. This resend-
ing of the assignment is crucial since, as mentioned earlier, the agent sending a
Nogood assumes that the receiver of the Nogood replaces its assignment. There-
fore it needs to know that the assignment is still valid. If the old assignment that
was forbidden by the Nogood is inconsistent,Ai tries to find a new assignment
similarly to the case when anok? message is received.

1.3.2 A simple example

In Section 1.3.3 we give a more elaborate example, but here is abrief illustra-
tion of the operation of the ABT algorithm on one of the simple problems en-
countered earlier. Consider again the instance (c) of the CSP in Figure 1.4, and
assume the agents are ordered alphabetically:x1, x2, x3. They initially select val-
ues at random; suppose they all selectblue. x1 notifiesx2 and x3 of his choice,
andx2 notifiesx3. x2’s local view is thus{x1 = blue}, andx3’s local view is
{x1 = blue, x2 = blue}. x2 and x3 must check for consistency of their local
views with their own values.x2 detects the conflict, changes his own value tored,
and notifiesx3. In the meantime,x3 also checks for consistency and similarly
changes his value tored; he, however, notifies no one. Thenx3 receives a second
message fromx2, and updates his local view to{x1 = blue, x2 = red}. At this
point he cannot find a value from his domain consistent with his local view, and,
using hyper resolution, generates the Nogood{x1 = blue, x2 = red}. He com-
municates this Nogood tox2, the lowest ranked agent participating in the Nogood.
x2 now cannot find a value consistent with his local view, generates the Nogood
{x1 = blue}, and communicates it tox1. x1 detects the inconsistency with his
current value, changes his value tored, and communicates the new value tox2

andx3. The process now continues as before;x2 changes his value back toblue,
x3 finds no consistent value and generates the Nogood{x1 = red, x2 = blue},
and thenx2 generates the Nogood{x1 = red}. At this pointx1 has the Nogood
{x1 = blue} as well as the Nogood{x1 = red}, and using hyper-resolution he
generates the Nogood{}, and the algorithm terminates having determined that the
problem has no solution.

The need for the addition of new edges is seen in a slightly modified example,
shown in Figure 1.5.

As in the previous example, here toox3 generates the Nogood{x1 = blue, x2 =
red} and notifiesx2. x2 is not able to regain consistency by changing his own
value. However,x1 is not a neighbor ofx2, and sox2 does not have the value
x1 = blue in his local view and is not able to send the Nogood{x1 = blue} to
x1. Sox2 sends a request tox1 to addx2 to his list of neighbors and to sendx2 his
current value. From there onward the algorithm proceeds as before.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.3 Heuristic search algorithms 13

��
��

��
��

��
��

@
@

@
@ �

�
�

�

X1

{1, 2}
X2

{2}

X3

{1, 2}

6= 6=

(a)

@
@

@R

�
�

�	
(new_val,(X1, 1)) (new_val,(X2, 2))

local_view
{ (X1, 1), (X2, 2)}

��
��

��
��

��
��

@
@

@
@ �

�
�

�

-
new link

X1

{1, 2}
X2

{2}

X3

{1, 2}

6= 6=

(b)

add neighbor request
�

�
�

��

(Nogood,{(X1, 1), (X2, 2)})

local_view
{ (X1, 1)}

��
��

��
��

��
��

@
@

@
@ �

�
�

�

-X1

{1, 2}
X2

{2}

X3

{1, 2}

6= 6=

(c)

�
(Nogood,{(X1, 1)})

Figure 1.5: Asynchronous backtracking with dynamic link addition.

1.3.3 An extended example: the four queens problem

In order to gain additional feeling for the ABT algorithm beyond the didactic exam-
ple in the previous section, let us look at one of the canonical CSP problems: the
n-queens problem. More specifically, we will consider the fourqueens problem,
which asks how four queens can be placed on a4× 4 chessboard so that no queen
can (immediately) attack any other. We will describe ABT’s behavior in terms of
cycles of computation, which we somewhat artificially define to be the receiving

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

14 1 Distributed Constraint Satisfaction

O
K
?

O
K
?

O
K
?

O
K
?

OK?

OK?

OK?

OK?

OK
?

Figure 1.6: Cycle 1 of ABT for four
queens. All agents are active.

O
K
? OK?

OK
?

O
K
?

OK?

OK
?

Nog
ood

Figure 1.7: Cycle 2 of ABT for four
queens.A2, A3 andA4 are active. The
Nogood message isA1 = 1 ∧ A2 =
1→ A3 6= 1.

of messages, the computations triggered by received messages, and the sending of
messages due to these computations.

In the first cycle (Figure 1.6) all agents select values for their variables, which
represent the positions of their queens along their respective rows. Arbitrarily, we
assume that each begins by positioning his queen at the first square of his row. Each
agent 1, 2, and 3 sendsok? messages to the agents ordered after him:A1 sends
three messages,A2 sends two, and agentA3 sends a single message. AgentA4

does not have any agent after him, so he sends no messages. All agents are active
in this first cycle of the algorithm’s run.

In the second cycle (Figure 1.7) agentsA2, A3, andA4 receive theok? messages
sent to them and proceed to assign consistent values to their variables. AgentA3

assigns the value 4 that is consistent with the assignments ofA1 andA2 that he
receives. AgentA4 has no value consistent with the assignments ofA1,A2, andA3,
and so he sends aNogood containing these three assignments toA3 and removes
the assignment ofA3 from hisAgent_V iew. Then, he assigns the value 2 which
is consistent with the assignments that he received fromA1 andA2 (having erased
the assignment ofA3, assuming that it will be replaced because of the Nogood
message). The active agents in this cycle areA2, A3, andA4. AgentA2 acts
according to his information aboutA1’s position and moves to square 3, sending
two ok? messages to inform his successors about his value. As can be seen in
Figure 1.7,A3 has moved to square 4 after receiving theok? messages of agentsA1

andA2. Note that agentA3 thinks that these agents are still in the first column of
their respective rows. This is a manifestation of concurrency that causes each agent
to act at all times in a form that is based only on hisAgent_View. TheAgent_V iew
of agentA3 includes theok? messages he received.

The third cycle is described in Figure 1.8; onlyA3 is active. After receiving
the assignment of agentA2, A3 sends back a Nogood message to agentA2. He
then erases the assignment of agentA2 from hisAgent_V iew and validates that

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.3 Heuristic search algorithms 15

N
ogood

Figure 1.8: Cycle 3. OnlyA3 is active.
The Nogood message isA1 = 1 →
A2 6= 3.

O
K
?

O
K
?

O
K
?

O
K
?

O
K
?

N
ogood

Figure 1.9: Cycles 4 and 5.A2,A3 and
A4 are active. The Nogood message is
A1 = 1 ∧A2 = 4→ A3 6= 4.

his current assignment (the value 4) is consistent with the assignment of agentA1.
AgentsA1 andA2 continue to be idle, having received no messages that were sent
in cycle 2. The same is true for agentA4. AgentA3 also receives the Nogood sent
byA4 in cycle 2 but ignores it since it includes an invalid assignment forA2 (i.e.,
(2, 1) and not the currently correct(2, 4)).

Cycles 4 and 5 are depicted in Figure 1.9. In cycle 4 agentA2 moves to square
4 because of the Nogood message he received. His former value was ruled out and
the new value is the next valid one. He informs his successorsA3 andA4 of his
new position by sending twook? messages. In cycle 5 agentA3 receives agent
A2’s new position and selects the only value that is compatible with the positions
of his two predecessors, square 2. He sends a message to his successor informing
him about this new value. AgentA4 is now left with no valid value to assign and
sends a Nogood message toA3 that includes all his conflicts. The Nogood message
appears at the bottom of Figure 1.9. Note that the Nogood message is no longer
valid. AgentA4, however, assumes thatA3 will change his position and moves to
his only valid position (givenA3’s anticipated move)—column 3.

Consider now cycle 6. AgentA4 receives the new assignment of agentA3 and
sends him a Nogood message. Having erased the assignment ofA3 after sending
the Nogood message, he then decides to stay at his current assignment (column 3),
since it is compatible with the positions of agentsA1 andA2. AgentA3 is idle in
cycle 6, since he receives no messages from either agentA1 or agentA2 (who are
idle too). So,A4 is the only active agent at cycle 6 (see Figure 1.10).

In each of cycles 7 and 8, one Nogood is sent. Both are depicted in Figure 1.11.
First, agentA3, after receiving the Nogood message fromA4, finds that he has
no valid values left and sends a Nogood toA2. Next, in cycle 8, agentA2 also
discovers that his domain of values is exhausted and sends a Nogood message
to A1. Both sending agents erase the values of their successors (to whom the
Nogood messages were sent) from theiragent_views and therefore remain in
their positions, which are now conflict free.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

16 1 Distributed Constraint Satisfaction

N
ogood

Figure 1.10: Cycle 6. OnlyA4 is active.
The Nogood message isA1 = 1∧A2 =
4→ A3 6= 2.

Nogood

No
goo

d

Figure 1.11: Cycles 7 and 8.A3 is ac-
tive in the first cycle andA2 is active in
the second. The Nogood messages are
A1 = 1→ A2 6= 4 andA1 6= 1.

O
K
?

OK?

O
K
?

Figure 1.12: Cycle 9. OnlyA1 is active.

OK?

Figure 1.13: Cycle 10. OnlyA3 is ac-
tive.

Cycle 9 involves only agentA1, who receives the Nogood message fromA2 and
so moves to his next value—square 2. Next, he sendsok? messages to his three
successors.

The final cycle is cycle 10. AgentA3 receives theok? message ofA1 and so
moves to a consistent value—square 1 of his row. AgentsA2 andA4 check their
Agent_V iews after receiving the sameok? messages from agentA1 and find
that their current values are consistent with the new position ofA1. AgentA3

sends anok? message to his successorA4, informing of his move, butA4 finds
no reason to move. His value is consistent with all value assignments of all his
predecessors. After cycle 10 all agents remain idle, having no constraint violations
with assignments on theiragent_views. Thus, this is a final state of the ABT
algorithm in which it finds a solution.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

1.3 Heuristic search algorithms 17

1.3.4 Beyond the ABT algorithm

The ABT algorithm is the backbone of modern approaches to distributed constraint
satisfaction, but it admits many extensions and modifications.

A major modification has to do with which inconsistent partial assignment (i.e.,
Nogood) is sent in the backtrack message. In the version presented earlier, which
is the early version of ABT, the fullagent_view is sent. However, the full
agent_view is in many cases not a minimal Nogood; a strict subset of it may also
be inconsistent. In general, shorter Nogoods can lead to a more efficient search
process, since they permit backjumping further up the search tree.

Here is an example. Consider an agentA6 holding an inconsistentagent_view
with the assignments of agentsA1, A2, A3, A4 and A5. If we assume thatA6

is only constrained by the current assignments ofA1 andA3, sending a Nogood
message toA5 that contains all the assignments in theagent_view seems to be
a waste. After sending the Nogood toA5, A6 will remove his assignment from
theagent_view and make another attempt to assign his variable, which will be
followed by an additional Nogood sent toA4 and the removal ofA4’s assignment
from the agent_view. These attempts will continue until a minimal subset is
sent as a Nogood. In this example, it is the Nogood sent toA3. The assignment
with the lower priority in the minimal inconsistent subset is removed from the
agent_view and a consistent assignment can now be found. In this example the
computation ended by sending a Nogood to the culprit agent, which would have
been the outcome if the agent computed a minimal subset.

The solution to this inefficiency, however, is not straightforward, since finding a
minimal Nogood is in general intractable (specifically, NP-hard). And so various
heuristics are needed to cut down on the size of the Nogood, without sacrificing
correctness.

A related issue is the number of Nogoods stored by each agent. In the preceding
ABT version, each Nogood is recorded by the receiving agent. Since the number of
inconsistent subsets can be exponential, constraint lists with exponential size will
be created, and a search through such lists requires exponential time in the worst
case. Various proposals have been made to cut down on this number while preserv-
ing correctness. One proposal is that agents keep only Nogoods consistent with
their agent_view. While this prunes some of the Nogoods, in the worst case it
still leaves a number of Nogoods that is exponential in the size of theagent_view.
A further improvement is to store only Nogoods that are consistent with both the
agent’sagent_view and his current assignment. This approach, which is con-
sidered by some the best implementation of the ABT algorithm, ensures that the
number of Nogoods stored by any single agent is no larger than the size of the
domain.

Finally, there are approaches to distributed constraint satisfaction that do not
follow the ABT scheme, includingasynchronous forward checkingandconcurrentasynchronous

forward
checking

dynamic backtracking. Discussion of them is beyond the scope of this book, but

concurrent
dynamic
backtracking

the references point to further reading on the topic.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

18 1 Distributed Constraint Satisfaction

1.4 History and references

Distributed constraint satisfaction is discussed in detail in Yokoo [2001], and re-
viewed in Yokoo and Hirayama [2000]. The ABT algorithm was initially intro-
duced in Yokoo [1994]. More comprehensive treatments, including the latest in-
sights into distributed CSPs, appear in Meisels [2008] and Faltings [2006]. The
sensor net figure is due to Carlos Guestrin.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2 Distributed Optimization

In the previous chapter we looked at distributed ways of meeting global constraints.
Here we up the ante; we ask how agents can, in a distributed fashion, optimize a
global objective function. Specifically, we consider four families of techniques and
associated sample problems. They are, in order:

• Distributed dynamic programming (as applied to path-planning problems).

• Distributed solutions to Markov Decision Problems (MDPs).

• Optimization algorithms with an economic flavor (as applied to matching and
scheduling problems).

• Coordination via social laws and conventions, and the example of traffic rules.

2.1 Distributed dynamic programming for path planning

Like graph coloring, path planning constitutes another common abstract problem-
solving framework. A path-planning problem consists of a weighted directed graph
with a set ofn nodesN , directed linksL, a weight functionw : L 7→ R

+, and two
nodess, t ∈ N . The goal is to find a directed path froms to t having minimal total
weight. More generally, we consider a set of goal nodesT ⊂ N , and are interested
in the shortest path froms to any of the goal nodest ∈ T .

This abstract framework applies in many domains. Certainly it applies when
there is some concrete network at hand (e.g., a transportation or telecommunication
network). But it also applies in more roundabout ways. For example, in a planning
problem the nodes can be states of the world, the arcs actions available to the agent,
and the weights the cost (or, alternatively, time) of each action.

2.1.1 Asynchronous dynamic programming

Path planning is a well-studied problem in computer science and operations re-
search. We are interested in distributed solutions, in which each node performs a
local computation, with access only to the state of its neighbors. Underlying our

20 2 Distributed Optimization

solutions will be theprinciple of optimality: if nodex lies on a shortest path fromsprinciple of
optimality to t, then the portion of the path froms tox (or, respectively, fromx to t) must also

be the shortest paths betweens andx (resp.,x andt). This allows an incremental
divide-and-conquer procedure, also known asdynamic programming.dynamic

programming Let us represent the shortest distance from any nodei to the goalt ash∗(i).
Thus the shortest distance fromi to t via a nodej neighboringi is given by
f ∗(i, j) = w(i, j) + h∗(j), andh∗(i) = minj f

∗(i, j). Based on these facts,
the ASYNCHDP algorithm has each node repeatedly perform the following proce-asynchronous

dynamic
programming

dure. In this procedure, given in Figure 2.1, each nodei maintains a variableh(i),
which is an estimate ofh∗(i).

procedure ASYNCHDP (nodei)
if i is a goal nodethen

h(i)← 0
else

initialize h(i) arbitrarily (e.g., to∞ or 0)

repeat
forall neighborsj do

f(j)← w(i, j) + h(j)

h(i)← minj f(j)

Figure 2.1: The asynchronous dynamic programming algorithm.

Figure 2.2 shows this algorithm in action. Theh values are initialized to∞, and
incrementally decrease to their correct values. The figure shows three iterations;
note that after the first iteration, not all finiteh values are correct; in particular, the
value 3 in noded still overestimates the true distance, which is corrected inthe
next iteration.

One can prove that the ASYNCHDP procedure is guaranteed to converge to the
true values, that is,h will converge toh∗. Specifically, convergence will require
one step for each node in the shortest path, meaning that in the worst case con-
vergence will requiren iterations. However, for realistic problems this is of little
comfort. Not only can convergence be slow, but this procedure assumes a process
(or agent) for each node. In typical search spaces one cannot effectively enumer-
ate all nodes, let alone allocate them each a process. (For example, chess has
approximately10120 board positions, whereas there are fewer than1081 atoms in
the universe and there have only been1026 nanoseconds since the Big Bang.) So to
be practical we turn to heuristic versions of the procedure, which require a smaller
number of agents. Let us start by considering the opposite extreme in which we
have only one agent.

2.1.2 Learning real-time A∗

In thelearning real-time A∗, or LRTA∗, algorithm, the agent starts at a given node,learning
real-time A∗

(LRTA∗) Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.1 Distributed dynamic programming for path planning 21

�
���

@
@@R ?

-

�
�

�
�

�
���

-

@
@@R

6

�
���i

i

i

i
i i

b d

a c

1

3

1

2

2

2 1

1

3

s t

∞ ∞

∞ ∞

∞ 0

(i)

�
���

@
@@R ?

-

�
�

�
�

�
���

-

@
@@R

6

�
���i

i

i

i
i i

b d

a c

1

3

1

2

2

2 1

1

3

s t

∞ 3

∞ 1

∞ 0

(ii)

�
���

@
@@R ?

-

�
�

�
�

�
���

-

@
@@R

6

�
���i

i

i

i
i i

b d

a c

1

3

1

2

2

2 1

1

3

s t

3 2

3 1

∞ 0

(iii)
Figure 2.2: Asynchronous dynamic programming in action

performs an operation similar to that of asynchronous dynamic programming, and
then moves to the neighboring node with the shortest estimated distance to the goal,
and repeats. The procedure is given in Figure 2.3.

procedure LRTA∗

i← s // the start node
while i is not a goal nodedo

foreachneighborj do
f(j)← w(i, j) + h(j)

i′ ← arg minj f(j) // breaking ties at random
h(i)← max(h(i), f(i′))
i← i′

Figure 2.3: The learning real-time A∗ algorithm.

As earlier, we assume that the set of nodes is finite and that all weightsw(i, j)
are positive and finite. Note that this procedure uses a given heuristic function
h(·) that serves as the initial value for each newly encountered node. For our
purposes it is not important what the precise function is. However, to guarantee
certain properties of LRTA∗, we must assume thath is admissible. This meansadmissible

heuristic thath never overestimates the distance to the goal, that is,h(i) ≤ h∗(i). Because

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

22 2 Distributed Optimization

weights are nonnegative we can ensure admissibility by settingh(i) = 0 for all i,
although less conservative admissible heuristic functions (built using knowledge of
the problem domain) can speed up the convergence to the optimal solution. Finally,
we must assume that there exists some path from every node in the graph to a goal
node. With these assumptions, LRTA∗ has the following properties:

• Theh-values never decrease, and remain admissible.

• LRTA∗ terminates; the complete execution from the start node to termination at
the goal node is called atrial .

• If LRTA ∗ is repeated while maintaining theh-values from one trial to the next,
it eventually discovers the shortest path from the start to a goal node.

• If LRTA ∗ find the same path on two sequential trials, this is the shortest path.
(However, this path may also be found in one or more previous trials before it
is found twice in a row. Do you see why?)

Figure 2.4 shows four trials of LRTA∗. Do you see why admissibility of the
heuristic is necessary?

LRTA∗ is a centralized procedure. However, we note that rather than have a
single agent execute this procedure, one can have multiple agents execute it. The
properties of the algorithm (call it LRTA∗(n), with n agents) are not altered, but
the convergence to the shortest path can be sped up dramatically. First, if the
agents each break ties differently, some will reach the goal much faster than others.
Furthermore, if they all have access to a sharedh-value table, the learning of one
agent can teach the others. Specifically, after every round and for everyi, h(i) =
maxj hj(i), wherehj(i) is agentj’s updated value forh(i). Figure 2.5 shows an
execution of LRTA∗(2)—that is, LRTA∗ with two agents—starting from the same
initial state as in Figure 2.4. (The hollow arrows show paths traversed by a single
agent, while the dark arrows show paths traversed by both agents.)

2.2 Action selection in multiagent MDPs

In this section we discuss the problem of optimal action selection in multiagent
MDPs.1 Recall that in a single-agent MDP the optimal policyπ∗ is characterized
by the mutually-recursive Bellman equations:

Qπ∗

(s, a) = r(s, a) + β
∑

ŝ

p(s, a, ŝ)V π∗

(ŝ)

V π∗

(s) = max
a
Qπ∗

(s, a)

Furthermore, these equations turn into an algorithm—specifically, the dynamic-
programming-stylevalue iteration algorithm—by replacing the equality signs “="value iteration

1. The basics of single-agent MDPs are covered in Appendix C.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.2 Action selection in multiagent MDPs 23

�
���

@
@@R ?

-

�
�

�
�

�
���

-

@
@@R

6

�
���i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

0 0

0 0

0 0

initial state

�
���

�
��

�
��

�
��

�
��

@
@@R ?

-

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

-

@
@@R

@
@@

@
@@

@
@@

@
@@

6

�
���

�
���

�
��

�
��

�
��

�
��

@
@@R ?

-

�
�

�
�

�
���

-

@
@@R

@
@@

@
@@

@
@@

@
@@

6

�
���i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

2 20 0

2 41 1

2 40 0

first trial second trial

�
���

@
@@R

@
@@

@
@@

@
@@

@
@@ ?

-

�
�

�
�

�
���

-

@
@@R

@
@@

@
@@

@
@@

@
@@

6

�
���

�
���

@
@@R

@
@@

@
@@

@
@@

@
@@ ?

-

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

-

@
@@R

@
@@

@
@@

@
@@

@
@@

6

�
���i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

3 34 4

4 41 1

4 50 0

third trial forth trial

Figure 2.4: Four trials of LRTA∗

with assignment operators “←" and iterating repeatedly through those assignments.
However, in real-world applications the situation is not that simple. For example,

the MDP may not be known by the planning agent and thus may have to be learned.
This case is discussed in Chapter 7. But more basically, the MDP may simply be
too large to iterate over all instances of the equations. In this case, one approach
is to exploit independence properties of the MDP. One case where this arises is
when the states can be described by feature vectors; each feature can take on many
values, and thus the number of states is exponential in the number of features. One
would ideally like to solve the MDP in time polynomial in the number of features
rather than the number of states, and indeed techniques have been developed to

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

24 2 Distributed Optimization

�

�
��

�
��

R

@
@@

@
@@ ?

-

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

-

@
@@R

@
@@

@
@@

@
@@

@
@@

6

�
���

�

�
��

�
��

R

@
@@

@
@@ ?

-

�
�

�
�

�
���

-

@
@@R

@
@@

@
@@

@
@@

@
@@

6

�
���i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

agenta agenta

agentb agentb

2 30 4

2 41 1

2 40 0

first trial second trial

�
���

@
@@R

@
@@

@
@@

@
@@

@
@@ ?

-

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

-

@
@@R

@
@@

@
@@

@
@@

@
@@

6

�
���i

i

i

i
i i

b d

a c

2

2

2

3

3

2 3

1

5

s t

3 4

4 1

5 0

third trial

Figure 2.5: Three trials of LRTA∗(2)

tackle such MDPs with factored state spaces.
We do not address that problem here, but instead on a similar one that has to

do with the modularity of actions rather than of states. In amultiagent MDPanymultiagent MDP
(global) actiona is really a vector of local actions(a1, . . . , an), one by each ofn
agents. The assumption here is that the reward is common, so there is no issue of
competition among the agents. There is not even a problem of coordination; we
have the luxury of a central planner (but see discussion at the end of this section
of parallelizability). The only problem is that the number of global actions is ex-
ponential in the number of agents. Can we somehow solve the MDP other than by
enumerating all possible action combinations?

We will not address this problem, which is quite involved, in full generality. In-
stead we will focus on an easier subproblem. Suppose that theQ values for the
optimal policy have already been computed. How hard is it to decide on which
action each agent should take? Since we are assuming away the problem of coordi-
nation by positing a central planner, on the face of it the problem is straightforward.
In Appendix C we state that once the optimal (or close to optimal)Q values are
computed, the optimal policy is “easily” recovered; the optimal action in states
is arg maxa Q

π∗

(s, a). But of course ifa ranges over an exponential number of
choices by all agents, “easy” becomes “hard.” Can we do better than naively enu-
merating over all action combinations by the agents?

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.2 Action selection in multiagent MDPs 25

In general the answer is no, but in practice, the interaction among the agents’
actions can be quite limited, which can be exploited both in the representation of
theQ function and in the maximization process. Specifically, in some cases we can
associate an individualQi function with each agenti, and express theQ function
(either precisely or approximately) as a linear sum of the individualQis:

Q(s, a) =

n∑

i=1

Qi(s, a).

The maximization problem now becomes

arg max
a

n∑

i=1

Qi(s, a).

This in and of itself is not very useful, as one still needs to look at the set of all
global actionsa, which is exponential inn, the number of agents. However, it is
often also the case that each individualQi depends only on a small subset of the
variables.

For example, imagine a metal-reprocessing plant with four locations, each with a
distinct function: one for loading contaminated material and unloading reprocessed
material; one for cleaning the incoming material; one for reprocessing the cleaned
material; and one for eliminating the waste. The material flow among them is
depicted in Figure 2.6.

out

in
Station 1:

Load and Unload
Station 2:

Clean

Station 4:
Eliminate Waste

Station 3:
Process

Figure 2.6: A metal-reprocessing plant

Each station can be in one of several states, depending on the load at that time.
The operator of the station has two actions available: “pass material to next station
in process,” and “suspend flow.” The state of the plant is a function of the state of
each of the stations; the higher the utilization of existing capacity the better, but
exceeding full capacity is detrimental. Clearly, in any given global state of the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

26 2 Distributed Optimization

system, the optimal action of each local station depends only on the action of the
station directly “upstream” from it. Thus in our example the globalQ function
becomes

Q(a1, a2, a3, a4) = Q1(a1, a2) +Q2(a2, a4) +Q3(a1, a3) +Q4(a3, a4)

and we wish to compute

arg max
(a1,a2,a3,a4)

Q1(a1, a2) +Q2(a2, a4) +Q3(a1, a3) +Q4(a3, a4).

Note that in the preceding expressions we omit the state argument, since that is
being held fixed; we are looking at optimal action selection at a given state.

In this case we can employ avariable eliminationalgorithm, which optimizesvariable
elimination the choice for the agents one at a time. We explain the operation of the algorithm

via our example. Let us begin our optimization with agent 4. To optimizea4,
functionsQ1 andQ3 are irrelevant. Hence, we obtain

max
a1,a2,a3

Q1(a1, a2) +Q3(a1, a3) + max
a4

[Q2(a2, a4) +Q4(a3, a4)].

We see that to make the optimal choice overa4, the values ofa2 and a3 must
be known. Thus, what must be computed for agent4 is a conditional strategy,conditional

strategy with a (possibly) different action choice for each action choice of agents 2 and 3.
The value that agent 4 brings to the system in the different circumstances can be
summarized using a new functione4(A2, A3) whose value at the pointa2, a3 is
the value of the internalmax expression

e4(a2, a3) = max
a4

[Q2(a2, a4) +Q4(a3, a4)].

Agent4 has now been “eliminated,” and our problem now reduces to computing

max
a1,a2,a3

Q1(a1, a2) +Q3(a1, a3) + e4(a2, a3),

having one fewer agent involved in the maximization. Next, the choice for agent 3
is made, giving

max
a1,a2

Q1(a1, a2) + e3(a1, a2).

wheree3(a1, a2) = maxa3
[Q3(a1, a3) + e4(a2, a3)] Next, the choice for agent 2

is made:
e2(a1) = max

a2

[Q1(a1, a2) + e3(a1, a2)].

The remaining decision for agent 1 is now the following maximization:

e1 = max
a1

e2(a1).

The resulte1 is simply a number, the required maximization overa1, . . . , a4.
Note that although this expression is short, there is no free lunch; in order to per-
form this optimization, one needs to iterate not only over all actionsa1 of the first

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.2 Action selection in multiagent MDPs 27

agent, but also over the action of the other agents as needed to unwind the inter-
nal maximizations. However, in general the total number of combinations will be
smaller than the full exponential combination of agent actions.2

We can recover the maximizing set of actions by performing the process in re-
verse. The maximizing choice fore1 defines the actiona∗1 for agent 1:

a∗1 = arg max
a1

e2(a1).

To fulfill its commitment to agent 1, agent 2 must choose the valuea∗2 that yielded
e2(a

∗
1),

a∗2 = arg max
a2

[Q1(a
∗
1, a2) + e3(a

∗
1, a2)].

This, in turn, forces agent 3 and then agent 4 to select their actions appropriately:

a∗3 = arg max
a3

[Q3(a
∗
1, a3) + e4(a

∗
2, a3)];

a∗4 = arg max
a4

[Q2(a
∗
2, a4) +Q4(a

∗
3, a4)].

The actual implementation of this procedure allows several versions. Here are a
few of them:

A quick-down, slow-up two-pass sequential implementation: This follows the
example in that variables are eliminated symbolically one at a time starting with
an. This is done inO(n) time. When up toa1 the actual maximization starts;
all values ofa1 are tried, alongside all values of the variables appearing in the
unwinding of the expression. This phase requiresO(kn) time in the worst case,
wherek is the bound on domain sizes.

A slow-down, quick-up two-phase sequential implementation: A similar proce-
dure, except here the actual best-response table is built as variables are elimi-
nated. This requiresO(kn) time in the worst case. The payoff is in the second
phase, where the optimization requires a simple table-lookup for each value of
the variable, resulting in a complexity ofO(kn).

Asynchronous versions: The full linear pass in both directions is not necessary,
given only partial dependence among variables. Thus in the down phase vari-
ables need await a signal from the higher-indexed variables with which they
interact (as opposed to all higher-indexed variables) before computing their best-
response functions, and similarly in the pass up they need await the signal from
only the lower-indexed variables with which they interact.

2. Full discussion of this point is beyond the scope of this book, but for the record, the complexity of the
algorithm is exponential in the tree width of thecoordination graph; this is the graph whose nodes are the
agents and whose edges connect agents whoseQ values share one or more arguments. The tree width is
also the maximum clique size minus one in the triangulation of the graph; each triangulation essentially
corresponds to one of the variable elimination orders. Unfortunately, it is NP-hard to compute the optimal
ordering. The notes at the end of the chapter provide additional references on the topic.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

28 2 Distributed Optimization

One final comment. We have discussed variable elimination in the particular con-
text of multiagent MDPs, but it is relevant in any context in which multiple agents
wish to perform a distributed optimization of an factorable objective function.

2.3 Negotiation, auctions and optimization

In this section we consider distributed problem solving that has a certain economic
flavor. In the first section below we will informally give the general philosophy
and background; in the following two sections we will be more precise.

2.3.1 From contract nets to auction-like optimization

Contract netswere one of the earliest proposals for such an economic approach.contract net
Contract nets are not a specific algorithm, but a framework, a protocol for imple-
menting specific algorithms. In a contract net the global problem is broken down
into subtasks, and these are distributed among a set of agents. Each agent has differ-
ent capabilities; for each agenti there is a functionci such that for any set of tasks
T , ci(T) is the cost for agenti to achieve all the tasks inT . Each agent starts out
with some initial set of tasks, but in general this assignment is not optimal, in the
sense that the sum of all agents’ costs is not minimal. The agents then enter into a
negotiation process which improves on the assignment and, hopefully, culminates
in an optimal assignment, that is, one with minimal cost. Furthermore, the process
can have a so-calledanytime property; even if it is interrupted prior to achievinganytime

property optimality, it can achieve significant improvements over the initial allocation.
The negotiation consists of agents repeatedly contracting out assignments among

themselves, each contract involving the exchange of tasks as well as money. The
question is how the bidding process takes place and what contracts hold based on
this bidding. The general contract-net protocol is open on these issues. One partic-
ular approach has each agent bid for each set of tasks the agent’s marginal cost for
the task, that is, the agent’s additional cost for adding that task to its current set. The
tasks are allocated to the lowest bidders, and the process repeats. It can be shown
that there always exists a sequence of contracts that result in the optimal allocation.
If one is restricted to basic contract types in which one agent contracts a single
task to another agent, and receives from him some money in return, then in gen-
eral achieving optimality requires that agents enter into “money-losing" contracts
in the process. However, there exist more complex contracts—which involve con-
tracting for a bundle of tasks (“cluster contracts"), or a swap of tasks among twocluster contract
agents (“swap contracts"), or simultaneous transfers among many agents (“multi-

swap contract
agent contracts")—whose combination allows for a sequence of contracts that are

multiagent
contract

not money losing and which culminate in the optimal solution.
At this point several questions may naturally occur to the reader.

• We start with some global problem to be solved, but then speak about minimiz-
ing the total cost to the agents. What is the connection between the two?

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 29

• When exactly do agents make offers, and what is the precise method by which
the contracts are decided on?

• Since we are in a cooperative setting, why does it matter whether agents “lose
money" or not on a given contract?

We will provide an answer to the first question in the next section. We will see
that, in certain settings (specifically, those of linear programming and integer pro-
gramming), finding an optimal solution is closely related to the individual utilities
of the agents.

Regarding the second question, indeed one can provide several instantiations
of even the specific, marginal-cost version of the contract-net protocol. In the next
two sections we will be much more specific. We will look at a particular class of ne-
gotiation schemes, namely (specific kinds of) auctions. Every negotiation scheme
consists of three elements: (1) permissible ways of making offers (bidding rules),bidding rule
(2) definition of the outcome based on the offers (market clearing rules), and (3)

market clearing
rule

the information made available to the agents throughout the process (information
dissemination rules). Auctions are a structured way of settling each of these di-

information
dissemination
rule

mensions, and we will look at auctions that do so in specific ways. It should be
mentioned, however, that this specificity is not without a price. While convergence
to optimality in contract nets depends on particular sequences of contracts taking
place, and thus on some coordinating hand, the process is inherently distributed.
The auction algorithms we will study include an auctioneer, an explicit centralized
component.

The last of our questions deserves particular attention. As we said, we start with
some problem to be solved. We then proceed to define an auction-like process for
solving it in a distributed fashion. However it is no accident that this section pre-
cedes our (rather detailed) discussion of auctions in Chapter 11. As we see there,
auctions are a way to allocate scarce resources amongself-interestedagents. Auc-
tion theory thus belongs to the realm of game theory. In this chapter we also speak
about auctions, but the discussion has little to do with game theory. In the spirit
of the contract-net paradigm, in our auctions agents will engage in a series of bids
for resources, and at the end of the auction the assignment of the resources to the
“winners” of the auction will constitute an optimal (or near optimal, in some cases)
solution. However, in the standard treatment of auctions (and thus in Chapter 11)
the bidders are assumed to bid in a way that maximizes their personal payoff. Here
there is no question of the agents deviating from the prescribed bidding protocol
for personal gain. For this reason, despite the surface similarity, the discussion of
these auction-like methods makes no reference to game theory or mechanism de-
sign. In particular, while these methods have some nice properties—for example,
they are intuitive, provably correct, naturally parallelizable, appropriate for deploy-
ment in distributed systems settings, and tend to be robust to slight perturbations of
the problem specification—no claim is made about their usefulness in adversarial
situations. For this reason it is indeed something of a red herring, in this coopera-
tive setting, to focus on questions such as whether a given contract is profitable for

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

30 2 Distributed Optimization

a given agent. In noncooperative settings, where contract nets are also sometimes
pressed into service, the situation is of course different.

In the next two sections we will be looking at two classical optimization prob-
lems, one representable as a linear program (LP) and one only as an integer pro-
gram (IP) (for a brief review of LPs and IPs, see Appendix B). There exists a vast
literature on how to solve LPs and IPs, and it is not our aim in this chapter (or in
the appendix) to capture this broad literature. Our more limited aim here is to look
at the auction-style solutions for them. First we will look at an LP problem—the
problem ofweighted matching in a bipartite graph, also known as theassignment
problem. We will then look at a more complex, IP problem—that ofscheduling.
As we shall see, since the LP problem is relatively easy (specifically, solvable in
polynomial time), it admits an auction-like procedure with tight guarantees. The IP
problem is NP-complete, and so it is not surprising that the auction-like procedure
does not come with such guarantees.

2.3.2 The assignment problem and linear programming

The problem and its LP formulation

The problem ofweighted matching in a bipartite graph, otherwise known as theweighted
matching assignment problem, is defined as follows.

assignment
problem

Definition 2.3.1 (Assignment problem)
A (symmetric) assignment problemconsists of

• A setN ofn agents,

• A setX of n objects,

• A setM ⊆ N ×X of possible assignment pairs, and

• A functionv : M 7→ R giving the value of each assignment pair.

An assignment is a set of pairsS ⊆ M such that each agenti ∈ N and each
objectj ∈ X is in at most one pair inS. A feasible assignmentis one in which allfeasible

assignment agents are assigned an object. A feasible assignmentS is optimal if it maximizes∑
(i,j)∈S v(i, j).

An example of an assignment problem is the following (in this example,X =
{x1, x2, x3} andN = {1, 2, 3}).

i v(i,x1) v(i,x2) v(i,x3)

1 2 4 0
2 1 5 0
3 1 3 2

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 31

In this small example it is not hard to see that(1, x1), (2, x2), (3, x3) is an opti-
mal assignment. In larger problems, however, the solution is not obvious, and the
question is how to compute it algorithmically.

We first note that an assignment problem can be encoded as a linear program.
Given a general assignment problem as defined earlier, we introduce the indicator
matrixx; xi,j = 1 indicates that the pair(i, j) is selected, andxi,j = 0 otherwise.
Then we express the linear program as follows.

maximize
∑

(i,j)∈M

v(i, j)xi,j

subject to
∑

j|(i,j)∈M

xi,j ≤ 1 ∀i ∈ N
∑

i|(i,j)∈M

xi,j ≤ 1 ∀j ∈ X

On the face of it the LP formulation is inappropriate since it allows for fractional
matches (i.e., for0 < xi,j < 1). But as it turns out this LP has integral solutions.

Lemma 2.3.2The LP encoding of the assignment problem has a solution such
that for everyi, j it is the case thatxi,j = 0 or xi,j = 1. Furthermore, any opti-
mal fractional solution can be converted in polynomial time to an optimal integral
solution.

Since any LP can be solved in polynomial time, we have the following.

Corollary 2.3.3 The assignment problem can be solved in polynomial time.

This corollary might suggest that we are done. However, there are a number of
reasons to not stop there. First, the polynomial-time solution to the LP problem is
of complexity roughlyO(n3), which may be too high in some cases. Furthermore,
the solution is not obviously parallelizable, and is not particularly robust to changes
in the problem specification (if one of the input parameters changes, the program
must essentially be solved from scratch). One solution that suffers less from these
shortcomings is based on the economic notion of competitive equilibrium, which
we explore next.

The assignment problem and competitive equilibrium

Imagine that each of the objects inX has an associated price; the price vector
is p = (p1, . . . , pn), wherepj is the price of objectj. Given an assignment
S ⊆ M and a price vectorp, define the “utility” from an assignmentj to agent
i asu(i, j) = v(i, j) − pj. An assignment and a set of prices are incompetitive
equilibriumwhen each agent is assigned the object that maximizes his utility givencompetitive

equilibrium the current prices. More formally, we have the following.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

32 2 Distributed Optimization

Definition 2.3.4 (Competitive equilibrium) A feasible assignmentS and a price
vectorp are in competitive equilibriumwhen for every pairing(i, j) ∈ S it is the
case that∀k, u(i, j) ≥ u(i, k).

It might seem strange to drag an economic notion into a discussion of combina-
torial optimization, but as the following theorem shows there are good reasons for
doing so.

Theorem 2.3.5 If a feasible assignmentS and a price vectorp satisfy the com-
petitive equilibrium condition thenS is an optimal assignment. Furthermore, for
any optimal solutionS, there exists a price vectorp such thatp andS satisfy the
competitive equilibrium condition.

For example, in the previous example, it is not hard to see that the optimal as-
signment(1, x1), (2, x2), (3, x3) is a competitive equilibrium given the price vec-
tor (2, 4, 1); the “utilities” of the agents are0, 1, and1, respectively, and none of
them can increase their profit by bidding for one of the other objects at the current
prices. We outline the proof of a more general form of the theorem in the next
section.

This last theorem means that one way to search for solutions of the LP is to
search the space of competitive equilibria. And a natural way to search that space
involves auction-like procedures, in which the individual agents “bid” for the dif-
ferent resources in a prespecified way. We will look at open outcry, ascending
auction-like procedures, resembling the English auction discussed in Chapter 11.
Before that, however, we take a slightly closer look at the connection between
optimization problems and competitive equilibrium.

Competitive equilibrium and primal-dual problems

Theorem 2.3.5 may seem at first almost magical; why would an economic notion
prove relevant to an optimization problem? However, a slightly closer look re-
moves some of the mystery. Rather than looking at the specific LP corresponding
to the assignment problem, consider the general (“primal”) form of an LP.

maximize
n∑

i=1

cixi

subject to
n∑

i=1

aijxi ≤ bj ∀j ∈ {1, . . . ,m}

xi ≥ 0 ∀i ∈ {1, . . . , n}

Note that this formulation makes reverse use the≤ and≥ signs as compared to
the formulation in Appendix B. As we remark there, this is simply a matter of the
signs of the constants used.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 33

The primal problem has a natural economic interpretation, regardless of its actual
origin. Imagine aproduction economy, in which you have a set of resources andproduction

economy a set of products. Each product consumes a certain amount of each resource, and
each product is sold at a certain price. Interpretxi as the amount of producti
produced, andci as the price of producti. Then the optimization problem can
be interpreted as profit maximization. Of course, this must be done within the
constraints of available resources. If we interpretbj as the available amount of
resourcej andaij as the amount of resourcej needed to produce a unit of producti,
then the constraint

∑
i aijxi ≤ bj appropriately captures the limitation on resource

j.
Now consider the dual problem.

minimize
m∑

i=1

biyi

subject to
m∑

i=1

aijyi ≥ cj ∀j ∈ {1, . . . , n}

yi ≥ 0 ∀i ∈ {1, . . . ,m}

It turns out thatyi can also be given a meaningful economic interpretation,
namely, as themarginal valueof resourcei, also known as itsshadow price. Theshadow price
shadow price captures the sensitivity of the optimal solution to a small change in
the availability of that particular resource, holding everything else constant. A high
shadow price means that increasing its availability would have a large impact on
the optimal solution, and vice versa.3

This helps explain why the economic perspective on optimization, at least in the
context of linear programming, is not that odd. Indeed, armed with these intuitions,
one can look at traditional algorithms such as the Simplex method and give them
an economic interpretation. In the next section we look at a specific auction-like
algorithm, which is overtly economic in nature.

A naive auction algorithm

We start with a naive auction-like procedure which is “almost” right; it contains
the main ideas, but has a major flaw. In the next section we will fix that flaw. The
naive procedure begins with no objects allocated, and terminates once it has found
a feasible solution. We define the naive auction algorithm formally as follows.

It is not hard to verify that the following is true of the algorithm.

Theorem 2.3.6The naive algorithm terminates only at a competitive equilibrium.

3. To be precise, the shadow price is the value of the Lagrange multiplier at the optimal solution.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

34 2 Distributed Optimization

Naive Auction Algorithm
// Initialization:
S ← ∅
forall j ∈ X do

pj ← 0

repeat
// Bidding Step:
let i ∈ N be an unassigned agent
// Find an objectj ∈ X that offersi maximal value at current prices:
j ∈ arg maxk|(i,k)∈M (v(i, k) − pk)
// Computei’s bid increment forj:
bi ← (v(i, j) − pj)−maxk|(i,k)∈M ;k 6=j(v(i, k) − pk)
// which is the difference between the value toi of the best and second-best objects at

current prices (note thati’s bid will be the current price plus this bid increment).
// Assignment Step:
add the pair(i, j) to the assignmentS
if there is another pair(i′, j) then

remove it from the assignmentS
increase the pricepj by the incrementbi

until S is feasible // that is, it contains an assignment for alli ∈ N

Here, for example, is a possible execution of the algorithm on our current exam-
ple. The following table shows each round of bidding. In this execution we pick
the unassigned agents in order, round-robin style.

preferred bid current
round p1 p2 p3 bidder object incr. assignment

0 0 0 0 1 x2 2 (1, x2)
1 0 2 0 2 x2 2 (2, x2)
2 0 4 0 3 x3 1 (2, x2), (3, x3)
3 0 4 1 1 x1 2 (2, x2), (3, x3), (1, x1)

At first agents 1 and 2 compete forx2, but quicklyx2 becomes too expensive for
agent 1, who opts forx1. By the time agent 3 gets to bid he is priced out of his
preferred item,x2, and settles forx3.

Thus when the procedure terminates we have our solution. The problem, though,
is that it may not terminate. This can occur when more than one object offers
maximal value for a given agent; in this case the agent’s bid increment will be
zero. If these two items also happen to be the best items for another agent, they
will enter into an infinite bidding war in which the price never rises. Consider a
modification of our previous example, in which the value function is given by the
following table.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 35

i v(i,x1) v(i,x2) v(i,x3)

1 1 1 0
2 1 1 0
3 1 1 0

The naive auction protocol would proceed as follows.

preferred bid current
round p1 p2 p3 bidder object incr. assignment

0 0 0 0 1 x1 0 (1, x1)
1 0 0 0 2 x2 0 (1, x1), (2, x2)
2 0 0 0 3 x1 0 (3, x1), (2, x2)
3 0 0 0 1 x2 0 (3, x1), (1, x2)
4 0 0 0 2 x1 0 (2, x1), (1, x2)
...

...
...

...
...

...
...

...

Clearly, in this example the naive algorithm will have the three agents forever fight
over the two desired objects.

A terminating auction algorithm

To remedy the flaw exposed previously, we must ensure that prices continue to
increase when objects are contested by a group of agents. The extension is quite
straightforward: we add a small amount to the bidding increment. Thus we calcu-
late the bid increment of agenti ∈ N as follows.

bi = u(i, j) − max
k|(i,k)∈M ;k 6=j

u(i, k) + ǫ

Otherwise, the algorithm is as stated earlier.
Consider again the problematic assignment problem on which the naive algo-

rithm did not terminate. The terminating auction protocol would proceed as fol-
lows.

preferred bid current
round p1 p2 p3 bidder object incr. assignment

0 ǫ 0 0 1 x1 ǫ (1, x1)
1 ǫ 2ǫ 0 2 x2 2ǫ (1, x1), (2, x2)
2 3ǫ 2ǫ 0 3 x1 2ǫ (3, x1), (2, x2)
3 3ǫ 4ǫ 0 1 x2 2ǫ (3, x1), (1, x2)
4 5ǫ 4ǫ 0 2 x1 2ǫ (2, x1), (1, x2)

Note that at each iteration, the price for the preferred item increases by at leastǫ.
This gives us some hope that we will avoid nontermination. We must first though
make sure that, if we terminate, we terminate with the “right” results.

First, because the prices must increase by at leastǫ at every round, the compet-
itive equilibrium property is no longer preserved over the iteration. Agents may
“overbid” on some objects. For this reason we will need to define a notion of
ǫ-competitive equilibrium.ǫ-competitive

equilibrium

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

36 2 Distributed Optimization

Definition 2.3.7 (ǫ-competitive equilibrium) S andp satisfyǫ-competitive equi-
librium when for eachi ∈ N , if there exists a pair(i, j) ∈ S then∀k, u(i, j) +
ǫ ≥ u(i, k).

In other words, in anǫ-equilibrium no agent can profit more thanǫ by bidding
for an object other than his assigned one, given current prices.

Theorem 2.3.8A feasible assignmentS with n goods that forms anǫ-competitive
equilibrium with some price vector is withinnǫ of optimal.

Corollary 2.3.9 Consider a feasible assignment problem with an integer valuation
function v : M 7→ Z. If ǫ < 1

n
then any feasible assignment found by the

terminating auction algorithm will be optimal.

This leaves the question of whether the algorithm indeed terminates, and if so,
how quickly. To see why the algorithm must terminate, note that if an object re-
ceives a bid ink iterations, its price must exceed its initial price by at least kǫ. Thus,
for sufficiently largek, the object will become expensive enough to be judged infe-
rior to some object that has not received a bid so far. The total number of iterations
in which an object receives a bid must be no more than

max(i,j) v(i, j) −min(i,j) v(i, j)

ǫ
.

Once all objects receive at least one bid, the auction terminates (do you see
why?). If each iteration involves a bid by a single agent, the total number of itera-
tions is no more thann times the preceding quantity. Thus, since each bid requires
O(n) operations, the running time of the algorithm isO(n2 max(i,j)

|v(i,j)|
ǫ

). Ob-
serve that ifǫ = O(1/n) (as discussed in Corollary 2.3.9), the algorithm’s running
time isO(n3k), wherek is a constant that does not depend onn, yielding worst-
case performance similar to linear programming.

2.3.3 The scheduling problem and integer programming

The problem and its integer program

Thescheduling probleminvolves a set of time slots and a set of agents. Each agentscheduling
problem requires some number of time slots and has a deadline. Intuitively, the agents each

have a task that requires the use of a shared resource, and that task lasts a certain
number of hours and has a certain deadline. Each agent also has some value for
completing the task by the deadline. Formally, we have the following definition.

Definition 2.3.10 (Scheduling problem)A scheduling problem consists of a tuple
C = (N,X, q, v), where

• N is a set ofn agents

• X is a set ofm discrete and consecutive time slots

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 37

• q = (q1, . . . , qm) is a reserve price vector, whereqj is a reserve value for time
slotxj ; q can be thought of as the value for the slot of the owner of the resource,
the value he could get for it by allocating it other than to one of then agents.

• v = (v1, . . . , vn), wherevi, the valuation function of agenti, is a function
over possible allocations of time slots that is parameterized by two arguments:
di, the deadlines of agenti, andλi, the required number of time slots required
by agenti. Thus for an allocationFi ⊆ 2X , we have that

vi(Fi) =

{
wi if Fi includesλi hours beforedi;
0 otherwise.

A solution to a scheduling problem is a vectorF = (F∅, F1, . . . , Fn), where
Fi is the set of time slots assigned to agenti, andF∅ is the time slots that are not
assigned. The value of a solution is defined as

V (F) =
∑

j|xj∈F∅

qj +
∑

i∈N

vi(Fi).

A solution is optimal if no other solution has a higher value.
Here is an example, involving scheduling jobs on a busy processor. The proces-

sor has several discrete time slots for the day—specifically, eight one-hour time
slots from 9:00A .M .to 5:00P.M .. Its operating costs force it to have a reserve price
of $3 per hour. There are four jobs, each with its own length, deadline, and worth.
They are shown in the following table.

job length (λ) deadline (d) worth (w)

1 2 hours 1:00P.M . $10.00
2 2 hours 12:00P.M . $16.00
3 1 hours 12:00P.M . $6.00
4 4 hours 5:00P.M . $14.50

Even in this small example it takes a moment to see that an optimal solution is
to allocate the machines as follows.

time slot agent

9:00A .M . 2
10:00A .M . 2
11:00A .M . 1
12:00P.M . 1
13:00P.M . 4
14:00P.M . 4
15:00P.M . 4
16:00P.M . 4

The question is again how to find the optimal schedule algorithmically. The
scheduling problem is inherently more complex than the assignment problem. The

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

38 2 Distributed Optimization

reason is that the dependence of agents’ valuation functions on the job length and
deadline exhibits bothcomplementarityandsubstitutability. For example, for agentcomplementarity

substitutes
1 any two blocks of two hours prior to 1:00 are perfect substitutes. On the other
hand, any two single time slots before the deadline are strongly complementary;
alone they are worth nothing, but together they are worth the full $10. This makes
for a more complex search space than in the case of the assignment problem, and
whereas the assignment problem is polynomial, the scheduling problem is NP-
complete. Indeed, the scheduling application is merely an instance of the general
set packing problem.4set packing

problem The complex nature of the scheduling problem has many ramifications. Among
other things, this means that we cannot hope to find a polynomial LP encoding
of the problem (since linear programming has a polynomial-time solution). We
can, however, encode it as an integer program. In the following, for every subset
S ⊆ X, the boolean variablexi,S will represent the fact that agenti was allocated
the bundleS, andvi(S) his valuation for that bundle.

maximize
∑

S⊆X,i∈N

vi(S)xi,S

subject to
∑

S⊆X

xi,S ≤ 1 ∀i ∈ N
∑

S⊆X:j∈S,i∈N

xi,S ≤ 1 ∀j ∈ X

xi,S ∈ {0, 1} ∀S ⊆ X, i ∈ N

In general, the length of the optimized quantity is exponential in the size ofX. In
practice, many of the terms can be assumed to be zero, and thus dropped. However,
even when the IP is small, our problems are not over. IPs are not in general solvable
in polynomial time, so we cannot hope for easy answers. However, it turns out that
a generalization of the auction-like procedure can be applied in this case too. The
price we will pay for the higher complexity of the problem is that the generalized
algorithm will not come with the same guarantees that we had in the case of the
assignment problem.

A more general form of competitive equilibrium

We start by revisiting the notion ofcompetitive equilibrium. The definition reallycompetitive
equilibrium does not change, but rather is generalized to apply to assignments of bundles of

time slots rather than single objects.

4. Even the scheduling problem can be defined much more broadly. It could involve earliest start times
as well as deadlines, could require contiguous blocks of time for a given agent (this turns out that this
requirement does not matter in our current formulation), could involve more than one resource, and so on.
But the current problem formulation is rich enough for our purposes.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 39

Definition 2.3.11 (Competitive equilibrium, generalized form) Given a schedul-
ing problem, a solutionF is in competitive equilibriumat pricesp if and only if

• For all i ∈ N it is the case thatFi = arg maxT⊆X(vi(T)−∑j|xj∈T pj) (the
set of time slots allocated to agenti maximizes his surplus at pricesp);

• For all j such thatxj ∈ F∅ it is the case thatpj = qj (the price of all
unallocated time slots is the reserve price); and

• For all j such thatxj 6∈ F∅ it is the case thatpj ≥ qj (the price of all allocated
time slots is greater than the reserve price).

As was the case in the assignment problem, a solution that is in competitive
equilibrium is guaranteed to be optimal.

Theorem 2.3.12If a solutionF to a scheduling problemC is in equilibrium at
pricesp, thenF is also optimal forC.

We give an informal proof to facilitate understanding of the theorem. Assume
thatF is in equilibrium at pricesp; we would like to show that the total value ofF
is higher than the total value of any other solutionF ′. Starting with the definition
of the total value of the solutionF , the following equations show this inequality
for an arbitraryF ′.

V (F) =
∑

j|xj∈F∅

qj +
∑

i∈N

vi(Fi)

=
∑

j|xj∈F∅

pj +
∑

i∈N

vi(Fi)

=
∑

j|xj∈X

pj +
∑

i∈N



vi(Fi)−
∑

j|xj∈Fi

pj





≥
∑

j|xj∈X

pj +
∑

i∈N



vi(F
′
i)−

∑

j|xj∈F ′
i

pj



 = V (F ′)

The last line comes from the definition of a competitive equilibrium, for each agent
i, there does not exist another allocationF ′

i that would yield a larger profit at the
current prices (formally,∀i, F ′

i vi(Fi) −
∑

j|xj∈Fi
pj ≥ vi(F

′
i) −

∑
j|xj∈F ′

i
pj).

Applying this condition to all agents, it follows that there exists no alternative
allocationF ′ with a higher total value.

Consider our sample scheduling problem. A competitive equilibrium for that
problem is shown in the following table.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

40 2 Distributed Optimization

time slot agent price

9:00A .M . 2 $6.25
10:00A .M . 2 $6.25
11:00A .M . 1 $6.25
12:00P.M . 1 $3.25
13:00P.M . 4 $3.25
14:00P.M . 4 $3.25
15:00P.M . 4 $3.25
16:00P.M . 4 $3.25

Note that the price of all allocated time slots is higher than the reserve prices of
$3.00. Also note that the allocation of time slots to each agent maximizes his
surplus at the pricesp. Finally, also notice that the solution is stable, in that no
agent can profit by making an offer for an alternative bundle at the current prices.

Even before we ask how we might find such a competitive equilibrium, we
should note that one does not always exist. Consider a modified version of our
scheduling example, in which the processor has two one-hour time slots, at 9:00
A .M .and at 10:00A .M ., and there are two jobs as in Table 2.1. The reserve price

job length (λ) deadline (d) worth (w)

1 2 hours 11:00A .M . $10.00
2 1 hour 11:00A .M . $6.00

Table 2.1: A problematic scheduling example.

is $3 per hour. We show that no competitive equilibrium exists by case analysis.
Clearly, if agent 1 is allocated a slot he must be allocated both slots. But then their
combined price cannot exceed $10, and thus for at least one of those hours the
price must not exceed $5. However, agent 2 is willing to pay as much as $6 for that
hour, and thus we are out of equilibrium. Similarly, if agent 2 is allocated at least
one of the two slots, their combined price cannot exceed $6, his value. But then
agent 1 would happily pay more and get both slots. Finally, we cannot have both
slots unallocated, since in this case their combined price would be $6, the sum of
the reserve prices, in which case both agents would have the incentive to buy.

This instability arises from the fact that the agents’ utility functions are superad-
ditive (or, equivalently, that there are complementary goods). This suggest some
restrictive conditions under which we are guaranteed the existence of a competitive
equilibrium solution. The first theorem captures the essential connection to linear
programming.

Theorem 2.3.13A scheduling problem has a competitive equilibrium solution if
and only if the LP relaxation of the associated integer program has a integer solu-
tion.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 41

The following theorem captures weaker sufficient conditions for the existence of
a competitive equilibrium solution.

Theorem 2.3.14A scheduling problem has a competitive equilibrium solution if
any one of the following conditions hold:

• For all agentsi ∈ N , there exists a time slotx ∈ X such that for allT ⊆ X,
vi(T) = vi({x}) (each agent desires only a single time slot, which must be the
first one in the current formulation)

• For all agentsi ∈ N , and for allR,T ⊆ X, such thatR∩T = ∅, vi(R∪T) =
vi(R) + vi(T) (the utility functions are additive)

• Time slots are gross substitutes; demand for one time slot does not decrease if
the price of another time slot increases

An auction algorithm

Perhaps the best-known distributed protocol for finding a competitive equilibrium
is the so-calledascending-auction algorithm. In this protocol, the center advertisesascending-

auction
algorithm

anask price, and the agents bid the ask price for bundles of time slots that maximize
their surplus at the given ask prices. This process repeats until there is no change.

Let b = (b1, . . . , bm) be the bid price vector, wherebj is the highest bid so far
for time slotxj ∈ X. LetF = (F1, . . . , Fn) be the set of allocated slots for each
agent. Finally, letǫ be the price increment. The ascending-auction algorithm is
given in Figure 2.7.

The ascending-auction algorithm is very similar to the assignment problem auc-
tion presented in the previous section, with one notable difference. Instead of cal-
culating a bid increment from the difference between the surplus gained from the
best and second-best objects, the bid increment here is always constant.

Let us consider a possible execution of the algorithm to the sample scheduling
problem discussed earlier. We use an increment of $0.25 for this execution of the
algorithm.

round bidder slots bid on F = (F1,F2,F3,F4) b

0 1 (9,10) ({9, 10}, {∅}, {∅}, {∅}) (3.25,3.25,3,3,3,3,3,3)
1 2 (10,11) ({9}, {10, 11}, {∅}, {∅}) (3.25,3.5,3.25,3,3,3,3,3)
2 3 (9) ({∅}, {10, 11}, {9}, {∅}) (3.5,3.5,3.25,3,3,3,3,3)
...

...
...

...
...

24 1 ∅ ({11, 12}, {9, 10}, {∅},
{12, 13, 14, 15})

(6.25,6.25,6.25,3.25,
3.25,3.25,3.25,3.25)

At this point, no agent has a profitable bid, and the algorithm terminates. How-
ever, this convergence depended on our choice of the increment. Let us consider
what happens if we select an increment of $1.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

42 2 Distributed Optimization

foreachslotxj do
bj ← qj

// Set the initial bids to be the reserve price

foreachagenti do
Fi ← ∅

repeat
foreachagenti = 1 to n do

foreachslotxj do
if xj ∈ Fi then

pj ← bj

else
pj ← bj + ǫ

// Agents assume that they will get slots they are currently the high bidder on
at that price, while they must increment the bid byǫ to get any other slot.

S∗ ← arg maxS⊆X|S⊇Fi
(vi(S)−∑j∈S pj)

// Find the best subset of slots, given your current outstanding bids
// Agenti becomes the high bidder for all slots inS∗ \ Fi.
foreachslotxj ∈ S∗ \ Fi do

bj ← bj + ǫ
if there exists an agentk 6= i such thatxj ∈ Fk then

setFk ← Fk \ {xj}
// Update the bidding price and current allocations of the other bidders.

Fi ← S∗

until F does not change

Figure 2.7: The ascending-auction algorithm.

round bidder slots bid on F = (F1,F2,F3,F4) b

0 1 (9,10) ({9, 10}, {∅}, {∅}, {∅}) (4,4,3,3,3,3,3,3)
1 2 (10,11) ({9}, {10, 11}, {∅}, {∅}) (4,5,4,3,3,3,3,3)
2 3 (9) ({∅}, {10, 11}, {9}, {∅}) (5,5,4,3,3,3,3,3)
3 4 (12,13,14,15) ({∅}, {10, 11}, {9},

{12, 13, 14, 15})
(5,5,4,4,4,4,4,3)

4 1 (11,12) ({11, 12}, {10}, {9},
{13, 14, 15})

(5,5,5,5,4,4,4,3)

5 2 (9,10) ({11, 12}, {9, 10}, {∅},
{13, 14, 15})

(6,6,5,5,4,4,4,3)

6 3 (11) ({12}, {9, 10}, {11},
{13, 14, 15})

(6,6,6,5,4,4,4,3)

7 4 ∅ ({12}, {9, 10}, {11},
{13, 14, 15})

(6,6,6,5,4,4,4,3)

8 1 ∅ ({12}, {9, 10}, {11},
{13, 14, 15})

(6,6,6,5,4,4,4,3)

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.3 Negotiation, auctions and optimization 43

Unfortunately, this bidding process does not reach the competitive equilibrium
because the bidding increment is not small enough.

It is also possible for the ascending-auction algorithm to not converge to an equi-
librium independently of how small the increment is. Consider another problem of
scheduling jobs on a busy processor. The processor has three one-hour time slots,
at 9:00A .M ., 10:00A .M ., and 11:00A .M ., and there are three jobs as shown in the
following table. The reserve price is $0 per hour.

job length (λ) deadline (d) worth (w)

1 1 hour 11:00A .M . $2.00
2 2 hours 12:00P.M . $20.00
3 2 hours 12:00P.M . $8.00

Here an equilibrium exists, but the ascending auction can miss it, if agent 2 bids up
the 11:00A .M .slot.

Despite a lack of a guarantee of convergence, we might still like to be able to
claim that if we do converge then we converge to an optimal solution. Unfortu-
nately, not only can we not do that, we cannot even bound how far the solution is
from optimal. Consider the following problem. The processor has two one-hour
time slots, at 9:00A .M .and 10:00A .M .(with reserve prices of $1 and $9, respec-
tively), and there are two jobs as shown in the following table.

job length (λ) deadline (d) worth (w)

1 1 hour 10:00A .M . $3.00
2 2 hours 11:00A .M . $11.00

The ascending-auction algorithm will stop with the first slot allocated to agent
1 and the second to agent 2. By adjusting the value to agent 2 and the reserve
price of the 11:00A .M .time slot, we can create examples in which the allocation is
arbitrarily far from optimal.

One property we can guarantee, however, is termination. We show this by con-
tradiction. Assume that the algorithm does not converge. It must be the case that
at each round at least one agent bids on at least one time slot, causing the price
of that slot to increase. After some finite number of bids on bundles that include
a particular time slot, it must be the case that the price on this slot is so high that
every agent prefers the empty bundle to all bundles that include this slot. Even-
tually, this condition will hold for all time slots, and thus no agent will bid on a
nonempty bundle, contradicting the assumption that the algorithm does not con-
verge. In the worst case, in each iteration only one of then agents bids, and this
bid is on a single slot. Once the sum of the prices exceeds the maximum total value
for the agents, the algorithm must terminate, giving us the worst-case running time

O(nmaxFi

∑
i∈N

vi(Fi)

ǫ
).

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

44 2 Distributed Optimization

2.4 Social laws and conventions

Consider the task of a city transportation official who wishes to optimize traffic
flow in the city. While he cannot redesign cars or create new roads, he can impose
traffic rules. A traffic rule is a form of asocial law: a restriction on the givensocial law
strategies of the agents. A typical traffic rule prohibits people from driving on the
left side of the road or through red lights. For a given agent, a social law presents a
tradeoff; he suffers from loss of freedom, but can benefit from the fact that others
lose some freedom. A good social law is designed to benefit all agents.

One natural formal view of social laws is from the perspective of game theory.
We discuss game theory in detail starting in Chapter 3, but here we need very little
of that material. For our purposes here, suffice it to say that in a game each agent
has a number of possible strategies (in our traffic example, driving plans), and
depending on the strategies selected by each agent, each agent receives a certain
payoff. In general, agents are free to choose their own strategies, which they will
do based on their guesses about the strategies of other agents. Sometimes the
interests of the agents are at odds with each other, but sometimes they are not. In
the extreme case the interests are perfectly aligned, and the only problem is that of
coordination among the agents. Again, traffic presents the perfect example; agents
are equally happy driving on the left or on the right, provided everyone does the
same.

A social law simply eliminates from a given game certain strategies for each of
the agents, and thus induces a subgame. When the subgame consists of a single
strategy for each agent, we call it asocial convention. In many cases the settingsocial

convention is naturally symmetric (the game is symmetric, as are the restrictions), but it need
not be that way. A social law is good if the induced subgame is “preferred" to the
original one. There can be different notions of preference here; we will discuss
this further after we discuss the notion ofsolution conceptsin Chapter 3. For now
we leave the notion of preference at the intuitive level; intuitively, a world where
everyone (say) drives on the right and stops at red lights is preferable to one in
which drivers cannot rely on such laws and must constantly coordinate with each
other.

This leaves the question of how one might find such a good social law or so-
cial convention. In Chapter 7 we adopt a democratic perspective; we look at how
conventions can emerge dynamically as a result of a learning process within the
population. Here we adopt a more autocratic perspective, and imagine a social
planner imposing a good social law (or even a single convention). The question is
how such a benign dictator arrives at such a good social law. In general the prob-
lem is hard; specifically, when formally defined, the general problem of finding a
good social law (under an appropriate notion of “good”) can be shown to be NP-
hard. However, the news is not all bad. First, there exist restrictions that render
the problem polynomial. Furthermore, in specific situations, one can simply hand
craft good social laws.

Indeed, traffic rules provide an excellent example. Consider a set ofk robots

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

2.4 Social laws and conventions 45

{0, 1, . . . , k−1} belonging to Deliverobot, Inc., who must navigate a road system
connecting seven locations as depicted in Figure 2.8.

s

e a f

d c b

Figure 2.8: Seven locations in a transportation domain

Assume thesek robots are the only vehicles using the road, and their main chal-
lenge is to avoid collisions among themselves. Assume further that they all start at
point s, the company’s depot, at the start of the day. We assume a discrete model
of time, and that each robot requires one unit of time to traverse any given edge,
though the robots can also travel more slowly if they wish. At each of the firstk
time steps one robot is assigned initial tasks and sent on its way, with roboti sent at
time i (i = 0, 1, . . . , k − 1). Thereafter they are in continuous motion; as soon as
they arrive at their current destination they are assigned a new task, and off they go.
A collision is defined as two robots occupying the same location at the same time.
How can collisions be avoided without the company constantly planning routes for
the robots, and without the robots constantly having to negotiate with each other?
The tools they have at their disposal are the speed with which they traverse each
edge and the common clock they implicitly share with the other robots.

Here is one simple solution: Each robot drives so that traversing each link takes
exactlyk time units. In this case, at any timet the only robot who will arrive
at a node—any node—isi ≡ t mod k. This is an example of a simple social
convention that is useful, but that comes at a price. Each robot is free to travel
along the shortest path, but will traverse this pathk times more slowly than he
would without this particular social law.

Here is a more efficient convention. Assign each vertex an arbitrary label be-
tween0 and k − 1, and define the time to traverse an edge between vertices
labeledx and y to be (y − x) mod k if (y − x) mod k > 0, andk oth-
erwise. Observe that the difference in this expression will sometimes be nega-
tive; this is not a problem because the modulo nevertheless returns a nonnega-

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

46 2 Distributed Optimization

tive value. To consider an example, if agenti follows the sequence of nodes la-
beleds, x1, x2, x3 then its travel times are(x1 − s) mod k, (x2 − x1) mod k,
(x3 − x2) mod k, presuming that none of these expressions evaluated to zero.
Adding these travel times to the start time we see thati reaches nodex3 at time
t ≡ i+x1 +(x2−x1)+ (x3−x2) ≡ x3 + i mod k. In general, we have that at
time t agenti will always either be on an edge or waiting at a node labeled(t− i)
mod k, and thus there will be no collisions.

A final comment is in order. In the discussion so far we have assumed that once a
social law is imposed (or agreed upon) it is adhered to. This is of course a tenuous
assumption when applied to fallible and self-interested agents. In Chapter 10 (and
specifically in Section 10.7) we return to this topic.

2.5 History and references

Distributed dynamic programming is discussed in detail in Bertsekas [1982]. LRTA*
is introduced in Korf [1990], and our section follows that material, as well as Yokoo
and Ishida [1999].

Distributed solutions to Markov Decision Problems are discussed in detail in
Guestrin [2003]; the discussion there goes far beyond the specific problem of joint
action selection covered here. Additional discussion specifically on the issue of
problem selection in distributed MDPs can be found in Vlassis et al. [2004].

Contract nets were introduced in Smith [1980], and Davis and Smith [1983] is
perhaps the most influential publication on the topic. The marginal-cost interpreta-
tion of contract nets was introduced in Sandholm [1993], and the discussion of the
capabilities and limitations of the various contract types (O, C, S, and M) followed
in Sandholm [1998]. Auction algorithms for linear programming are discussed
broadly in Bertsekas [1991]. The specific algorithm for the matching problem is
taken from Bertsekas [1992]. Its extension to the combinatorial setting is discussed
in Parkes and Ungar [2000]. Auction algorithms for combinatorial problems in gen-
eral are introduced in Wellman [1993], and the specific auction algorithms for the
scheduling problem appear in Wellman et al. [2001].

Social laws and conventions, and the example of traffic laws, were introduced
in Shoham and Tennenholtz [1995]. The treatment there includes many additional
tweaks on the basic traffic grid discussed here, as well as an algorithmic analysis
of the problem in general.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3 Introduction to Noncooperative Game
Theory: Games in Normal Form

Game theory is the mathematical study of interaction among independent, self-
interested agents. It has been applied to disciplines as diverse as economics (histori-
cally, its main area of application), political science, biology, psychology, linguistics—
and computer science. In this chapter we will concentrate on what has become the
dominant branch of game theory, callednoncooperativegame theory, and specifi-
cally on normal-form games, a canonical representation in this discipline.

As an aside, the name “noncooperative game theory” could be misleading, since
it may suggest that the theory applies exclusively to situations in which the interests
of different agents conflict. This is not the case, although it is fair to say that the
theory is most interesting in such situations. By the same token, in Chapter 12 we
will see thatcoalitional game theory(also known ascooperative game theory) doescoalitional game

theory not apply only in situations in which the interests of the agents align with each other.
The essential difference between the two branches is that in noncooperative game
theory the basic modeling unit is the individual (including his beliefs, preferences,
and possible actions) while in coalitional game theory the basic modeling unit is
the group. We will return to that later in Chapter 12, but for now let us proceed
with the individualistic approach.

3.1 Self-interested agents

What does it mean to say that agents are self-interested? It does not necessarily
mean that they want to cause harm to each other, or even that they care only about
themselves. Instead, it means that each agent has his own description of which
states of the world he likes—which can include good things happening to other
agents—and that he acts in an attempt to bring about these states of the world. In
this section we will consider how to model such interests.

The dominant approach to modeling an agent’s interests isutility theory. Thisutility theory
theoretical approach aims to quantify an agent’s degree of preference across a set
of available alternatives. The theory also aims to understand how these preferences
change when an agent faces uncertainty about which alternative he will receive.
When we refer to an agent’sutility function, as we will do throughout much ofutility function
this book, we will be making an implicit assumption that the agent has desires

48 3 Introduction to Noncooperative Game Theory: Games in Normal Form

about how to act that are consistent with utility-theoretic assumptions. Thus, before
we discuss game theory (and thus interactions betweenmultiple utility-theoretic
agents), we should examine some key properties of utility functions and explain
why they are believed to form a solid basis for a theory of preference and rational
action.

A utility function is a mapping from states of the world to real numbers. These
numbers are interpreted as measures of an agent’s level of happiness in the given
states. When the agent is uncertain about which state of the world he faces, his
utility is defined as the expected value of his utility function with respect to the
appropriate probability distribution over states.

3.1.1 Example: friends and enemies

We begin with a simple example of how utility functions can be used as a basis for
making decisions. Consider an agent Alice, who has three options: going to the
club (c), going to a movie (m), or watching a video at home (h). If she is on her
own, Alice has a utility of100 for c, 50 form, and50 for h. However, Alice is also
interested in the activities of two other agents, Bob and Carol, who frequent both
the club and the movie theater. Bob is Alice’s nemesis; he is downright painful to
be around. If Alice runs into Bob at the movies, she can try to ignore him and only
suffers a disutility of40; however, if she sees him at the club he will pester her
endlessly, yielding her a disutility of90. Unfortunately, Bob prefers the club: he
is there 60% of the time, spending the rest of his time at the movie theater. Carol,
on the other hand, is Alice’s friend. She makes everything more fun. Specifically,
Carol increases Alice’s utility for either activity by a factor of1.5 (after taking into
account the possible disutility of running into Bob). Carol can be found at the club
25% of the time, and the movie theater 75% of the time.

It will be easier to determine Alice’s best course of action if we list Alice’s utility
for each possible state of the world. There are 12 outcomes that can occur: Bob
and Carol can each be in either the club or the movie theater, and Alice can be in
the club, the movie theater, or at home. Alice has a baseline level of utility for
each of her three actions, and this baseline is adjusted if either Bob, Carol, or both
are present. Following the description of our example, we see that Alice’s utility
is always50 when she stays home, and for her other two activities it is given by
Figure 3.1.

So how should Alice choose among her three activities? To answer this question
we need to combine her utility function with her knowledge of Bob and Carol’s
randomized entertainment habits. Alice’s expected utility for going to the club can
be calculated as0.25(0.6 · 15 + 0.4 · 150) + 0.75(0.6 · 10 + 0.4 · 100) = 51.75.
In the same way, we can calculate her expected utility for going to the movies as
0.25(0.6 · 50 + 0.4 · 10) + 0.75(0.6(75) + 0.4(15)) = 46.75. Of course, Alice
gets an expected utility of50 for staying home. Thus, Alice prefers to go to the
club (even though Bob is often there and Carol rarely is) and prefers staying home
to going to the movies (even though Bob is usually not at the movies and Carol

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.1 Self-interested agents 49

B = c B = m

C = c 15 150

C = m 10 100

A = c

B = c B = m

C = c 50 10

C = m 75 15

A = m

Figure 3.1: Alice’s utility for the actionsc andm.

almost always is).

3.1.2 Preferences and utility

Because the idea of utility is so pervasive, it may be hard to see why anyone would
argue with the claim that it provides a sensible formal model for reasoning about an
agent’s happiness in different situations. However, when considered more carefully
this claim turns out to be substantive, and hence requires justification. For example,
why should a single-dimensional function be enough to explain preferences over an
arbitrarily complicated set of alternatives (rather than, say, a function that maps to
a point in a three-dimensional space, or to a point in a space whose dimensionality
depends on the number of alternatives being considered)? And why should an
agent’s response to uncertainty be captured purely by the expected value of his
utility function, rather than also depending on other properties of the distribution
such as its standard deviation or number of modes?

Utility theorists respond to such questions by showing that the idea of utility can
be grounded in a more basic concept ofpreferences. The most influential suchpreferences
theory is due to von Neumann and Morgenstern, and thus the utility functions are
sometimes called von Neumann–Morgenstern utility functions to distinguish them
from other varieties. We present that theory here.

Let O denote a finite set of outcomes. For any pairo1, o2 ∈ O, let o1 � o2

denote the proposition that the agent weakly preferso1 to o2. Let o1 ∼ o2 denote
the proposition that the agent is indifferent betweeno1 ando2. Finally, byo1 ≻ o2,
denote the proposition that the agent strictly preferso1 to o2. Note that while the
second two relations are notationally convenient, the first relation� is the only
one we actually need. This is because we can defineo1 ≻ o2 as “o1 � o2 and not
o2 � o1,” ando1 ∼ o2 as “o1 � o2 ando2 � o1.”

We need a way to talk about how preferences interact with uncertainty about
which outcome will be selected. In utility theory this is achieved through the con-
cept of lotteries. A lottery is the random selection of one of a set of outcomeslottery
according to specified probabilities. Formally, a lottery is a probability distribution

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

50 3 Introduction to Noncooperative Game Theory: Games in Normal Form

over outcomes written[p1 : o1, . . . , pk : ok], where eachoi ∈ O, eachpi ≥ 0 and∑k

i=1 pi = 1. LetL denote the set of all lotteries. We will extend the� relation to
apply to the elements ofL as well as to the elements ofO, effectively considering
lotteries over outcomes to be outcomes themselves.

We are now able to begin stating the axioms of utility theory. These are con-
straints on the� relation which, we will argue, make it consistent with our ideas
of how preferences should behave.

Axiom 3.1.1 (Completeness)∀o1, o2, o1 ≻ o2 or o2 ≻ o1 or o1 ∼ o2.

The completeness axiom states that the� relation induces an ordering over the
outcomes, allowing ties. For every pair of outcomes, either the agent prefers one
to the other or he is indifferent between them.

Axiom 3.1.2 (Transitivity) If o1 � o2 ando2 � o3, theno1 � o3.

There is good reason to feel that every agent should have transitive preferences.
If an agent’s preferences were nontransitive, then there would exist some triple of
outcomeso1, o2, ando3 for which o1 � o2, o2 � o3, ando3 ≻ o1. We can
show that such an agent would be willing to engage in behavior that is hard to call
rational. Consider a world in whicho1, o2, ando3 correspond to owning three
different items, and an agent who currently owns the itemo3. Sinceo2 � o3,
there must be some nonnegative amount of money that the agent would be willing
to pay in order to exchangeo3 for o2. (If o2 ≻ o3 then this amount would be
strictly positive; if o2 ∼ o3, then it would be zero.) Similarly, the agent would
pay a nonnegative amount of money to exchangeo2 for o1. However, from non-
transitivity (o3 ≻ o1) the agent wouldalsopay a strictly positive amount of money
to exchangeo1 for o3. The agent would thus be willing to pay a strictly positive
sum to exchangeo3 for o3 in three steps. Such an agent could quickly be separated
from any amount of money, which is why such a scheme is known as amoney
pump.money pump

Axiom 3.1.3 (Substitutability) If o1 ∼ o2, then for all sequences of one or more
outcomeso3, . . . , ok and sets of probabilitiesp, p3, . . . , pk for whichp+

∑k

i=3 pi =
1, [p : o1, p3 : o3, . . . , pk : ok] ∼ [p : o2, p3 : o3, . . . , pk : ok].

Let Pℓ(oi) denote the probability that outcomeoi is selected by lotteryℓ. For
example, if ℓ = [0.3 : o1; 0.7 : [0.8 : o2; 0.2 : o1]], thenPℓ(o1) = 0.44 and
Pℓ(o3) = 0.

Axiom 3.1.4 (Decomposability)If ∀oi ∈ O, Pℓ1(oi) = Pℓ2(oi) thenℓ1 ∼ ℓ2.

These axioms describe the way preferences change when lotteries are introduced.
Substitutability states that if an agent is indifferent between two outcomes, he is
also indifferent between two lotteries that differ only in which of these outcomes

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.1 Self-interested agents 51

10 10

Figure 3.2: Relationship betweeno2 andℓ(p).

is offered. Decomposability states that an agent is always indifferent between lot-
teries that induce the same probabilities over outcomes, no matter whether these
probabilities are expressed through a single lottery or nested in a lottery over lot-
teries. For example,[p : o1, 1 − p : [q : o2, 1 − q : o3]] ∼ [p : o1, (1 − p)q :
o2, (1 − p)(1 − q) : o3]. Decomposability is sometimes called theno fun in gam-
bling axiom because it implies that, all else being equal, the number of times anno fun in

gambling agent “rolls dice” has no affect on his preferences.

Axiom 3.1.5 (Monotonicity) If o1 ≻ o2 andp > q then[p : o1, 1− p : o2] ≻ [q :
o1, 1− q : o2].

The monotonicity axiom says that agents prefer more of a good thing. When an
agent preferso1 to o2 and considers two lotteries over these outcomes, he prefers
the lottery that assigns the larger probability too1. This property is called mono-
tonicity because it does not depend on the numerical values of the probabilities—
the more weighto1 receives, the happier the agent will be.

Lemma 3.1.6 If a preference relation� satisfies the axioms completeness, transi-
tivity, decomposability, and monotonicity, and ifo1 ≻ o2 ando2 ≻ o3, then there
exists some probabilityp such that for allp′ < p, o2 ≻ [p′ : o1; (1− p′) : o3], and
for all p′′ > p, [p′′ : o1; (1 − p′′) : o3] ≻ o2.

Proof. Denote the lottery[p : o1; (1 − p) : o3] asℓ(p). Consider someplow

for whicho2 ≻ ℓ(plow). Such aplow must exist sinceo2 ≻ o3; for example, by
decomposabilityplow = 0 satisfies this condition. By monotonicity,ℓ(plow) ≻
ℓ(p′) for any0 ≤ p′ < plow, and so by transitivity∀p′ ≤ plow, o2 ≻ ℓ(p′).
Consider somephigh for which ℓ(phigh) ≻ o2. By monotonicity,ℓ(p′) ≻
ℓ(phigh) for any1 ≥ p′ > phigh, and so by transitivity∀p′ ≥ phigh, ℓ(p

′) ≻
o2. We thus know the relationship betweenℓ(p) ando2 for all values ofp
except those on the interval(plow, phigh). This is illustrated in Figure 3.2 (left).

Considerp∗ = (plow + phigh)/2, the midpoint of our interval. By com-
pleteness,o2 ≻ ℓ(p∗) or ℓ(p∗) ≻ o2 or o2 ∼ ℓ(p∗). First consider the case
o2 ∼ ℓ(p∗). It cannot be that there is also another pointp′ 6= p∗ for which

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

52 3 Introduction to Noncooperative Game Theory: Games in Normal Form

o2 ∼ ℓ(p′): this would entailℓ(p∗) ∼ ℓ(p′) by transitivity, and sinceo1 ≻ o3,
this would violate monotonicity. For allp′ 6= p∗, then, it must be that either
o2 ≻ ℓ(p′) or ℓ(p′) ≻ o2. By the arguments earlier, if there was a point
p′ > p∗ for which o2 ≻ ℓ(p′), then∀p′′ < p′, o2 ≻ ℓ(p′′), contradicting
o2 ∼ ℓ(p∗). Similarly there cannot be a pointp′ < p∗ for whichℓ(p′) ≻ o2.
The relationship that must therefore hold betweeno2 and ℓ(p) is illustrated in
Figure 3.2 (right). Thus, in the caseo2 ∼ ℓ(p∗), we have our result.

Otherwise, ifo2 ≻ ℓ(p∗), then by the argument given earliero2 ≻ ℓ(p′) for
all p′ ≤ p∗. Thus we can redefineplow—the lower bound of the interval of
values for which we do not know the relationship betweeno2 and ℓ(p)—to be
p∗. Likewise, if ℓ(p∗) ≻ o2 then we can redefinephigh = p∗. Either way, our
interval(plow, phigh) is halved. We can continue to iterate the above argument,
examining the midpoint of the updated interval(plow, phigh). Either we will
encounter ap∗ for whicho2 ∼ ℓ(p∗), or in the limitplow will approach some
p from below, andphigh will approach thatp from above.

Something our axioms do not tell us is what preference relation holds between
o2 and the lottery[p : o1; (1− p) : o3]. It could be that the agent strictly preferso2

in this case, that the agent strictly prefers the lottery, or that the agent is indifferent.
Our final axiom says that the third alternative—depicted in Figure 3.2 (right)—
always holds.

Axiom 3.1.7 (Continuity) If o1 ≻ o2 and o2 ≻ o3, then∃p ∈ [0, 1] such that
o2 ∼ [p : o1, 1− p : o3].

If we accept Axioms 3.1.1, 3.1.2, 3.1.4, 3.1.5, and 3.1.7, it turns out that we
have no choice but to accept the existence of single-dimensional utility functions
whose expected values agents want to maximize. (And if we donot want to reach
this conclusion, we must therefore give up at least one of the axioms.) This fact is
stated as the following theorem.

Theorem 3.1.8 (von Neumann and Morgenstern, 1944)If a preference relation
� satisfies the axioms completeness, transitivity, substitutability, decomposability,
monotonicity, and continuity, then there exists a functionu : L 7→ [0, 1] with the
properties that

1. u(o1) ≥ u(o2) iff o1 � o2, and

2. u([p1 : o1, . . . , pk : ok]) =
∑k

i=1 piu(oi).

Proof. If the agent is indifferent among all outcomes, then for alloi ∈ O set
u(oi) = 0 and for allℓ ∈ L setu(ℓ) = 0. In this case Part 1 follows trivially
(both sides of the implication are always true) and Part 2 is immediate.

Otherwise, there must be a set of one or more most-preferred outcomes and
a disjoint set of one or more least-preferred outcomes. (There may of course

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.1 Self-interested agents 53

be other outcomes belonging to neither set.) Label one of the most-preferred
outcomes aso and one of the least-preferred outcomes aso. For any outcome
oi, defineu(oi) to be the numberpi such thatoi ∼ [pi : o, (1 − pi) : o]. By
continuity such a number exists; by Lemma 3.1.6 it is unique.

Part 1: u(o1) ≥ u(o2) iff o1 � o2.
We know thato1 ∼ [u(o1) : o; 1 − u(o1) : o]; denote this lotteryℓ1.

Likewise,o2 ∼ [u(o2) : o; 1 − u(o2) : o]; denote this lotteryℓ2. First, we
show thatu(o1) ≥ u(o2)⇒ o1 � o2. If u(o1) > u(o2) then, sinceo ≻ o we
can conclude thatℓ1 ≻ ℓ2 by monotonicity. Thus, we haveo1 ∼ ℓ1 ≻ ℓ2 ∼ o2;
by transitivity and completeness, this giveso1 ≻ o2. If u(o1) = u(o2), theℓ1
and ℓ2 are identical lotteries; thus,o1 ∼ ℓ1 ≡ ℓ2 ∼ o2, and transitivity gives
o1 ∼ o2.

Now we must show thato1 � o2 ⇒ u(o1) ≥ u(o2). It suffices to prove
the contrapositive of this statement,u(o1) 6≥ u(o2)⇒ o1 6� o2, which can be
rewritten asu(o2) > u(o1) ⇒ o2 ≻ o1 by completeness. This statement was
already proved earlier (with the labelso1 ando2 swapped).

Part 2: u([p1 : o1, . . . , pk : ok]) =
∑k

i=1 piu(oi).
Let u∗ = u([p1 : o1, . . . , pk : ok]). From the construction ofu we know

that oi ∼ [u(oi) : o, (1 − u(oi)) : o]. By substitutability, we can replace
eachoi in the definition ofu∗ by the lottery [u(oi) : o, (1 − u(oi)) : o],
giving us u∗ = u([p1 : [u(o1) : o, (1 − u(o1)) : o], . . . , pk : [u(ok) :
o, (1 − u(ok)) : o]]). This nested lottery only selects between the two out-
comeso and o. This means that we can use decomposability to conclude

u∗ = u
([(∑k

i=1 piu(oi)
)

: o, 1−
(∑k

i=1 piu(oi)
)

: o
])

. By our defini-

tion of u, u∗ =
∑k

i=1 piu(oi).

One might wonder why we do not use money to express the real-valued quantity
that rational agents want to maximize, rather than inventing the new concept of
utility. The reason is that while it is reasonable to assume that all agents get happier
the more money they have, it is often not reasonable to assume that agents care
only about theexpected valuesof their bank balances. For example, consider a
situation in which an agent is offered a gamble between a payoff of two million
and a payoff of zero, with even odds. When the outcomes are measured in units of
utility (“utils”) then Theorem 3.1.8 tells us that the agent would prefer this gamble
to a sure payoff of 999,999 utils. However, if the outcomes were measured in
money, few of us would prefer to gamble—most people would prefer a guaranteed
payment of nearly a million dollars to a double-or-nothing bet. This is not to say
that utility-theoretic reasoning goes out the window when money is involved. It
simply points out that utility and money are often not linearly related. This issue
is discussed in more detail in Section 10.3.1.

What if we want a utility function that is not confined to the range[0, 1], such as
the one we had in our friends and enemies example? Luckily, Theorem 3.1.8 does
not requirethat every utility function maps to this range; it simply shows that one

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

54 3 Introduction to Noncooperative Game Theory: Games in Normal Form

such utility function must exist for every set of preferences that satisfy the required
axioms. Indeed, von Neumann and Morgenstern also showed that the absolute
magnitudes of the utility function evaluated at different outcomes are unimportant.
Instead, every positive affine transformation of a utility function yields another util-
ity function for the same agent (in the sense that it will also satisfy both properties
of Theorem 3.1.8). In other words, ifu(o) is a utility function for a given agent
thenu′(o) = au(o) + b is also a utility function for the same agent, as long asa
andb are constants anda is positive.

3.2 Games in normal form

We have seen that under reasonable assumptions about preferences, agents will
always have utility functions whose expected values they want to maximize. This
suggests that acting optimally in an uncertain environment is conceptually straightforward—
at least as long as the outcomes and their probabilities are known to the agent and
can be succinctly represented. Agents simply need to choose the course of action
that maximizes expected utility. However, things can get considerably more com-
plicated when the world containstwo or moreutility-maximizing agents whose ac-
tions can affect each other’s utilities. (To augment our example from Section 3.1.1,
what if Bob hates Alice and wants to avoid her too, while Carol is indifferent to
seeing Alice and has a crush on Bob? In this case, we might want to revisit our
previous assumption that Bob and Carol will act randomly without caring about
what the other two agents do.) To study such settings, we turn to game theory.

3.2.1 Example: the TCP user’s game

Let us begin with a simpler example to provide some intuition about the type of
phenomena we would like to study. Imagine that you and another colleague are
the only people using the internet. Internet traffic is governed by the TCP protocol.
One feature of TCP is thebackoff mechanism; if the rates at which you and your
colleague send information packets into the network causes congestion, you each
back off and reduce the rate for a while until the congestion subsides. This is
how a correct implementation works. A defective one, however, will not back off
when congestion occurs. You have two possible strategies:C (for using a correct
implementation) andD (for using a defective one). If both you and your colleague
adoptC then your average packet delay is 1 ms. If you both adoptD the delay is
3 ms, because of additional overhead at the network router. Finally, if one of you
adoptsD and the other adoptsC then theD adopter will experience no delay at
all, but theC adopter will experience a delay of 4 ms.TCP user’s

game

Prisoner’s
Dilemma game

These consequences are shown in Figure 3.3. Your options are the two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, the negative of your delay) and the second number represents your

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.2 Games in normal form 55

colleague’s payoff.1

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.3: The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt,C or D? Does it depend on what
you think your colleague will do? Furthermore, from the perspective of the network
operator, what kind of behavior can he expect from the two users? Will any two
users behave the same when presented with this scenario? Will the behavior change
if the network operator allows the users to communicate with each other before
making a decision? Under what changes to the delays would the users’ decisions
still be the same? How would the users behave if they have the opportunity to face
this same decision with the same counterpart multiple times? Do answers to these
questions depend on how rational the agents are and how they view each other’s
rationality?

Game theory gives answers to many of these questions. It tells us that any ratio-
nal user, when presented with this scenario once, will adoptD—regardless of what
the other user does. It tells us that allowing the users to communicate beforehand
will not change the outcome. It tells us that for perfectly rational agents, the deci-
sion will remain the same even if they play multiple times; however, if the number
of times that the agents will play is infinite, or even uncertain, we may see them
adoptC.

3.2.2 Definition of games in normal form

The normal form, also known as the strategic form, is the most familiar representa-
tion of strategic interactions in game theory. A game written in this way amounts
to a representation of every player’s utility for every state of the world, in the spe-
cial case where states of the world depend only on the players’ combined actions.
Consideration of this special case may seem uninteresting. However, it turns out
that settings in which the state of the world also depends on randomness in the
environment—called Bayesian games and introduced in Section 6.3—can be re-
duced to (much larger) normal-form games. Indeed, there also exist normal-form
reductions for other game representations, such as games that involve an element
of time (extensive-form games, introduced in Chapter 5). Because most other rep-

1. A more standard name for this game is the Prisoner’s Dilemma; we return to this in Section 3.2.3.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

56 3 Introduction to Noncooperative Game Theory: Games in Normal Form

resentations of interest can be reduced to it, the normal-form representation is ar-
guably the most fundamental in game theory.

Definition 3.2.1 (Normal-form game) A (finite,n-person)normal-form gameis
a tuple(N,A, u), where:

• N is a finite set ofn players, indexed byi;

• A = A1 × · · · × An, whereAi is a finite set ofactionsavailable to playeri.action
Each vectora = (a1, . . . , an) ∈ A is called anaction profile;

action profile

• u = (u1, . . . , un) whereui : A 7→ R is a real-valuedutility (or payoff)
utility function

payoff function

functionfor playeri.

Note that we previously argued that utility functions should map from the set
of outcomes, not the set ofactions. Here we make the implicit assumption that
O = A.

A natural way to represent games is via ann-dimensional matrix. We already
saw a two-dimensional example in Figure 3.3. In general, each row corresponds
to a possible action for player 1, each column corresponds to a possible action for
player 2, and each cell corresponds to one possible outcome. Each player’s utility
for an outcome is written in the cell corresponding to that outcome, with player 1’s
utility listed first.

3.2.3 More examples of normal-form games

Prisoner’s Dilemma

Previously, we saw an example of a game in normal form, namely, the Prisoner’s
(or the TCP user’s) Dilemma. However, as discussed in Section 3.1.2, the precise
payoff numbers play a limited role. The essence of the Prisoner’s Dilemma exam-
ple would not change if the−4 was replaced by−5, or if 100 was added to each of
the numbers. In its most general form, the Prisoner’s Dilemma is any normal-form
game shown in Figure 3.4, in whichc > a > d > b.2

C D

C a, a b, c

D c, b d, d

Figure 3.4: Anyc > a > d > b define an instance of Prisoner’s Dilemma.

2. Under some definitions, there is the further requirement thata > b+c
2

, which guarantees that the outcome
(C, C) maximizes the sum of the agents’ utilities.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.2 Games in normal form 57

Incidentally, the name “Prisoner’s Dilemma” for this famous game-theoretic sit-
uation derives from the original story accompanying the numbers. The players of
the game are two prisoners suspected of a crime rather than two network users. The
prisoners are taken to separate interrogation rooms, and each can either “confess”
to the crime or “deny” it (or, alternatively, “cooperate” or “defect”). If the payoff
are all nonpositive, their absolute values can be interpreted as the length of jail term
each of prisoner gets in each scenario.

Common-payoff games

There are some restricted classes of normal-form games that deserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 (Common-payoff game)A common-payoff gameis a game incommon-payoff
game which for all action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is

the case thatui(a) = uj(a).

Common-payoff games are also calledpure coordination gamesor team games.pure
coordination
game

team games

In such games the agents have no conflicting interests; their sole challenge is to
coordinate on an action that is maximally beneficial to all.

As an example, imagine two drivers driving towards each other in a country
having no traffic rules, and who must independently decide whether to drive on the
left or on the right. If the drivers choose the same side (left or right) they have
some high utility, and otherwise they have a low utility. The game matrix is shown
in Figure 3.5.

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Figure 3.5: Coordination game.

Zero-sum games

At the other end of the spectrum from pure coordination games liezero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine trans-
formations) are more properly calledconstant-sum games.Unlike common-payoffconstant-sum

game games, constant-sum games are meaningful primarily in the context of two-player
(though not necessarily two-strategy) games.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

58 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Definition 3.2.3 (Constant-sum game)A two-player normal-form game isconstant-
sumif there exists a constantc such that for each strategy profilea ∈ A1 × A2 it
is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will
always assume thatc = 0, that is, that we have a zero-sum game. If common-
payoff games represent situations of pure coordination, zero-sum games represent
situations of pure competition; one player’s gain must come at the expense of the
other player. This property requires that there be exactly two agents. Indeed, if
you allow more agents, any game can be turned into a zero-sum game by adding
a dummy player whose actions do not impact the payoffs to the other agents, and
whose own payoffs are chosen to make the payoffs in each outcome sum to zero.

A classical example of a zero-sum game is the game ofMatching Pennies. In thisMatching
Pennies game game, each of the two players has a penny and independently chooses to display

either heads or tails. The two players then compare their pennies. If they are the
same then player 1 pockets both, and otherwise player 2 pockets them. The payoff
matrix is shown in Figure 3.6.

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1

Figure 3.6: Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rocham-
beau, provides a three-strategy generalization of the matching-pennies game. The
payoff matrix of this zero-sum game is shown in Figure 3.7. In this game, each of
the two players can choose either rock, paper, or scissors. If both players choose
the same action, there is no winner and the utilities are zero. Otherwise, each of the
actions wins over one of the other actions and loses to the other remaining action.

Battle of the Sexes

In general, games can include elements of both coordination and competition. Pris-
oner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, aBattle of the

Sexes game husband and wife wish to go to the movies, and they can select among two movies:
“Lethal Weapon (LW)” and “Wondrous Love (WL).” They much prefer to go to-
gether rather than to separate movies, but while the wife (player 1) prefers LW, the
husband (player 2) prefers WL. The payoff matrix is shown in Figure 3.8. We will
return to this game shortly.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.2 Games in normal form 59

Rock Paper Scissors

Rock 0, 0 −1, 1 1,−1

Paper 1,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 0, 0

Figure 3.7: Rock, Paper, Scissors game.

Wife

Husband

LW WL

LW 2, 1 0, 0

WL 0, 0 1, 2

Figure 3.8: Battle of the Sexes game.

3.2.4 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet
his set ofstrategiesor his available choices. Certainly one kind of strategy is to
select a single action and play it. We call such a strategy apure strategy, and wepure strategy
will use the notation we have already developed for actions to represent it. We call
a choice of pure strategy for each agent apure-strategy profile.pure-strategy

profile Players could also follow another, less obvious type of strategy: randomizing
over the set of available actions according to some probability distribution. Such
a strategy is called a mixed strategy. Although it may not be immediately obvious
why a player should introduce randomness into his choice of action, in fact in
a multiagent setting the role of mixed strategies is critical. We define a mixed
strategy for a normal-form game as follows.

Definition 3.2.4 (Mixed strategy) Let (N,A, u) be a normal-form game, and for
any setX let Π(X) be the set of all probability distributions overX. Then the set
of mixed strategiesfor playeri is Si = Π(Ai).mixed strategy

Definition 3.2.5 (Mixed-strategy profile) The set ofmixed-strategy profilesis sim-mixed-strategy
profile ply the Cartesian product of the individual mixed-strategy sets,S1 × · · · × Sn.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

60 3 Introduction to Noncooperative Game Theory: Games in Normal Form

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the
mixed strategysi is called thesupportof si.

Definition 3.2.6 (Support) Thesupportof a mixed strategysi for a playeri is thesupport of a
mixed strategy set of pure strategies{ai|si(ai) > 0}.

Note that a pure strategy is a special case of a mixed strategy, in which the
support is a single action. At the other end of the spectrum we havefully mixed
strategies. A strategy is fully mixed if it has full support (i.e., if it assigns everyfully mixed

strategy action a nonzero probability).
We have not yet defined the payoffs of players given a particular strategy profile,

since the payoff matrix defines those directly only for the special case of pure-
strategy profiles. But the generalization to mixed strategies is straightforward, and
relies on the basic notion of decision theory—expected utility. Intuitively, we firstexpected utility
calculate the probability of reaching each outcome given the strategy profile, and
then we calculate the average of the payoffs of the outcomes, weighted by the
probabilities of each outcome. Formally, we define the expected utility as follows
(overloading notation, we useui for both utility and expected utility).

Definition 3.2.7 (Expected utility of a mixed strategy)Given a normal-form game
(N,A, u), the expected utilityui for player i of the mixed-strategy profiles =
(s1, . . . , sn) is defined as

ui(s) =
∑

a∈A

ui(a)

n∏

j=1

sj(aj).

3.3 Analyzing games: from optimality to equilibrium

Now that we have defined what games in normal form are and what strategies are
available to players in them, the question is how to reason about such games. In
single-agent decision theory the key notion is that of anoptimal strategy, that is,optimal strategy
a strategy that maximizes the agent’s expected payoff for a given environment in
which the agent operates. The situation in the single-agent case can be fraught
with uncertainty, since the environment might be stochastic, partially observable,
and spring all kinds of surprises on the agent. However, the situation is even more
complex in a multiagent setting. In this case the environment includes—or, in many
cases we discuss, consists entirely of—other agents, all of whom are also hoping
to maximize their payoffs. Thus the notion of an optimal strategy for a given agent
is not meaningful; the best strategy depends on the choices of others.

Game theorists deal with this problem by identifying certain subsets of outcomes,
calledsolution concepts, that are interesting in one sense or another. In this sectionsolution concept
we describe two of the most fundamental solution concepts: Pareto optimality and
Nash equilibrium.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.3 Analyzing games: from optimality to equilibrium 61

3.3.1 Pareto optimality

First, let us investigate the extent to which a notion of optimality can be meaningful
in games. From the point of view of an outside observer, can some outcomes of a
game be said to be better than others?

This question is complicated because we have no way of saying that one agent’s
interests are more important than another’s. For example, it might be tempting to
say that we should prefer outcomes in which the sum of agents’ utilities is higher.
However, recall from Section 3.1.2 that we can apply any positive affine transfor-
mation to an agent’s utility function and obtain another valid utility function. For
example, we could multiply all of player 1’s payoffs by 1,000, which could clearly
change which outcome maximized the sum of agents’ utilities.

Thus, our problem is to find a way of saying that some outcomes are better
than others, even when we only know agents’ utility functions up to a positive
affine transformation. Imagine that each agent’s utility is a monetary payment that
you will receive, but that each payment comes in a different currency, and you do
not know anything about the exchange rates. Which outcomes should you prefer?
Observe that, while it is not usually possible to identify the best outcome, thereare
situations in which you can be sure that one outcome is better than another. For
example, it is better to get10 units of currencyA and3 units of currencyB than
to get9 units of currencyA and3 units of currencyB, regardless of the exchange
rate. We formalize this intuition in the following definition.

Definition 3.3.1 (Pareto domination) Strategy profiles Pareto dominatesstrat-Pareto
domination egy profiles′ if for all i ∈ N , ui(s) ≥ ui(s

′), and there exists somej ∈ N
for whichuj(s) > uj(s

′).

In other words, in a Pareto-dominated strategy profile some player can be made
better off without making any other player worse off. Observe that we define Pareto
domination over strategy profiles, not just action profiles. Thus, here we treat strat-
egy profiles as outcomes, just as we treated lotteries as outcomes in Section 3.1.2.

Pareto domination gives us a partial ordering over strategy profiles. Thus, in an-
swer to our question before, we cannot generally identify a single “best” outcome;
instead, we may have a set of noncomparable optima.

Definition 3.3.2 (Pareto optimality) Strategy profiles is Pareto optimal, or strictlyPareto
optimality Pareto efficient, if there does not exist another strategy profiles′ ∈ S that Pareto

strict Pareto
efficiency

dominatess.

We can easily draw several conclusions about Pareto optimal strategy profiles.
First, every game must have at least one such optimum, and there must always exist
at least one such optimum in which all players adopt pure strategies. Second, some
games will have multiple optima. For example, in zero-sum games,all strategy
profiles are strictly Pareto efficient. Finally, in common-payoff games, all Pareto
optimal strategy profiles have the same payoffs.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

62 3 Introduction to Noncooperative Game Theory: Games in Normal Form

3.3.2 Defining best response and Nash equilibrium

Now we will look at games from an individual agent’s point of view, rather than
from the vantage point of an outside observer. This will lead us to the most influ-
ential solution concept in game theory, theNash equilibrium.

Our first observation is that if an agent knew how the others were going to play,
his strategic problem would become simple. Specifically, he would be left with the
single-agent problem of choosing a utility-maximizing action that we discussed
in Section 3.1. Formally, defines−i = (s1, . . . , si−1, si+1, . . . , sn), a strategy
profile s without agenti’s strategy. Thus we can writes = (si, s−i). If the agents
other thani (whom we denote−i) were to commit to plays−i, a utility-maximizing
agenti would face the problem of determining his best response.

Definition 3.3.3 (Best response)Player i’s best responseto the strategy profilebest response
s−i is a mixed strategys∗i ∈ Si such thatui(s

∗
i , s−i) ≥ ui(si, s−i) for all strate-

giessi ∈ Si.

The best response is not necessarily unique. Indeed, except in the extreme case
in which there is a unique best response that is a pure strategy, the number of
best responses is always infinite. When the support of a best responses∗ includes
two or more actions, the agent must be indifferent among them—otherwise, the
agent would prefer to reduce the probability of playing at least one of the actions
to zero. But thusany mixture of these actions must also be a best response, not
only the particular mixture ins∗. Similarly, if there are two pure strategies that
are individually best responses, any mixture of the two is necessarily also a best
response.

Of course, in general an agent will not know what strategies the other players
plan to adopt. Thus, the notion of best response is not a solution concept—it does
not identify an interesting set of outcomes in this general case. However, we can
leverage the idea of best response to define what is arguably the most central notion
in noncooperative game theory, the Nash equilibrium.

Definition 3.3.4 (Nash equilibrium) A strategy profiles = (s1, . . . , sn) is aNash
equilibriumif, for all agentsi, si is a best response tos−i.Nash

equilibrium
Intuitively, a Nash equilibrium is astablestrategy profile: no agent would want

to change his strategy if he knew what strategies the other agents were following.
We can divide Nash equilibria into two categories, strict and weak, depending

on whether or not every agent’s strategy constitutes auniquebest response to the
other agents’ strategies.

Definition 3.3.5 (Strict Nash) A strategy profiles = (s1, . . . , sn) is astrict Nash
equilibrium if, for all agentsi and for all strategiess′i 6= si, ui(si, s−i) >strict Nash

equilibrium ui(s
′
i, s−i).

Definition 3.3.6 (Weak Nash)A strategy profiles = (s1, . . . , sn) is aweak Nash
equilibrium if, for all agentsi and for all strategiess′i 6= si, ui(si, s−i) ≥weak Nash

equilibrium

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.3 Analyzing games: from optimality to equilibrium 63

ui(s
′
i, s−i), ands is not a strict Nash equilibrium.

Intuitively, weak Nash equilibria are less stable than strict Nash equilibria, be-
cause in the former case at least one player has a best response to the other players’
strategies that is not his equilibrium strategy. Mixed-strategy Nash equilibria are
necessarily weak, while pure-strategy Nash equilibria can be either strict or weak,
depending on the game.

3.3.3 Finding Nash equilibria

Consider again the Battle of the Sexes game. We immediately see that it has two
pure-strategy Nash equilibria, depicted in Figure 3.9.

LW WL

LW 2, 1 0, 0

WL 0, 0 1, 2

Figure 3.9: Pure-strategy Nash equilibria in the Battle of the Sexes game.

We can check that these are Nash equilibria by confirming that whenever one
of the players plays the given (pure) strategy, the other player would only lose by
deviating.

Are these the only Nash equilibria? The answer is no; although they are indeed
the only pure-strategy equilibria, there is also another mixed-strategy equilibrium.
In general, it is tricky to compute a game’s mixed-strategy equilibria; we consider
this problem in detail in Chapter 4. However, we will show here that this computa-
tional problem is easy when we know (or can guess) thesupportof the equilibrium
strategies, particularly so in this small game. Let us now guess that both players
randomize, and let us assume that husband’s strategy is to play LW with proba-
bility p and WL with probability1 − p. Then if the wife, the row player, also
mixes between her two actions, she must be indifferent between them, given the
husband’s strategy. (Otherwise, she would be better off switching to a pure strategy
according to which she only played the better of her actions.) Then we can write
the following equations.

Uwife(LW) = Uwife(WL)

2 ∗ p+ 0 ∗ (1− p) = 0 ∗ p+ 1 ∗ (1− p)

p =
1

3

We get the result that in order to make the wife indifferent between her actions,
the husband must choose LW with probability1/3 and WL with probability2/3.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

64 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Of course, since the husband plays a mixed strategy he must also be indifferent
between his actions. By a similar calculation it can be shown that to make the
husband indifferent, the wife must choose LW with probability2/3 and WL with
probability 1/3. Now we can confirm that we have indeed found an equilibrium:
since both players play in a way that makes the other indifferent, they are both
best responding to each other. Like all mixed-strategy equilibria, this is a weak
Nash equilibrium. The expected payoff of both agents is2/3 in this equilibrium,
which means that each of the pure-strategy equilibria Pareto-dominates the mixed-
strategy equilibrium.

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1

Figure 3.10: The Matching Pennies game.

Earlier, we mentioned briefly that mixed strategies play an important role. The
previous example may not make it obvious, but now consider again the Matching
Pennies game, reproduced in Figure 3.10. It is not hard to see that no pure strat-
egy could be part of an equilibrium in this game of pure competition. Therefore,
likewise there can be no strict Nash equilibrium in this game. But using the afore-
mentioned procedure, the reader can verify that again there exists a mixed-strategy
equilibrium; in this case, each player chooses one of the two available actions with
probability1/2.

What does it mean to say that an agent plays a mixed-strategy Nash equilibrium?
Do players really sample probability distributions in their heads? Some people
have argued that they really do. One well-known motivating example for mixed
strategies involves soccer: specifically, a kicker and a goalie getting ready for a
penalty kick. The kicker can kick to the left or the right, and the goalie can jump
to the left or the right. The kicker scores if and only if he kicks to one side and
the goalie jumps to the other; this is thus best modeled as Matching Pennies. Any
pure strategy on the part of either player invites a winning best response on the part
of the other player. It is only by kicking or jumping in either direction with equal
probability, goes the argument, that the opponent cannot exploit your strategy.

Of course, this argument is not uncontroversial. In particular, it can be argued
that the strategies of each player are deterministic, but each player has uncertainty
regarding the other player’s strategy. This is indeed a second possible interpretation
of mixed strategies: the mixed strategy of playeri is everyone else’s assessment of
how likely i is to play each pure strategy. In equilibrium,i’s mixed strategy has
the further property that every action in its support is a best response to playeri’s
beliefs about the other agents’ strategies.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.3 Analyzing games: from optimality to equilibrium 65

Finally, there are two interpretations that are related to learning in multiagent
systems. In one interpretation, the game is actually played many times repeatedly,
and the probability of a pure strategy is the fraction of the time it is played in the
limit (its so-calledempirical frequency). In the other interpretation, not only isempirical

frequency the game played repeatedly, but each time it involves two different agents selected
at random from a large population. In this interpretation, each agent in the pop-
ulation plays a pure strategy, and the probability of a pure strategy represents the
fraction of agents playing that strategy. We return to these learning interpretations
in Chapter 7.

3.3.4 Nash’s theorem: proving the existence of Nash equilibria

We have now seen two examples in which we managed to find Nash equilibria
(three equilibria for Battle of the Sexes, one equilibrium for Matching Pennies).
Did we just luck out? Here there is some good news—it was not just luck. In this
section we prove that every game has at least one Nash equilibrium.

First, a disclaimer: this section is more technical than the rest of the chapter. A
reader who is prepared to take the existence of Nash equilibria on faith can safely
skip to the beginning of Section 3.4 on p. 73. For the bold of heart who remain, we
begin with some preliminary definitions.

Definition 3.3.7 (Convexity) A setC ⊂ R
m is convexif for everyx, y ∈ C andconvexity

λ ∈ [0, 1], λx+ (1 − λ)y ∈ C. For vectorsx0, . . . , xn and nonnegative scalars
λ0, . . . , λn satisfying

∑n

i=0 λi = 1, the vector
∑n

i=0 λix
i is called aconvex com-

binationof x0, . . . , xn.convex
combination

For example, a cube is a convex set inR
3; a bowl is not.

Definition 3.3.8 (Affine independence)A finite set of vectors{x0, . . . , xn} in a
Euclidean space isaffinely independentif

∑n

i=0 λix
i = 0 and

∑n

i=0 λi = 0 implyaffine
independence thatλ0 = · · · = λn = 0.

An equivalent condition is that{x1 − x0, x2 − x0, . . . , xn − x0} are linearly
independent. Intuitively, a set of points is affinely independent if no three points
from the set lie on the same line, no four points from the set lie on the same plane,
and so on. For example, the set consisting of the origin0 and the unit vectors
e1, . . . , en is affinely independent.

Next we define a simplex, which is ann-dimensional generalization of a triangle.

Definition 3.3.9 (n-simplex) An n-simplex, denotedx0 · · · xn, is the set of alln-simplex
convex combinations of the affinely independent set of vectors{x0, . . . , xn}, that
is,

x0 · · · xn =

{
n∑

i=0

λix
i : ∀i ∈ {0, . . . , n}, λi ≥ 0; and

n∑

i=0

λi = 1

}
.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

66 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Eachxi is called avertexof the simplexx0 · · · xn and eachk-simplexxi0 · · · xikvertex
is called ak-faceof x0 · · · xn, wherei0, . . . , ik ∈ {0, . . . , n}. For example, ak-face
triangle (i.e., a 2-simplex) has one 2-face (itself), three 1-faces (its sides) and three
0-faces (its vertices).

Definition 3.3.10 (Standardn-simplex) Thestandardn-simplex△n is

{y ∈ R
n+1 :

n∑

i=0

yi = 1,∀i = 0, . . . , n, yi ≥ 0}.

In other words, the standardn-simplex is the set of all convex combinations of
then+ 1 unit vectorse0, . . . , en.

Definition 3.3.11 (Simplicial subdivision) Asimplicial subdivisionof ann-simplexsimplicial
subdivision T is a finite set of simplexes{Ti} for which

⋃
Ti∈T Ti = T , and for anyTi, Tj ∈ T ,

Ti ∩ Tj is either empty or equal to a common face.

Intuitively, this means that a simplex is divided up into a set of smaller simplexes
that together occupy exactly the same region of space and that overlap only on their
boundaries. Furthermore, when two of them overlap, the intersection must be an
entire face of both subsimplexes. Figure 3.11 (left) shows a 2-simplex subdivided
into 16 subsimplexes.

Let y ∈ x0 · · · xn denote an arbitrary point in a simplex. This point can be
written as a convex combination of the vertices:y =

∑
i λix

i. Now define a
function that gives the set of vertices “involved” in this point:χ(y) = {i : λi > 0}.
We use this function to define a proper labeling.

Definition 3.3.12 (Proper labeling) LetT = x0 · · · xn be simplicially subdivided,
and letV denote the set of all distinct vertices of all the subsimplexes. A function
L : V 7→ {0, . . . , n} is aproper labelingof a subdivision ifL(v) ∈ χ(v).proper labeling

One consequence of this definition is that the vertices of a simplex must all
receive different labels. (Do you see why?) As an example, the subdivided simplex
in Figure 3.11 (left) is properly labeled.

Definition 3.3.13 (Complete labeling)A subsimplex iscompletely labeledif L as-completely
labeled
subsimplex

sumes all the values0, . . . , n on its set of vertices.

For example in the subdivided triangle in Figure 3.11 (left), the subtriangle at the
very top is completely labeled.

Lemma 3.3.14 (Sperner’s lemma)Let Tn = x0 · · · xn be simplicially subdi-Sperner’s lemma
vided and letL be a proper labeling of the subdivision. Then there are an odd
number of completely labeled subsimplexes in the subdivision.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.3 Analyzing games: from optimality to equilibrium 67

0 10 11

0 0

0

1

1

1

2

2 2

2

0 10 11

0 0

0

1

1

1

2

2 2

2

Figure 3.11: A properly labeled simplex (left), and the same simplex with com-
pletely labeled subsimplexes shaded and three walks indicated (right).

Proof. We prove this by induction onn. The casen = 0 is trivial. The simplex
consists of a single pointx0. The only possible simplicial subdivision is{x0}.
There is only one possible labeling function,L(x0) = 0. Note that this is a
proper labeling. So there is one completely labeled subsimplex,x0 itself.

We now assume the statement to be true forn − 1 and prove it forn.
The simplicial subdivision ofTn induces a simplicial subdivision on its face
x0 · · · xn−1. This face is an(n − 1)-simplex; denote it asTn−1. The label-
ing functionL restricted toTn−1 is a proper labeling ofTn−1. Therefore by
the induction hypothesis there exist an odd number of(n − 1)-subsimplexes
in Tn−1 that bear the labels(0, . . . , n − 1). (To provide graphical intuition,
we will illustrate the induction argument on a subdivided 2-simplex. In Fig-
ure 3.11 (left), observe that the bottom facex0x1 is a subdivided 1-simplex—a
line segment—containing four subsimplexes, three of which are completely
labeled.)

We now define rules for “walking” across our subdivided, labeled simplex
Tn. The walk begins at an(n − 1)-subsimplex with labels(0, . . . , n − 1) on
the faceTn−1; call this subsimplexb. There exists a uniquen-subsimplexd
that hasb as a face;d’s vertices consist of the vertices ofb and another vertexz.
If z is labeledn, then we have a completely labeled subsimplex and the walk
ends. Otherwise,d has the labels(0, . . . , n − 1), where one of the labels (say
j) is repeated, and the labeln is missing. In this case there exists exactly one
other(n−1)-subsimplex that is a face ofd and bears the labels(0, . . . , n−1).
This is because each(n− 1)-face ofd is defined by all but one ofd’s vertices;
since only the labelj is repeated, an(n−1)-face ofd has labels(0, . . . , n−1)
if and only if one of the two vertices with labelj is left out. We knowb is one
such face, so there is exactly one other, which we calle. (For example, you can
confirm in Figure 3.11 (left) that if a subtriangle has an edge with labels(0, 1),
then it is either completely labeled, or it has exactly one other edge with labels

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

68 3 Introduction to Noncooperative Game Theory: Games in Normal Form

(0, 1).) We continue the walk frome. We make use of the following property:
an (n − 1)-face of ann-subsimplex in a simplicially subdivided simplexTn

is either on an(n − 1)-face ofTn, or the intersection of twon-subsimplexes.
If e is on an(n − 1)-face ofTn we stop the walk. Otherwise we walk into
the unique othern-subsimplex havinge as a face. This subsimplex is either
completely labeled or has one repeated label, and we continue the walk in the
same way we did with subsimplexd earlier.

Note that the walk is completely determined by the starting(n − 1)-
subsimplex. The walk ends either at a completely labeledn-subsimplex, or
at a (n − 1)-subsimplex with labels(0, . . . , n − 1) on the faceTn−1. (It can-
not end on any other face becauseL is a proper labeling.) Note also that every
walk can be followed backward: beginning from the end of the walk and fol-
lowing the same rule as earlier, we end up at the starting point. This implies
that if a walk starts att onTn−1 and ends att′ onTn−1, t andt′ must be differ-
ent, because otherwise we could reverse the walk and get a different path with
the same starting point, contradicting the uniqueness of the walk. (Figure 3.11
(right) illustrates one walk of each of the kinds we have discussed so far: one
that starts and ends at different subsimplexes on the facex0x1, and one that
starts on the facex0x1 and ends at a completely labeled subtriangle.) Since
by the induction hypothesis there are an odd number of(n− 1)-subsimplexes
with labels(0, . . . , n − 1) at the faceTn−1, there must be at least one walk
that does not end on this face. Since walks that start and end on the face “pair
up,” there are thus an odd number of walks starting from the face that end at
completely labeled subsimplexes. All such walks end atdifferentcompletely
labeled subsimplexes, because there is exactly one(n−1)-simplex face labeled
(0, . . . , n− 1) for a walk to enter from in a completely labeled subsimplex.

Not all completely labeled subsimplexes are led to by such walks. To see
why, consider reverse walks starting from completely labeled subsimplexes.
Some of these reverse walks end at(n − 1)-simplexes onTn−1, but some end
at other completely labeledn-subsimplexes. (Figure 3.11 (right) illustrates one
walk of this kind.) However, these walks just pair up completely labeled sub-
simplexes. There are thus an even number of completely labeled subsimplexes
that pair up with each other, and an odd number of completely labeled subsim-
plexes that are led to by walks from the faceTn−1. Therefore the total number
of completely labeled subsimplexes is odd.

Definition 3.3.15 (Compactness)A subset ofRn is compactif the set is closedcompactness
and bounded.

It is straightforward to verify that△m is compact. A compact set has the property
that every sequence in the set has a convergent subsequence.

Definition 3.3.16 (Centroid) Thecentroidof a simplexx0 · · · xm is the “average”centroid
of its vertices, 1

m+1

∑m

i=0 x
i.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.3 Analyzing games: from optimality to equilibrium 69

We are now ready to use Sperner’s lemma to prove Brouwer’s fixed-point theorem.

Theorem 3.3.17 (Brouwer’s fixed-point theorem)Let f : △m 7→ △m be con-Brouwer’s
fixed-point
theorem

tinuous. Thenf has a fixed point—that is, there exists somez ∈ △m such that
f(z) = z.

Proof. We prove this by first constructing a proper labeling of△m, then show-
ing that as we make finer and finer subdivisions, there exists a subsequence of
completely labeled subsimplexes that converges to a fixed point off .

Part 1: L is a proper labeling. Let ǫ > 0. We simplicially subdivide3△m

such that the Euclidean distance between any two points in the samem-
subsimplex is at mostǫ. We define a labeling functionL : V 7→ {0, . . . ,m}
as follows. For eachv we choose a label satisfying

L(v) ∈ χ(v) ∩ {i : fi(v) ≤ vi}, (3.1)

wherevi is theith component ofv andfi(v) is theith component off(v). In
other words,L(v) can be any labeli such thatvi > 0 andf weakly decreases
the ith component ofv. To ensure thatL is well defined, we must show that
the intersection on the right side of Equation (3.1) is always nonempty. (Intu-
itively, sincev andf(v) are both on the standard simplex△m, and on△m

each point’s components sum to 1, there must exist a component ofv that is
weakly decreased byf . This intuition holds even though we restrict to the
components inχ(v) because these are exactly all the positive components of
v.) We now show this formally. For contradiction, assume otherwise. This as-
sumption implies thatfi(v) > vi for all i ∈ χ(v). Recall from the definition
of a standard simplex that

∑m

i=0 vi = 1. Since by the definition ofχ, vj > 0
if and only if j ∈ χ(v), we have

∑

j∈χ(v)

vj =

m∑

i=0

vi = 1. (3.2)

Sincefj(v) > vj for all j ∈ χ(v),
∑

j∈χ(v)

fi(v) >
∑

j∈χ(v)

vj = 1. (3.3)

But sincef(v) is also on the standard simplex△m,

∑

j∈χ(v)

fi(v) ≤
m∑

i=0

fi(v) = 1. (3.4)

Equations (3.3) and (3.4) lead to a contradiction. Therefore,L is well defined;
it is a proper labeling by construction.

3. Here, we implicitly assume that simplices can always be subdivided regardless of dimension. This is true,
but surprisingly difficult to show.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

70 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Part 2: As ǫ→ 0, completely labeled subsimplexes converge to fixed points
of f . SinceL is a proper labeling, by Sperner’s lemma (3.3.14) there is at least
one completely labeled subsimplexp0 · · · pm such thatfi(p

i) ≤ pi for each
i. Let ǫ → 0 and consider the sequence of centroids of completely labeled
subsimplexes. Since△m is compact, there is a convergent subsequence. Letz
be its limit; then for alli = 0, . . . ,m, pi → z asǫ→ 0. Sincef is continuous
we must havefi(z) ≤ zi for all i. This impliesf(z) = z, because otherwise
(by an argument similar to the one in Part 1) we would have1 =

∑
i fi(z) <∑

i zi = 1, a contradiction.

Theorem 3.3.17 cannot be used directly to prove the existence of Nash equi-
libria. This is because a Nash equilibrium is a point in the set of mixed-strategy
profilesS. This set is not a simplex but rather asimplotope: a Cartesian productsimplotope
of simplexes. (Observe that each individual agent’s mixed strategycanbe under-
stood as a point in a simplex.) However, it turns out that Brouwer’s theorem can be
extended beyond simplexes to simplotopes.4 In essence, this is because every sim-
plotope is topologically the same as a simplex (formally, they arehomeomorphic).

Definition 3.3.18 (Bijective function) A functionf is injective(or one-to-one) if
f(a) = f(b) impliesa = b. A functionf : X 7→ Y is onto if for everyy ∈ Y
there existsx ∈ X such thatf(x) = y. A function isbijective if it is both injectivebijective
and onto.

Definition 3.3.19 (Homeomorphism)A setA is homeomorphicto a setB if there
homeomorphism exists a continuous, bijective functionh : A 7→ B such thath−1 is also continuous.

Such a functionh is called ahomeomorphism.

Definition 3.3.20 (Interior) A point x is an interior pointof a setA ⊂ R
m if

there is an openm-dimensional ballB ⊂ R
m centered atx such thatB ⊂ A.

The interior of a setA is the set of all its interior points.interior

Corollary 3.3.21 (Brouwer’s fixed-point theorem, simplotopes)LetK =
∏k

j=1△mj

be a simplotope and letf : K 7→ K be continuous. Thenf has a fixed point.

Proof. Letm =
∑k

j=1mj . First we show that ifK is homeomorphic to△m,
then a continuous functionf : K 7→ K has a fixed point. Leth : △m 7→ K
be a homeomorphism. Thenh−1 ◦ f ◦ h : △m 7→ △m is continuous, where
◦ denotes function composition. By Theorem 3.3.17 there exists az′ such that
h−1 ◦ f ◦ h(z′) = z′. Let z = h(z′), thenh−1 ◦ f(z) = z′ = h−1(z). Since
h−1 is injective,f(z) = z.

4. An argument similar to our proof below can be used to prove a generalization of Theorem 3.3.17 to
arbitrary convex and compact sets.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.3 Analyzing games: from optimality to equilibrium 71

We must still show thatK =
∏k

j=1△mj
is homeomorphic to△m. K is

convex and compact because each△mj
is convex and compact, and a product

of convex and compact sets is also convex and compact. Let thedimensionof a
subset of an Euclidean space be the number of independent parameters required
to describe each point in the set. For example, ann-simplex has dimensionn.
Since each△mj

has dimensionmj , K has dimensionm. SinceK ⊂ R
m+k

and△m ⊂ R
m+1 both have dimensionm, they can be embedded inRm asK ′

and△′
m respectively. Furthermore, whereasK ⊂ R

m+k and△m ⊂ R
m+1

have no interior points, bothK ′ and△′
m have nonempty interior. For example,

a standard2-simplex is defined inR3, but we can embed the triangle inR2.
As illustrated in Figure 3.12 (left), the product of two standard1-simplexes
is a square, which can also be embedded inR

2. We scale and translateK ′

intoK ′′ such thatK ′′ is strictly inside△′
m. Since scaling and translation are

homeomorphisms, and a chain of homeomorphisms is still a homeomorphism,
we just need to find a homeomorphismh : K ′′ 7→ △′

m. Fix a pointa in the
interior ofK ′′. Defineh to be the “radial projection” with respect toa, where
h(a) = a and forx ∈ K ′′ \ {a},

h(x) = a+
||x′ − a||
||x′′ − a||(x− a),

wherex′ is the intersection point of the boundary of△′
m with the ray that starts

ata and passes throughx, andx′′ is the intersection point of the boundary of
K ′′ with the same ray. BecauseK ′′ and△′

m are convex and compact,x′′ and
x′ exist and are unique. Sincea is an interior point ofK ′′ and△m, ||x′ − a||
and||x′′−a|| are both positive. Intuitively,h scalesx along the ray by a factor

of ||x′−a||
||x′′−a||

. Figure 3.12 (right) illustrates an example of this radial projection
from a square simplotope to a triangle.

Finally, it remains to show thath is a homeomorphism. It is relatively
straightforward to verify thath is continuous. Since we know thath(x) lies
on the ray that starts ata and passes throughx, givenh(x) we can reconstruct
the same ray by drawing a ray froma that passes throughh(x). We can then
recoverx′ and x′′, and findx by scalingh(x) along the ray by a factor of
||x′′−a||
||x′−a||

. Thush is injective.h is onto because given any pointy ∈ △′
m, we

can construct the ray and findx such thath(x) = y. So,h−1 has the same
form ash except that the scaling factor is inverted, thush−1 is also continuous.
Therefore,h is a homeomorphism.

We are now ready to prove the existence of Nash equilibrium. Indeed, now
that we have Corollary 3.3.21 and notation for discussing mixed strategies (Sec-
tion 3.2.4), it is surprisingly easy. The proof proceeds by constructing a continuous
f : S 7→ S such that each fixed point off is a Nash equilibrium. Then we use
Corollary 3.3.21 to argue thatf has at least one fixed point, and thus that Nash

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

72 3 Introduction to Noncooperative Game Theory: Games in Normal Form

simplotopesimplex simplex

000

()

Figure 3.12: A product of two standard1-simplexes is a square (a simplotope; left).
The square is scaled and put inside a triangle (a2-simplex), and an example of
radial projectionh is shown (right).

equilibria always exist.

Theorem 3.3.22 (Nash, 1951)Every game with a finite number of players and
action profiles has at least one Nash equilibrium.

Proof. Given a strategy profiles ∈ S, for all i ∈ N andai ∈ Ai we define

ϕi,ai
(s) = max{0, ui(ai, s−i)− ui(s)}.

We then define the functionf : S 7→ S by f(s) = s′, where

s′i(ai) =
si(ai) + ϕi,ai

(s)∑
bi∈Ai

si(bi) + ϕi,bi
(s)

=
si(ai) + ϕi,ai

(s)

1 +
∑

bi∈Ai
ϕi,bi

(s)
. (3.5)

Intuitively, this function maps a strategy profiles to a new strategy profiles′

in which each agent’s actions that are better responses tos receive increased
probability mass.

The functionf is continuous since eachϕi,ai
is continuous. SinceS is

convex and compact andf : S 7→ S, by Corollary 3.3.21f must have at least
one fixed point. We must now show that the fixed points off are the Nash
equilibria.

First, if s is a Nash equilibrium then allϕ’s are 0, makings a fixed point of
f .

Conversely, consider an arbitrary fixed point off , s. By the linearity of ex-
pectation there must exist at least one action in the support ofs, saya′i, for
which ui,a′

i
(s) ≤ ui(s). From the definition ofϕ, ϕi,a′

i
(s) = 0. Sinces

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.4 Further solution concepts for normal-form games 73

is a fixed point off , s′i(a
′
i) = si(a

′
i). Consider Equation (3.5), the expres-

sion definings′i(a
′
i). The numerator simplifies tosi(a

′
i), and is positive since

a′i is in i’s support. Hence the denominator must be 1. Thus for anyi and
bi ∈ Ai, ϕi,bi

(s) must equal0. From the definition ofϕ, this can occur only
when no player can improve his expected payoff by moving to a pure strategy.
Therefore,s is a Nash equilibrium.

3.4 Further solution concepts for normal-form games

As described earlier at the beginning of Section 3.3, we reason about multiplayer
games usingsolution concepts, principles according to which we identify interest-solution concept
ing subsets of the outcomes of a game. While the most important solution concept
is the Nash equilibrium, there are also a large number of others, only some of
which we will discuss here. Some of these concepts are more restrictive than the
Nash equilibrium, some less so, and some noncomparable. In Chapters 5 and 6 we
will introduce some additional solution concepts that are only applicable to game
representations other than the normal form.

3.4.1 Maxmin and minmax strategies

Themaxmin strategyof playeri in ann-player, general-sum game is a (not neces-
sarily unique, and in general mixed) strategy that maximizesi’s worst-case payoff,
in the situation where all the other players happen to play the strategies which cause
the greatest harm toi. Themaxmin value(or security level) of the game for playersecurity level
i is that minimum amount of payoff guaranteed by a maxmin strategy.

Definition 3.4.1 (Maxmin) Themaxmin strategyfor playeri isarg maxsi
mins−i

ui(si, s−i),maxmin strategy
and themaxmin valuefor playeri is maxsi

mins−i
ui(si, s−i).

maxmin value
Although the maxmin strategy is a concept that makes sense in simultaneous-

move games, it can be understood through the following temporal intuition. The
maxmin strategy isi’s best choice when firsti must commit to a (possibly mixed)
strategy, and then the remaining agents−i observe this strategy (but noti’s action
choice) and choose their own strategies to minimizei’s expected payoff. In the
Battle of the Sexes game (Figure 3.8), the maxmin value for either player is 2/3,
and requires the maximizing agent to play a mixed strategy. (Do you see why?)

While it may not seem reasonable to assume that the other agents would be solely
interested in minimizingi’s utility, it is the case that ifi plays a maxmin strategy
and the other agents play arbitrarily,iwill still receive an expected payoff of at least
his maxmin value. This means that the maxmin strategy is a sensible choice for a
conservative agent who wants to maximize his expected utility without having to
make any assumptions about the other agents, such as that they will act rationally
according to their own interests, or that they will draw their action choices from
known distributions.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

74 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Theminmax strategyandminmax valueplay a dual role to their maxmin coun-
terparts. In two-player games the minmax strategy for playeri against player−i
is a strategy that keeps the maximum payoff of−i at a minimum, and the minmax
value of player−i is that minimum. This is useful when we want to consider the
amount that one player can punish another without regard for his own payoff. Such
punishment can arise in repeated games, as we will see in Section 6.1. The formal
definitions follow.

Definition 3.4.2 (Minmax, two-player) In a two-player game, theminmax strat-
egy for player i against player−i is arg minsi

maxs−i
u−i(si, s−i), and playerminmax strategy

−i’s minmax valueis minsi
maxs−i

u−i(si, s−i).
minmax value

In n-player games withn > 2, defining playeri’s minmax strategy against
player j is a bit more complicated. This is becausei will not usually be able
to guarantee thatj achieves minimal payoff by acting unilaterally. However, ifwe
assume that all the players other thanj choose to “gang up” onj—and that they are
able to coordinate appropriately when there is more than one strategy profile that
would yield the same minimal payoff forj—then we can define minmax strategies
for then-player case.

Definition 3.4.3 (Minmax,n-player) In ann-player game, theminmax strategyminmax strategy
for playeri against playerj 6= i is i’s component of the mixed-strategy profiles−j

in the expressionarg mins−j
maxsj

uj(sj, s−j), where−j denotes the set of play-
ers other thanj. As before, theminmax valuefor playerj ismins−j

maxsj
uj(sj, s−j).

As with the maxmin value, we can give temporal intuition for the minmax value.
Imagine that the agents−i must commit to a (possibly mixed) strategy profile, to
whichi can then play a best response. Playeri receives his minmax value if players
−i choose their strategies in order to minimizei’s expected utility after he plays
his best response.

In two-player games, a player’s minmax value is always equal to his maxmin
value. For games with more than two players a weaker condition holds: a player’s
maxmin value is always less than or equal to his minmax value. (Can you explain
why this is?)

Since neither an agent’s maxmin strategy nor his minmax strategy depend on
the strategies that the other agents actually choose, the maxmin and minmax strate-
gies give rise to solution concepts in a straightforward way. We will call a mixed-
strategy profiles = (s1, s2, . . .) a maxmin strategy profileof a given game ifs1

is a maxmin strategy for player 1,s2 is a maxmin strategy for player 2 and so on.
In two-player games, we can also defineminmax strategy profilesanalogously. In
two-player, zero-sum games, there is a very tight connection between minmax and
maxmin strategy profiles. Furthermore, these solution concepts are also linked to
the Nash equilibrium.

Theorem 3.4.4 (Minimax theorem (von Neumann, 1928))In any finite, two-player,

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.4 Further solution concepts for normal-form games 75

zero-sum game, in any Nash equilibrium5 each player receives a payoff that is
equal to both his maxmin value and his minmax value.

Proof. At least one Nash equilibrium must exist by Theorem 3.3.22. Let
(s′i, s

′
−i) be an arbitrary Nash equilibrium, and denotei’s equilibrium payoff

asvi. Denotei’s maxmin value as̄vi and i’s minmax value asvi.
First, show that̄vi = vi. Clearly we cannot havēvi > vi, as if this were

true theni would profit by deviating froms′i to his maxmin strategy, and hence
(s′i, s

′
−i) would not be a Nash equilibrium. Thus it remains to show thatv̄i

cannot be less thanvi.
Assume that̄vi < vi. By definition, in equilibrium each player plays a best

response to the other. Thus

v−i = max
s−i

u−i(s
′
i, s−i).

Equivalently, we can write that−i minimizes the negative of his payoff, given
i’s strategy,

−v−i = min
s−i

−u−i(s
′
i, s−i).

Since the game is zero sum,vi = −v−i andui = −u−i. Thus,

vi = min
s−i

ui(s
′
i, s−i).

We defined̄vi asmaxsi
mins−i

ui(si, s−i). By the definition ofmax, we must
have

max
si

min
s−i

ui(si, s−i) ≥ min
s−i

ui(s
′
i, s−i).

Thusv̄i ≥ vi, contradicting our assumption.
We have shown that̄vi = vi. The proof thatvi = vi is similar, and is left as

an exercise.

Why is the minmax theorem important? It demonstrates that maxmin strategies,
minmax strategies and Nash equilibria coincide in two-player, zero-sum games.
In particular, Theorem 3.4.4 allows us to conclude that in two-player, zero-sum
games:

1. Each player’s maxmin value is equal to his minmax value. By convention, the
maxmin value for player 1 is called thevalue of the game;value of a

zero-sum game

2. For both players, the set of maxmin strategies coincides with the set of minmax
strategies; and

5. The attentive reader might wonder how a theorem from 1928 can use the term “Nash equilibrium,” when
Nash’s work was published in 1950. Von Neumann used different terminology and proved the theorem in a
different way; however, the given presentation is probably clearer in the context of modern game theory.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

76 3 Introduction to Noncooperative Game Theory: Games in Normal Form

3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a
Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently,
all Nash equilibria have the same payoff vector (namely, those in which player
1 gets the value of the game).

For example, in the Matching Pennies game in Figure 3.6, the value of the game
is 0. The unique Nash equilibrium consists of both players randomizing between
heads and tails with equal probability, which is both the maxmin strategy and the
minmax strategy for each player.

Nash equilibria in zero-sum games can be viewed graphically as a “saddle” in
a high-dimensional space. At a saddle point, any deviation of the agent lowers
his utility and increases the utility of the other agent. It is easy to visualize in the
simple case in which each agent has two pure strategies. In this case the space of
mixed strategy profiles can be viewed as the points on the square between (0,0) and
(1,1). Adding a third dimension representing player 1’s expected utility, the payoff
to player 1 under these mixed strategy profiles (and thus the negative of the payoff
to player 2) is a saddle-shaped surface. Figure 3.13 (left) gives a pictorial example,
illustrating player 1’s expected utility in Matching Pennies as a function of both
players’ probabilities of playing heads. Figure 3.13 (right) adds a plane atz = 0
to make it easier to see that it is an equilibrium for both players to play heads 50%
of the time and that zero is both the maxmin value and the minmax value for both
players.

Figure 3.13: The saddle point in Matching Pennies, with and without a plane at
z = 0.

3.4.2 Minimax regret

We argued earlier that agents might play maxmin strategies inorder to achieve
good payoffs in the worst case, even in a game that is not zero sum. However,
consider a setting in which the other agent is not believed to be malicious, but is

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.4 Further solution concepts for normal-form games 77

instead entirely unpredictable. (Crucially, in this section we do not approach the
problem as Bayesians, saying that agenti’s beliefs can be described by a probabil-
ity distribution; instead, we use a “pre-Bayesian” model in whichi does not know
such a distribution and indeed has no beliefs about it.) In such a setting, it can
make sense for agents to care about minimizing their worst-caselosses, rather than
maximizing their worst-case payoffs.

L R

T 100, a 1− ǫ, b

B 2, c 1, d

Figure 3.14: A game for contrasting maxmin with minimax regret. The numbers
refer only to player1’s payoffs;ǫ is an arbitrarily small positive constant. Player
2’s payoffs are the arbitrary (and possibly unknown) constantsa, b, c, andd.

Consider the game in Figure 3.14. Letǫ be an arbitrarily small positive constant.
For this example it does not matter what agent2’s payoffsa, b, c, andd are, and
we can even imagine that agent1 does not know these values. Indeed, this could
be one reason why player1 would be unable to form beliefs about how player2
would play, even if he were to believe that player2 was rational. Let us imagine
that agent1 wants to determine a strategy to follow that makes sense despite his
uncertainty about player2. First, agent1 might play his maxmin, or “safety level”
strategy. In this game it is easy to see that player1’s maxmin strategy is to playB;
this is because player2’s minmax strategy is to playR, andB is a best response to
R.

If player1 does not believe that player2 is malicious, however, he might instead
reason as follows. If player2 were to playR then it would not matter very much
how player1 plays: the most he could lose by playing the wrong way would beǫ.
On the other hand, if player2 were to playL then player1’s action would be very
significant: if player1 were to make the wrong choice here then his utility would
be decreased by98. Thus player1 might choose to playT in order to minimize
his worst-case loss. Observe that this is the opposite of what he would choose if he
followed his maxmin strategy.

Let us now formalize this idea. We begin with the notion of regret.

Definition 3.4.5 (Regret) An agenti’s regretfor playing an actionai if the otherregret
agents adopt action profilea−i is defined as

[
max
a′

i
∈Ai

ui(a
′
i, a−i)

]
− ui(ai, a−i).

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

78 3 Introduction to Noncooperative Game Theory: Games in Normal Form

In words, this is the amount thati loses by playingai, rather than playing his
best response toa−i. Of course,i does not know what actions the other players
will take; however, he can consider those actions that would give him the highest
regret for playingai.

Definition 3.4.6 (Max regret) An agenti’s maximum regretfor playing an actionmaximum regret
ai is defined as

max
a−i∈A−i

([
max
a′

i
∈Ai

ui(a
′
i, a−i)

]
− ui(ai, a−i)

)
.

This is the amount thati loses by playingai rather than playing his best response
to a−i, if the other agents chose thea−i that makes this loss as large as possible.
Finally, i can choose his action in order to minimize this worst-case regret.

Definition 3.4.7 (Minimax regret) Minimax regret actions for agenti are defined
as

arg min
ai∈Ai

[
max

a−i∈A−i

([
max
a′

i
∈Ai

ui(a
′
i, a−i)

]
− ui(ai, a−i)

)]
.

Thus, an agent’s minimax regret action is an action that yields the smallest max-
imum regret. Minimax regret can be extended to a solution concept in the natural
way, by identifying action profiles that consist of minimax regret actions for each
player. Note that we can safely restrict ourselves to actions rather than mixed strate-
gies in the definitions above (i.e., maximizing over the setsAi andA−i instead of
Si andS−i), because of the linearity of expectation. We leave the proof of this fact
as an exercise.

3.4.3 Removal of dominated strategies

We first define what it means for one strategy to dominate another. Intuitively, one
strategy dominates another for a playeri if the first strategy yieldsi a greater payoff
than the second strategy, foranystrategy profile of the remaining players.6 There
are, however, three gradations of dominance, which are captured in the following
definition.

Definition 3.4.8 (Domination) Letsi ands′i be two strategies of playeri, andS−i

the set of all strategy profiles of the remaining players. Then

1. si strictly dominatess′i if for all s−i ∈ S−i, it is the case thatui(si, s−i) >strict
domination ui(s

′
i, s−i).

2. si weakly dominatess′i if for all s−i ∈ S−i, it is the case thatui(si, s−i) ≥weak
domination ui(s

′
i, s−i), and for at least ones−i ∈ S−i, it is the case thatui(si, s−i) >

ui(s
′
i, s−i).

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.4 Further solution concepts for normal-form games 79

3. si very weakly dominatess′i if for all s−i ∈ S−i, it is the case thatui(si, s−i) ≥very weak
domination ui(s

′
i, s−i).

If one strategy dominates all others, we say that it is (strongly, weakly or very
weakly)dominant.

Definition 3.4.9 (Dominant strategy) A strategy isstrictly (resp., weakly; very
weakly) dominantfor an agent if it strictly (weakly; very weakly) dominates any
other strategy for that agent.

It is obvious that a strategy profile(s1, . . . , sn) in which everysi is dominant
for playeri (whether strictly, weakly, or very weakly) is a Nash equilibrium. Such
a strategy profile forms what is called anequilibrium in dominant strategieswithequilibrium in

dominant
strategies

the appropriate modifier (strictly, etc). An equilibrium in strictly dominant strate-
gies is necessarily the unique Nash equilibrium. For example, consider again the
Prisoner’s Dilemma game. For each player, the strategyD is strictly dominant,
and indeed(D,D) is the unique Nash equilibrium. Indeed, we can now explain
the “dilemma” which is particularly troubling about the Prisoner’s Dilemma game:
the outcome reached in the unique equilibrium, which is an equilibrium in strictly
dominant strategies, is also the only outcome that isnot Pareto optimal.

Games with dominant strategies play an important role in game theory, espe-
cially in games handcrafted by experts. This is true in particular inmechanism
design, as we will see in Chapter 10. However, dominant strategies are rare inmechanism

design naturally-occurring games. More common are dominated strategies.

Definition 3.4.10 (Dominated strategy)A strategysi isstrictly (weakly; very weakly)
dominatedfor an agenti if some other strategys′i strictly (weakly; very weakly)dominated

strategy dominatessi.

Let us focus for the moment on strictly dominated strategies. Intuitively, all
strictly dominated pure strategies can be ignored, since they can never be best re-
sponses to any moves by the other players. There are several subtleties, however.
First, once a pure strategy is eliminated, another strategy that was not dominated
can become dominated. And so this process of elimination can be continued. Sec-
ond, a pure strategy may be dominated by a mixture of other pure strategies without
being dominated by any of them independently. To see this, consider the game in
Figure 3.15.

ColumnR can be eliminated, since it is dominated by, for example, columnL.
We are left with the reduced game in Figure 3.16.

In this gameM is dominated by neitherU norD, but it is dominated by the
mixed strategy that selects eitherU orD with equal probability. (Note, however,
that it was not dominated before the elimination of theR column.) And so we are
left with the maximally reduced game in Figure 3.17.

6. Note that here we consider strategy domination from one individual player’s point of view; thus, this
notion is unrelated to the concept of Pareto domination discussed earlier.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

80 3 Introduction to Noncooperative Game Theory: Games in Normal Form

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

Figure 3.15: A game with dominated strategies.

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

Figure 3.16: The game from Figure 3.15 after removing the dominated strategyR.

This yields us a solution concept: the set of all strategy profiles that assign zero
probability to playing any action that would be removed through iterated removal
of strictly dominated strategies. Note that this is a much weaker solution concept
than Nash equilibrium—the set of strategy profiles will include all the Nash equi-
libria, but it will include many other mixed strategies as well. In some games, it
will be equal toS, the set of all possible mixed strategies.

Since iterated removal of strictly dominated strategies preserves Nash equilibria,
we can use this technique to computational advantage. In the previous example,
rather than computing the Nash equilibria of the original3× 3 game, we can now
compute them for this2 × 2 game, applying the technique described earlier. In
some cases, the procedure ends with a single cell; this is the case, for example,
with the Prisoner’s Dilemma game. In this case we say that the game issolvable
by iterated elimination.

Clearly, in any finite game, iterated elimination ends after a finite number of
iterations. One might worry that, in general, the order of elimination might affect
the final outcome. It turns out that this elimination order does not matter when we
removestrictly dominated strategies. (This is called aChurch–Rosserproperty.)Church–Rosser

property

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.4 Further solution concepts for normal-form games 81

L C

U 3, 1 0, 1

D 0, 1 4, 1

Figure 3.17: The game from Figure 3.16 after removing the dominated strategy
M .

However, the elimination order can make a difference to the final reduced game if
we remove weakly or very weakly dominated strategies.

Which flavor of domination should we concern ourselves with? In fact, each
flavor has advantages and disadvantages, which is why we present all of them here.
Strict domination leads to better-behaved iterated elimination: it yields a reduced
game that is independent of the elimination order, and iterated elimination is more
computationally manageable. (This and other computational issues regarding dom-
ination are discussed in Section 4.5.3.) There is also a further related advantage
that we will defer to Section 3.4.4. Weak domination can yield smaller reduced
games, but under iterated elimination the reduced game can depend on the elim-
ination order. Very weak domination can yield even smaller reduced games, but
again these reduced games depend on elimination order. Furthermore, very weak
domination does not impose a strict order on strategies: when two strategies are
equivalent, each very weakly dominates the other. For this reason, this last form of
domination is generally considered the least important.

3.4.4 Rationalizability

A strategy isrationalizableif a perfectly rational player could justifiably play itrationalizable
strategy against one or more perfectly rational opponents. Informally, a strategy profile

for player i is rationalizable if it is a best response to some beliefs thati could
have about the strategies that the other players will take. The wrinkle, however,
is thati cannot have arbitrary beliefs about the other players’ actions—his beliefs
must take into account his knowledge oftheir rationality, which incorporates their
knowledge ofhis rationality, their knowledge of his knowledge of their rationality,
and so on in an infinite regress. A rationalizable strategy profile is a strategy profile
that consists only of rationalizable strategies.

For example, in the Matching Pennies game given in Figure 3.6, the pure strategy
headsis rationalizable for the row player. First, the strategyheadsis a best response
to the pure strategyheadsby the column player. Second, believing that the column
player would also playheadsis consistent with the column player’s rationality:
the column player could believe that the row player would playtails, to which the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

82 3 Introduction to Noncooperative Game Theory: Games in Normal Form

column player’s best response isheads. It would be rational for the column player
to believe that the row player would playtails because the column player could
believe that the row player believed that the column player would playtails, to
which tails is a best response. Arguing in the same way, we can make our way up
the chain of beliefs.

However, not every strategy can be justified in this way. For example, consider-
ing the Prisoner’s Dilemma game given in Figure 3.3, the strategyC is not ratio-
nalizable for the row player, becauseC is not a best response to any strategy that
the column player could play. Similarly, consider the game from Figure 3.15.M
is not a rationalizable strategy for the row player: althoughit is a best response to
a strategy of the column player’s (R), there do not exist any beliefs that the col-
umn player could hold about the row player’s strategy to whichR would be a best
response.

Because of the infinite regress, the formal definition of rationalizability is some-
what involved; however, it turns out that there are some intuitive things that we
can say about rationalizable strategies. First, Nash equilibrium strategies are al-
ways rationalizable: thus, the set of rationalizable strategies (and strategy profiles)
is always nonempty. Second, in two-player games rationalizable strategies have a
simple characterization: they are those strategies that survive the iterated elimina-
tion of strictly dominated strategies. Inn-player games there exist strategies that
survive iterated removal of dominated strategies but are not rationalizable. In this
more general case, rationalizable strategies are those strategies that survive itera-
tive removal of strategies that are never a best response to any strategy profile by
the other players.

We now define rationalizability more formally. First we will define an infinite
sequence of (possibly mixed) strategiesS0

i , S
1
i , S

2
i , . . . for each playeri. LetS0

i =
Si; thus, for each agenti, the first element in the sequence is the set of alli’s mixed
strategies. LetCH(S) denote the convex hull of a setS: the smallest convex set
containing all the elements ofS. Now we defineSk

i as the set of all strategies
si ∈ Sk−1

i for which there exists somes−i ∈
∏

j 6=i CH(Sk−1
j) such that for all

s′i ∈ Sk−1
i , ui(si, s−i) ≥ ui(s

′
i, s−i). That is, a strategy belongs toSk

i if there
is some strategys−i for the other players in response to whichsi is at least as
good as any other strategy fromSk−1

i . The convex hull operation allowsi to best
respond to uncertain beliefs about which strategies fromSk−1

j playerj will adopt.
CH(Sk−1

j) is used instead ofΠ(Sk−1
j), the set of all probability distributions over

Sk−1
j , because the latter would allow consideration of mixed strategies that are

dominated by some pure strategies forj. Playeri could not believe thatj would
play such a strategy because such a belief would be inconsistent withi’s knowledge
of j’s rationality.

Now we define the set of rationalizable strategies for playeri as the intersection
of the setsS0

i , S
1
i , S

2
i ,

Definition 3.4.11 (Rationalizable strategies)Therationalizable strategiesfor playerrationalizable
strategy i are

⋂∞

k=0 S
k
i .

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.4 Further solution concepts for normal-form games 83

3.4.5 Correlated equilibrium

The correlated equilibrium is a solution concept that generalizes the Nash equi-
librium. Some people feel that this is the most fundamental solution concept of
all.7

In a standard game, each player mixes his pure strategies independently. For
example, consider again the Battle of the Sexes game (reproduced here as Fig-
ure 3.18) and its mixed-strategy equilibrium.

LW WL

LW 2, 1 0, 0

WL 0, 0 1, 2

Figure 3.18: Battle of the Sexes game.

As we saw in Section 3.3.3, this game’s unique mixed-strategy equilibrium
yields each player an expected payoff of2/3. But now imagine that the two play-
ers can observe the result of a fair coin flip and can condition their strategies based
on that outcome. They can now adopt strategies from a richer set; for example,
they could choose “WL if heads, LW if tails.” Indeed, this pair forms an equilib-
rium in this richer strategy space; given that one player plays the strategy, the other
player only loses by adopting another. Furthermore, the expected payoff to each
player in this so-called correlated equilibrium is.5 ∗ 2 + .5 ∗ 1 = 1.5. Thus both
agents receive higher utility than they do under the mixed-strategy equilibrium in
the uncorrelated case (which had expected payoff of 2/3 for both agents), and the
outcome is fairer than either of the pure-strategy equilibria in the sense that the
worst-off player achieves higher expected utility. Correlating devices can thus be
quite useful.

The aforementioned example had both players observe the exact outcome of the
coin flip, but the general setting does not require this. Generally, the setting in-
cludes some random variable (the “external event”) with a commonly-known prob-
ability distribution, and a private signal to each player about the instantiation of the
random variable. A player’s signal can be correlated with the random variable’s
value and with the signals received by other players, without uniquely identifying
any of them. Standard games can be viewed as the degenerate case in which the
signals of the different agents are probabilistically independent.

To model this formally, considern random variables, with a joint distribution
over these variables. Imagine that nature chooses according to this distribution, but

7. A Nobel-prize-winning game theorist, R. Myerson, has gone so far as to say that “if there is intelligent
life on other planets, in a majority of them, they would have discovered correlated equilibrium before Nash
equilibrium.”

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

84 3 Introduction to Noncooperative Game Theory: Games in Normal Form

reveals to each agent only the realized value of his variable, and that the agent can
condition his action on this value.8

Definition 3.4.12 (Correlated equilibrium) Given ann-agent gameG = (N,A, u),
a correlated equilibriumis a tuple(v, π, σ), wherev is a tuple of random variablescorrelated

equilibrium v = (v1, . . . , vn) with respective domainsD = (D1, . . . ,Dn), π is a joint distri-
bution overv, σ = (σ1, . . . , σn) is a vector of mappingsσi : Di 7→ Ai, and for
each agenti and every mappingσ′

i : Di 7→ Ai it is the case that

∑

d∈D

π(d)ui (σ1(d1), . . . , σi(di), . . . , σn(dn))

≥
∑

d∈D

π(d)ui (σ1(d1), . . . , σ
′
i(di), . . . , σn(dn)) .

Note that the mapping is to an action—that is, to a pure strategy rather than a
mixed one. One could allow a mapping to mixed strategies, but that would add no
greater generality. (Do you see why?)

For every Nash equilibrium, we can construct an equivalent correlated equilib-
rium, in the sense that they induce the same distribution on outcomes.

Theorem 3.4.13For every Nash equilibriumσ∗ there exists a corresponding cor-
related equilibriumσ.

The proof is straightforward. Roughly, we can construct a correlated equilibrium
from a given Nash equilibrium by letting eachDi = Ai and letting the joint prob-
ability distribution beπ(d) =

∏
i∈N σ∗

i (di). Then we chooseσi as the mapping
from eachdi to the correspondingai. When the agents play the strategy profile
σ, the distribution over outcomes is identical to that underσ∗. Because thevi’s
are uncorrelated and no agent can benefit by deviating fromσ∗, σ is a correlated
equilibrium.

On the other hand, not every correlated equilibrium is equivalent to a Nash equi-
librium; the Battle-of-the-Sexes example given earlier provides a counter-example.
Thus, correlated equilibrium is a strictly weaker notion than Nash equilibrium.

Finally, we note that correlated equilibria can be combined together to form new
correlated equilibria. Thus, if the set of correlated equilibria of a gameG does
not contain a single element, it is infinite. Indeed, any convex combination of
correlated equilibrium payoffs can itself be realized as the payoff profile of some
correlated equilibrium. The easiest way to understand this claim is to imagine a
public random device that selects which of the correlated equilibria will be played;
next, another random number is chosen in order to allow the chosen equilibrium to
be played. Overall, each agent’s expected payoff is the weighted sum of the payoffs

8. This construction is closely related to two other constructions later in the book, one in connection with
Bayesian Games in Chapter 6, and one in connection with knowledge and probability (KP) structures in
Chapter 13.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.4 Further solution concepts for normal-form games 85

from the correlated equilibria that were combined. Since no agent has an incentive
to deviate regardless of the probabilities governing the first random device, we
can achieve any convex combination of correlated equilibrium payoffs. Finally,
observe that having two stages of random number generation is not necessary: we
can simply derive new domainsD and a new joint probability distributionπ from
theD’s andπ’s of the original correlated equilibria, and so perform the random
number generation in one step.

3.4.6 Trembling-hand perfect equilibrium

Another important solution concept is thetrembling-hand perfect equilibrium, or
simply perfect equilibrium. While rationalizability is a weaker notion than that of
a Nash equilibrium, perfection is a stronger one. Several equivalent definitions of
the concept exist. In the following definition, recall that a fully mixed strategy is
one that assigns every action a strictly positive probability.

Definition 3.4.14 (Trembling-hand perfect equilibrium) A mixed-strategy profile
s is a (trembling-hand) perfect equilibriumof a normal-form gameG if there ex-trembling-hand

perfect
equilibrium

ists a sequences0, s1, . . . of fully mixed-strategy profiles such thatlimn→∞ sn = s,
and such that for eachsk in the sequence and each playeri, the strategysi is a
best response to the strategiessk

−i.

Perfect equilibria are relevant to one aspect of multiagent learning (see Chap-
ter 7), which is why we mention them here. However, we do not discuss them
in any detail; they are an involved topic, and relate to other subtle refinements of
the Nash equilibrium such as theproper equilibrium. The notes at the end of theproper

equilibrium chapter point the reader to further readings on this topic. We should, however, at
least explain the term “trembling hand.” One way to think about the concept is as
requiring that the equilibrium be robust against slight errors—“trembles”—on the
part of players. In other words, one’s action ought to be the best response not only
against the opponents’ equilibrium strategies, but also against small perturbation
of those. However, since the mathematical definition speaks about arbitrarily small
perturbations, whether these trembles in fact model player fallibility or are merely
a mathematical device is open to debate.

3.4.7 ǫ-Nash equilibrium

Our final solution concept reflects the idea that players mightnot care about chang-
ing their strategies to a best response when the amount of utility that they could
gain by doing so is very small. This leads us to the idea of anǫ-Nash equilibrium.

Definition 3.4.15 (ǫ-Nash) Fix ǫ > 0. A strategy profiles = (s1, . . . , sn) is an
ǫ-Nash equilibrium if, for all agentsi and for all strategiess′i 6= si, ui(si, s−i) ≥
ui(s

′
i, s−i)− ǫ.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

86 3 Introduction to Noncooperative Game Theory: Games in Normal Form

This concept has various attractive properties.ǫ-Nash equilibria always exist; in-
deed, every Nash equilibrium is surrounded by a region ofǫ-Nash equilibria for any
ǫ > 0. The argument that agents are indifferent to sufficiently small gains is con-
vincing to many. Further, the concept can be computationally useful: algorithms
that aim to identifyǫ-Nash equilibria need to consider only a finite set of mixed-
strategy profiles rather than the whole continuous space. (Of course, the size of this
finite set depends on bothǫ and on the game’s payoffs.) Since computers generally
represent real numbers using a floating-point approximation, it is usually the case
that even methods for the “exact” computation of Nash equilibria (see e.g., Sec-
tion 4.2) actually find onlyǫ-equilibria whereǫ is roughly the “machine precision”
(on the order of10−16 or less for most modern computers).ǫ-Nash equilibria are
also important to multiagent learning algorithms; we discuss them in that context
in Section 7.3.

However,ǫ-Nash equilibria also have several drawbacks. First, although Nash
equilibria are always surrounded byǫ-Nash equilibria, the reverse is not true. Thus,
a givenǫ-Nash equilibrium is not necessarily close to any Nash equilibrium. This
undermines the sense in whichǫ-Nash equilibria can be understood as approxima-
tions of Nash equilibria. Consider the game in Figure 3.19.

L R

U 1, 1 0, 0

D 1 + ǫ
2
, 1 500, 500

Figure 3.19: A game with an interestingǫ-Nash equilibrium.

This game has a unique Nash equilibrium of(D,R), which can be identified
through the iterated removal of dominated strategies. (DdominatesU for player
1; on the removal ofU , R dominatesL for player 2.) (D,R) is also anǫ-Nash
equilibrium, of course. However, there is also anotherǫ-Nash equilibrium:(U,L).
This game illustrates two things.

First, neither player’s payoff under theǫ-Nash equilibrium is withinǫ of his
payoff in a Nash equilibrium; indeed, in general both players’ payoffs under anǫ-
Nash equilibrium can be arbitrarily less than in any Nash equilibrium. The problem
is that the requirement that player 1 cannot gain more thanǫ by deviating from the
ǫ-Nash equilibrium strategy profile of(U,L) does not imply thatplayer 2would
not be able to gain more thanǫ by best responding to player 1’s deviation.

Second, someǫ-Nash equilibria might be very unlikely to arise in play. Although
player 1 might not care about a gain ofǫ

2
, he might reason that the fact thatD dom-

inatesU would lead player 2 to expect him to playD, and that player 2 would thus
playR in response. Player 1 might thus playD because it is his best response toR.
Overall, the idea ofǫ-approximation is much messier when applied to the identifi-

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

3.5 History and references 87

cation of a fixed point than when it is applied to a (single-objective) optimization
problem.

3.5 History and references

There exist several excellent technical introductory textbooks for game theory, in-
cluding Osborne and Rubinstein [1994], Fudenberg and Tirole [1991], and Myer-
son [1991]. The reader interested in gaining deeper insight into game theory should
consult not only these, but also the most relevant strands of the the vast literature
on game theory which has evolved over the years.

The origins of the material covered in the chapter are as follows. In 1928, von
Neumann derived the “maximin” solution concept to solve zero-sum normal-form
games [von Neumann, 1928]. Our proof of his minimax theorem is similar to the
one in Luce and Raiffa [1957b]. In 1944, he together with Oskar Morgenstern
authored what was to become the founding document of game theory [von Neu-
mann and Morgenstern, 1944]; a second edition quickly followed in 1947. Among
the many contributions of this work are the axiomatic foundations for “objective
probabilities” and what became known as von Neumann–Morgenstern utility the-
ory. The classical foundation of “subjective probabilities” is Savage [1954], but
we do not cover those since they do not play a role in the book. A comprehensive
overview of these foundational topics is provided by Kreps [1988], among others.
Our own treatment of utility theory draws on Poole et al. [1997]; see also Russell
and Norvig [2003].

But von Neumann and Morgenstern [1944] did much more; they introduced the
normal-form game, the extensive form (to be discussed in Chapter 5), the con-
cepts of pure and mixed strategies, as well as other notions central to game theory.
Schelling [1960] was one of the first to show that interesting social interactions
could usefully be modeled using game theory, for which he was recognized in
2005 with a Nobel Prize.

Shortly afterward John Nash introduced the concept of what would become
known as the “Nash equilibrium” [Nash, 1950; Nash, 1951], without a doubt
the most influential concept in game theory to this date. Indeed, Nash received
a Nobel Prize in 1994 because of this work.9 The proof in Nash [1950] uses
Kakutani’s fixed-point theorem; our proof of Theorem 3.3.22 follows Nash [1951].
Lemma 3.3.14 is due to Sperner [1928] and Theorem 3.3.17 is due to Brouwer
[1912]; our proof of the latter follows Border [1985].

This work opened the floodgates to a series of refinements and alternative solu-
tion concepts which continues to this day. We covered several of these solution
concepts. The literature on Pareto optimality and social optimization dates back to
the early twentieth century, including seminal work by Pareto and Pigou, but per-
haps was best established by Arrow in his seminal work on social choice [Arrow,

9. John Nash was also the topic of the Oscar-winning 2001 movieA Beautiful Mind; however, the movie
had little to do with his scientific contributions and indeed got the definition of Nash equilibrium wrong.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

88 3 Introduction to Noncooperative Game Theory: Games in Normal Form

1970]. The minimax regret decision criterion was first proposed by Savage [1954],
and further developed in Loomes and Sugden [1982] and Bell [1982]. Recent work
from a computer science perspective includes Hyafil and Boutilier [2004], which
also applies this criterion to the Bayesian games setting we introduce in Section 6.3.
Iterated removal of dominated strategies, and the closely related rationalizability,
enjoy a long history, though modern discussion of them is most firmly anchored in
two independent and concurrent publications: Pearce [1984] and Bernheim [1984].
Correlated equilibria were introduced in Aumann [1974]; Myerson’s quote is taken
from Solan and Vohra [2002]. Trembling-hand perfection was introduced in Selten
[1975]. An even stronger notion than (trembling-hand) perfect equilibrium is that
of proper equilibrium [Myerson, 1978]. In Chapter 7 we discuss the concept of
evolutionarily stable strategies [Maynard Smith and Price, 1973] and their connec-
tion to Nash equilibria. In addition to such single-equilibrium concepts, there are
concepts that apply to sets of equilibria, not single ones. Of note are the notions of
stable equilibriaas originally defined in Kohlberg and Mertens [1986], and variousstable

equilibrium later refinements such ashyperstable setsdefined in Govindan and Wilson [2005a].

hyperstable set
Good surveys of many of these concepts can be found in Hillas and Kohlberg
[2002] and Govindan and Wilson [2005b].

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4 Computing Solution Concepts of
Normal-Form Games

The discussion of strategies and solution concepts in Chapter 3 largely ignored
issues of computation. We start by asking the most basic question: How hard is it
to compute the Nash equilibria of a game? The answer turns out to be quite subtle,
and to depend on the class of games being considered.

We have already seen how to compute the Nash equilibria of simple games.
These calculations were deceptively easy, partly because there were only two play-
ers and partly because each player had only two actions. In this chapter we discuss
several different classes of games, starting with the simple two-player, zero-sum
normal-form game. Dropping only the zero-sum restriction yields a problem of
different complexity—while it is generally believed that any algorithm that guaran-
tees a solution must have an exponential worst case complexity, it is also believed
that a proof to this effect may not emerge for some time. We also consider proce-
dures forn-player games. In each case, we describe how to formulate the problem,
the algorithm (or algorithms) commonly used to solve them, and the complexity of
the problem. While we focus on the problem of finding a sample Nash equilibrium,
we will briefly discuss the problem of finding all Nash equilibria and finding equi-
libria with specific properties. Along the way we also discuss the computation of
other game-theoretic solution concepts: maxmin and minmax strategies, strategies
that survive iterated removal of dominated strategies, and correlated equilibria.

4.1 Computing Nash equilibria of two-player, zero-sum games

The class of two-player, zero-sum games is the easiest to solve. The Nash equilib-
rium problem for such games can be expressed as alinear program (LP), which
means that equilibria can be computed in polynomial time.1 Consider a two-player,
zero-sum gameG = ({1, 2}, A1 × A2, (u1, u2)). LetU∗

i be the expected utility
for playeri in equilibrium (the value of the game); since the game is zero-sum,
U∗

1 = −U∗
2 . The minmax theorem (see Section 3.4.1 and Theorem 3.4.4) tells

us thatU∗
1 holds constant in all equilibria and that it is the same as the value that

1. Appendix B reviews the basics of linear programming.

90 4 Computing Solution Concepts of Normal-Form Games

player 1 achieves under a minmax strategy by player 2. Using this result, we can
construct the linear program that follows.

minimize U∗
1 (4.1)

subject to
∑

k∈A2

u1(a
j
1, a

k
2) · sk

2 ≤ U∗
1 ∀j ∈ A1 (4.2)

∑

k∈A2

sk
2 = 1 (4.3)

sk
2 ≥ 0 ∀k ∈ A2 (4.4)

Note first of all that the utility termsu1(·) are constants in the linear program,
while the mixed strategy termss·2 andU∗

1 are variables. Let us start by looking at
constraint (4.2). This states that for every pure strategyj of player 1, his expected
utility for playing any actionj ∈ A1 given player 2’s mixed strategys2 is at
mostU∗

1 . Those pure strategies for which the expected utility is exactlyU∗
1 will

be in player 1’s best response set, while those pure strategies leading to lower
expected utility will not. Of course, as mentioned earlierU∗

1 is a variable; the linear
program will choose player 2’s mixed strategy in order to minimizeU∗

1 subject to
the constraint just discussed. Thus, lines (4.1) and (4.2) state that player 2 plays
the mixed strategy that minimizes the utility player 1 can gain by playing his best
response. This is almost exactly what we want. All that is left is to ensure that the
values of the variablessk

2 are consistent with their interpretation as probabilities.
Thus, the linear program also expresses the constraints that these variables must
sum to one (4.3) and must each be nonnegative (4.4).

This linear program gives us player 2’s mixed strategy in equilibrium. In the
same fashion, we can construct a linear program to give us player 1’s mixed strate-
gies. This program reverses the roles of player 1 and player 2 in the constraints;
the objective is tomaximizeU∗

1 , as player 1 wants to maximize his own payoffs.
This corresponds to thedualof player 2’s program.

maximize U∗
1 (4.5)

subject to
∑

j∈A1

u1(a
j
1, a

k
2) · sj

1 ≥ U∗
1 ∀k ∈ A2 (4.6)

∑

j∈A1

sj
1 = 1 (4.7)

sj
1 ≥ 0 ∀j ∈ A1 (4.8)

Finally, we give a formulation equivalent to our first linear program from Equa-
tions (4.1)–(4.4), which will be useful in the next section. This program works by
introducingslack variablesrj

1 for everyj ∈ A1 and then replacing the inequalityslack variable
constraints with equality constraints. This LP formulation follows.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.2 Computing Nash equilibria of two-player, general-sum games 91

minimize U∗
1 (4.9)

subject to
∑

k∈A2

u1(a
j
1, a

k
2) · sk

2 + rj
1 = U∗

1 ∀j ∈ A1 (4.10)

∑

k∈A2

sk
2 = 1 (4.11)

sk
2 ≥ 0 ∀k ∈ A2 (4.12)

rj
1 ≥ 0 ∀j ∈ A1 (4.13)

Comparing the LP formulation given in Equations (4.9)–(4.12) with our first
formulation given in Equations (4.1)–(4.4), observe that constraint (4.2) changed
to constraint (4.10) and that a new constraint (4.13) was introduced. To see why
the two formulations are equivalent, note that since constraint (4.13) requires only
that each slack variable must be positive, the requirement of equality in constraint
(4.10) is equivalent to the inequality in constraint (4.2).

4.2 Computing Nash equilibria of two-player, general-sum games

Unfortunately, the problem of finding a Nash equilibrium of a two-player, general-
sum game cannot be formulated as a linear program. Essentially, this is because
the two players’ interests are no longer diametrically opposed. Thus, we cannot
state our problem as an optimization problem: one player is not trying to minimize
the other’s utility.

4.2.1 Complexity of computing a sample Nash equilibrium

The issue of characterizing the complexity of computing a sample Nash equilib-
rium is tricky. No known reduction exists from our problem to a decision problem
that is NP-complete, nor has our problem been shown to be easier. An intuitive
stumbling block is thateverygame has at least one Nash equilibrium, whereas
known NP-complete problems are expressible in terms of decision problems that
do not always have solutions.

Current knowledge about the complexity of computing a sample Nash equilib-
rium thus relies on another, less familiar complexity class that describes the prob-
lem of finding a solution which always exists. This class is called PPAD, whichPPAD
stands for “polynomial parity argument, directed version.” To describe this class
we must first define a family of directed graphs which we will denoteG(n). Let
each graph in this family be defined on a setN of 2n nodes. Although each graph
in G(n) thus contains a number of nodes that is exponential inn, we want to re-
strict our attention to graphs that can be described in polynomial space. There is
no need to encode the set of nodes explicitly; we encode the set of edges in a given
graph as follows. LetParent : N 7→ N andChild : N 7→ N be two functions

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

92 4 Computing Solution Concepts of Normal-Form Games

that can be encoded as arithmetic circuits with sizes polynomial inn.2 Let there be
one graphG ∈ G(n) for every such pair ofParent andChild functions, as long
asG satisfies one additional restriction that is described later. Given such a graph
G, an edge exists from a nodej to a nodek iff Parent(k) = j andChild(j) = k.
Thus, each node has either zero parents or one parent and either zero children or
one child. The additional restriction is that there must exist one distinguished node
0 ∈ N with exactly zero parents.

The aforementioned constraints on the in- and out-degrees of the nodes in graphs
G ∈ G(n) imply that every node is either part of a cycle or part of a path from
a source (a parentless node) to a sink (a childless node). The computational task
of problems in the class PPAD is finding either a sink or a source other than0 for
a given graphG ∈ G(n). Such a solution always exists: because the node0 is a
source, there must be some sink which is either a descendent of0 or 0 itself.

We can now state the main complexity result.3

Theorem 4.2.1The problem of finding a sample Nash equilibrium of a general-
sum finite game with two or more players is PPAD-complete.

Of course, this proof is achieved by showing that the problem is in PPAD and
that any other problem in PPAD can be reduced to it in polynomial time. To show
that the problem is in PPAD, a reduction is given, which expresses the problem of
finding a Nash equilibrium as the problem of finding source or sink nodes in a graph
as described earlier. This reduction proceeds quite directly from the proof that
every game has a Nash equilibrium that appeals to Sperner’s lemma. The harder
part is the other half of the puzzle: showing that Nash equilibrium computation
is PPAD-hard, or in other words that every problem in PPAD can be reduced to
finding a Nash equilibrium of some game with size polynomial in the size of the
original problem. This result, obtained in 2005, is a culmination of a series of
intermediate results obtained over more than a decade. The initial results relied in
part on the concept ofgraphical games(see Section 6.5.2) which, in equilibrium,graphical game
simulate the behavior of the arithmetic circuitsParent andChild used in the
definition of PPAD. More details are given in the notes at the end of the chapter.

What are the practical implications of the result that the problem of finding a
sample Nash equilibrium is PPAD-complete? As is the case with other complexity
classes such as NP, it is not known whether or not P = PPAD. However, it is gener-
ally believed (e.g., due to oracle arguments) that the two classes are not equivalent.
Thus, the common belief is that in the worst case, computing a sample Nash equi-
librium will take time that is exponential in the size of the game. We do know for
sure that finding a Nash equilibrium of a two-player game is no easier than finding
an equilibrium of ann-player game—a result that may be surprising, given that in

2. We warn the reader that some technical details are glossed over here.
3. This theorem describes the problem of approximating a Nash equilibrium to an arbitrary, specified degree
of precision (i.e., computing anǫ-equilibrium for a givenǫ). The equilibrium computation problem is defined
in this way partly because games with three or more players can have equilibria involving irrational-valued
probabilities.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.2 Computing Nash equilibria of two-player, general-sum games 93

practice different algorithms are used for the two-player case than for then-player
case—and that finding a Nash equilibrium is no easier than finding an arbitrary
Brouwer fixed point.

4.2.2 An LCP formulation and the Lemke–Howson algorithm

We now turn to algorithms for computing sample Nash equilibria, notwithstand-
ing the discouraging computational complexity of this problem. We start with the
Lemke–Howson algorithm, for two reasons. First, it is the best known algorithmLemke–Howson

algorithm for the two-player, general-sum case (however, it must be said, not the fastest al-
gorithm, experimentally speaking). Second, it provides insight into the structure
of Nash equilibria, and indeed constitutes an independent, constructive proof of
Nash’s theorem (Theorem 3.3.22).

The LCP formulation

Unlike in the special zero-sum case, the problem of finding a sample Nash equilib-
rium cannot be formulated as a linear program. However, the problem of finding a
Nash equilibrium of a two-player, general-sum game can be formulated as alinear
complementarity problem(LCP). In this section we show how to construct this for-linear

complementarity
problem (LCP)

mulation by starting with the slack variable formulation given in Equations (4.9)–
(4.12). After giving the formulation, we present the Lemke–Howson algorithm,
which can be used to solve this LCP.

As it turns out, our LCP will have no objective function at all, and is thus a con-
straint satisfaction problem, or afeasibility program, rather than an optimizationfeasibility

program problem. Also, we can no longer determine one player’s equilibrium strategy by
only considering the other player’s payoff; instead, we will need to discuss both
players explicitly. The LCP for computing the Nash equilibrium of a general-sum
two-player game follows.

∑

k∈A2

u1(a
j
1, a

k
2) · sk

2 + rj
1 = U∗

1 ∀j ∈ A1 (4.14)

∑

j∈A1

u2(a
j
1, a

k
2) · sj

1 + rk
2 = U∗

2 ∀k ∈ A2 (4.15)

∑

j∈A1

sj
1 = 1,

∑

k∈A2

sk
2 = 1 (4.16)

sj
1 ≥ 0, sk

2 ≥ 0 ∀j ∈ A1, ∀k ∈ A2 (4.17)

rj
1 ≥ 0, rk

2 ≥ 0 ∀j ∈ A1, ∀k ∈ A2 (4.18)

rj
1 · sj

1 = 0, rk
2 · sk

2 = 0 ∀j ∈ A1, ∀k ∈ A2 (4.19)

Observe that this formulation bears a strong resemblance to the LP formulation
with slack variables given earlier in Equations (4.9)–(4.12). Let us go through the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

94 4 Computing Solution Concepts of Normal-Form Games

differences. First, as discussed earlier the LCP has no objective function. Second,
constraint (4.14) is the same as constraint (4.10) in our LP formulation; however,
here we also include constraint (4.15) which constrains player 2’s actions in the
same way. We also give the standard constraints that probabilities sum to one
(4.16), that probabilities are nonnegative (4.17) and that slack variables are non-
negative (4.18), but now state these constraints for both players rather than only for
player 1.

If we included only constraints (4.14)–(4.18)), we would still have a linear pro-
gram. However, we would also have a flaw in our formulation: the variablesU∗

1

andU∗
2 would be insufficiently constrained. We want these values to express the

expected utility that each player would achieve by playing his best response to
the other player’s chosen mixed strategy. However, with the constraints we have
described so far,U∗

1 andU∗
2 would be allowed to take unboundedly large values,

because all of these constraints remain satisfied when bothU∗
i andrj

i are increased
by the same constant, for any giveni andj. We solve this problem by adding the
nonlinear constraint (4.19), called thecomplementarity condition. The addition ofcomplementarity

condition this constraint means that we no longer have a linear program; instead, we have a
linear complementarity problem.

Why does the complementarity condition fix our problem formulation? This
constraint requires that whenever an action is played by a given player with posi-
tive probability (i.e., whenever an action is in the support of a given player’s mixed
strategy) then the corresponding slack variable must be zero. Under this require-
ment, each slack variable can be viewed as the player’s incentive to deviate from
the corresponding action. Thus, the complementarity condition captures the fact
that, in equilibrium, all strategies that are played with positive probability must
yield the same expected payoff, while all strategies that lead to lower expected
payoffs are not played. Taking all of our constraints together, we are left with
the requirement that each player plays a best response to the other player’s mixed
strategy: the definition of a Nash equilibrium.

The Lemke–Howson algorithm: a graphical exposition

The best-known algorithm designed to solve this LCP formulation is theLemke–
Howson algorithm. We will explain it initially through a graphical exposition. Con-Lemke–Howson

algorithm sider the game in Figure 4.1. Figure 4.2 shows a graphical representation of the
two players’ mixed-strategy spaces in this game. Each player’s strategy space is
shown in a separate graph. Within a graph, each axis corresponds to one of the cor-
responding player’s pure strategies and the region spanned by these axes represents
all the mixed strategies (as discussed in Section 3.3.4, withk + 1 axes, the region
forms ak-dimensional simplex). For example, in the right-hand side of the figure,
the two dots show player 2’s two pure strategies and the line connecting them (a
one-dimensional simplex) represents all his possible mixed strategies.

Similarly, player 1’s three pure strategies are represented by the points(0, 0, 1),
(0, 1, 0), and(1, 0, 0), while the set of his mixed strategies (a two-dimensional

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.2 Computing Nash equilibria of two-player, general-sum games 95

0, 1 6, 0

2, 0 5, 2

3, 4 3, 3

Figure 4.1: A game for the exposition of the Lemke–Howson algorithm.

6
s31

�s11
@

@
@

@R
s21

s

s

s��
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

s

B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
BB

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

(1,0,0)

(0,0,1)

(0,1,0)

6
s22

- s12s

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

s

s
(1,0)

(0,1)

Figure 4.2: Strategy spaces for player 1 (left) and player 2 (right) in the game from
Figure 4.1.

simplex) is represented by the region bounded by the triangle having these three
points as its vertices. (Can you identify the point corresponding to the strategy that
randomizes equally among the three pure strategies?)

Our next step in defining the Lemke–Howson algorithm is to define a labeling
on the strategies. Every possible mixed strategysi is given a set of labelsL(sj

i) ⊆
A1∪A2 drawn from the set of available actions for both players. Denoting a given
player asi and the other player as−i, mixed strategysi for playeri is labeled as
follows:

• with each of playeri’s actionsaj
i that isnot in the support ofsi; and

• with each of player−i’s actionsaj
−i that is a best response by player−i to si.

This labeling is useful because a pair of strategies(s1, s2) is a Nash equilibrium
if and only if it is completely labeled (i.e.,L(s1) ∪ L(s2) = A1 ∪A2). For a pair
to be completely labeled, each actionaj

i must either played by playeri with zero

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

96 4 Computing Solution Concepts of Normal-Form Games

6
s31

�s11
@

@
@

@R
s21

s

s

s��
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

s

B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
BB

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

�
�

�
�

�
�

�
�

�
�

�
�

s
s�
��

a2
1 �
��
a1

2

�
��
a2

2

�
��
a1

1

�
��
a3

1

(
0, 1

3
, 2
3

)

(
2
3

, 1
3

, 0
)

(1,0,0)

(0,0,1)

(0,1,0)

6
s22

- s12s

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

s

s

s
s�
��

a1
2

�
��
a2

2

�
��
a2

1

�
��
a1

1

�
��
a3

1

(
1
3

, 2
3

)

(
2
3

, 1
3

)

(1,0)

(0,1)

Figure 4.3: Labeled strategy spaces for player 1 (left) and player 2 (right) in the
game from Figure 4.1.

probability, or be a best response by playeri to the mixed strategy of player−i. 45

The requirement that a pair of mixed strategies must be completely labeled can
be understood as a restatement of the complementarity condition given in con-
straint (4.19) in the LCP for computing the Nash equilibrium of a general-sum
two-player game, because the slack variablerj

i is zero exactly when its correspond-
ing actionaj

i is a best response to the mixed strategys−i.
It turns out that it is convenient to add one fictitious point in the strategy space

of each agent, the origin; that is,(0, 0, 0) for player 1 and(0, 0) for player 2.
Thus, we want to be able to consider these points as belonging to the players’
strategy spaces. While discussing this algorithm, therefore, we redefine the players’
strategy spaces to be the convex hull of their true strategy spaces and the origin of
the graph. (This can be understood as replacing the constraint that

∑
j s

j
i = 1 with

the constraint that
∑

j s
j
i ≤ 1.) Thus, player 2’s strategy space is a triangle with

vertices(0, 0), (1, 0), and(0, 1), while player 1’s strategy space is a pyramid with
vertices(0, 0, 0), (1, 0, 0), (0, 1, 0), and(0, 0, 1).

Returning to our running example, the labeled version of the strategy spaces is
given in Figure 4.3. Consider first the right side of Figure 4.3, which describes
player 2’s strategy space, and examine the two regions labeled with player 2’s
actions. The line from(0, 0) to (0, 1) is labeled witha1

2, because none of these

4. We must introduce a certain caveat here. In general, it is possible that some actions will satisfy both
of these conditions and thus belong to bothL(s1) andL(s2); however, this will not occur when a game
is nondegenerate. Full discussion of degenericity lies beyond the scope of the book, but for the record, one
definition is as follows: A two-player game isdegenerateif there exists some mixed strategy for either player
such that the number of pure strategy best responses of the other player is greater than the size of the support
of the mixed strategy. Here we will assume that the game is nondegenerate.
5. Some readers may be reminded of the labeling of simplex vertices in the proof of Sperner’s Lemma in
Section 3.3.4. These readers should note that these are rather different kinds of labeling, which should not
be confused with each other.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.2 Computing Nash equilibria of two-player, general-sum games 97

G1:

@
@

@

s

s

s��
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

s

B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
BB

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

�
�

�
�

�
�

�
�

�
�

�
�

s
s (

0, 1
3

, 2
3

)

a1
1, a1

2, a2
2

(
2
3

, 1
3

, 0
)

a3
1, a1

2, a2
2

(1, 0, 0)

a2
1, a3

1, a1
2

(0, 0, 1)

a1
1, a2

1, a1
2

(0, 1, 0)

a1
1, a3

1, a2
2

(0, 0, 0)

a1
1, a2

1, a3
1

G2:

s

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

s

s

s
s

(
1
3

, 2
3

)

a1
1, a2

1

(
2
3

, 1
3

)

a2
1, a3

1

(1, 0)

a3
1, a2

2

(0, 1)

a1
1, a1

2

(0, 0)

a1
2, a2

2

Figure 4.4: Graph of triply labeled strategies for player 1 (left) and doubly labeled
strategies for player 2 (right) derived from the game in Figure 4.1.

mixed strategies assign any probability to playing actiona1
2. In the same way, the

line from(0, 0) to (1, 0) is labeled witha2
2. Now consider the three regions labeled

with player 1’s actions. Examining the payoff matrix in Figure 4.1, you can verify
that, for example, the actiona1

1 is a best response by player 1 to any of the mixed
strategies represented by the line from(0, 1) to (1

3
, 2

3
). Notice that the point(1

3
, 2

3
)

is labeled by botha1
1 and a2

1, because both of these actions are best responses by
player 1 to the mixed strategy(1

3
, 2

3
) by player 2.6

Similarly, consider now the left side of Figure 4.3, representing player 1’s strat-
egy space. There is a region labeled with each actionaj

1 of player 1, which is the
triangle having a vertex at the origin and running orthogonal to the axissj

1. (Can
you see why these are the only mixed strategies for player 1 that do not involve the
actionaj

1?) The two regions for the labels corresponding to actions of player 2 (a1
2

and a2
2) divide the outer triangle. As earlier, note that some mixed strategies are

multiply labeled: for example, the point
(
0, 1

3
, 2

3

)
is labeled witha1

2, a
2
2, anda1

1.
The Lemke–Howson algorithm can be understood as searching these pairs of

labeled spaces for a completely labeled pair of points. DefineG1 andG2 to be
graphs, for players 1 and 2 respectively. The nodes in the graph are fully labeled
points in the labeled space, that is, triply labeled points inG1 and doubly labeled
points inG2. An edge exists between pairs of points that differ in exactly one label.
These graphs for our example are shown in Figure 4.4; each node is annotated with
the mixed strategy to which it corresponds as well as the actions with which it is
labeled.

6. The reader may note a subtlety here. Since we added the point(0, 0) and are considering the entire
triangle and not just the line(1, 0) − (0, 1), it might be expected that we would attach best-response labels
also to interior points within the triangle. However, it turns out that the Lemke–Howson algorithm traverses
only the edges of the polygon containing the simplexes and has no use for interior points, and so we ignore
them.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

98 4 Computing Solution Concepts of Normal-Form Games

When the game is nondegenerate, there are no points with more labels than the
given player has actions, which implies that a completely labeled pair of strategies
must consist of two points that have no labels in common. In our example it is
easy to find the three Nash equilibria of the game by inspection:((0, 0, 1), (1, 0)),((

0, 1
3
, 2

3

)
,
(

2
3
, 1

3

))
, and

((
2
3
, 1

3
, 0
)
,
(

1
3
, 2

3

))
.

The Lemke–Howson algorithm finds an equilibrium by following a path through
pairs (s1, s2) ∈ G1 × G2 in the cross product of the two graphs. Alternating
between the two graphs, each iteration changes one of the two points to a new
point that is connected by an edge to the original point. Starting from(0, 0), which
is completely labeled, the algorithm picks one of the two graphs and moves from
0 in that graph to some adjacent nodex. The nodex, together with the0 from
the other graph, together form an almost completely labeled pair, in that between
them they miss exactly one label. The algorithm then moves from the remaining
0 to a neighboring node that picks up that missing label, but in the process loses
a different label. The process thus proceeds, alternating between the two graphs,
until an equilibrium (i.e., a totally labeled pair) is reached.

In our running example, a possible execution of the algorithm starts at(0, 0) and
then changess1 to (0, 1, 0). Now, our pair

(
(0, 1, 0), (0, 0)

)
is a1

2-almost com-
pletely labeled, and the duplicate label isa2

2. For its next step inG2 the algorithm
moves to(0, 1) because the other possible choice,(1, 0), has the labela2

2. Re-
turning toG1 for the next iteration, we move to

(
2
3
, 1

3
, 0
)

because it is the point
adjacent to(0, 1, 0) that does not have the duplicate labela1

1. The final step is
to changes2 to

(
1
3
, 2

3

)
in order to move away from the labela1

2. We have now
reached the completely labeled pair

((
2
3
, 1

3
, 0
)
,
(

1
3
, 2

3

))
, and the algorithm termi-

nates. This execution trace can be summarized by the path((0, 0, 0), (0, 0)) →
((0, 1, 0), (0, 0)) → ((0, 1, 0), (0, 1)) → ((2

3
, 1

3
, 0), (0, 1)) → ((2

3
, 1

3
, 0), (1

3
, 2

3
)).

The Lemke–Howson algorithm: A deeper look at pivoting

The graphical description of the Lemke–Howson algorithm in the previous section
provides good intuition but glosses over elements that only a close look at the
algebraic formulation reveals. Specifically, in abstracting away to the graphical
exposition we did not specify how to compute the graph nodes from the game
description. This is the role of this section. The two sections complement each
other: This one provides a clear recipe for implementing the algorithm, but on its
own would provide little intuition. The previous section did the opposite.

In fact, we do not compute the nodes in advance at all. Instead, we compute them
incrementally along the path being explored. At each step, we find the missing
label to be added (called theentering variable), add it, find out which label has
been lost (it is called theleaving variable), and the process repeats until no variable
is lost in which case a solution has been obtained. This procedure is calledpivoting,pivot algorithms
and also underlies thesimplex algorithmfor solving linear programming problems.

simplex
algorithm

The high-level description of the Lemke–Howson algorithm is given in Figure 4.5.
As can be seen from the pseudocode, identifying the entering variable follows

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.2 Computing Nash equilibria of two-player, general-sum games 99

initialize the two systems of equations at the origin
arbitrarily pick one dependent variable from one of the two systems. This
variableentersthe basis.
repeat

identify one of the previous basis variables which mustleave, according
to the minimum ratio test. The result is a new basis.
if this basis is completely labeledthen

return the basis // we have found an equilibrium.
else

the variable dual to the variable that last leftentersthe basis.

Figure 4.5: Pseudocode for the Lemke–Howson algorithm.

immediately from the current labeling (except in the first step, in which the choice
is arbitrary). The only nontrivial step is identifying the leaving variable. We ex-
plain it by tracing the operation of the algorithm on our example.

We start with a reformulation of the first two constraints (4.14) and (4.15) from
our LCP formulation.7

r1 = 1 −6y′5
r2 = 1 −2y′4 −5y′5
r3 = 1 −3y′4 −3y′5

(4.20)

s4 = 1 −x′
1 −4x′

3

s5 = 1 −2x′
2 −3x′

3

(4.21)

This system admits the trivial solution of assigning0 to all variables on the right-
hand side, which is our fictitious starting point. At this point,r1, r2, r3, s4, s5 form
the basis of our system of equations, and the other variables (they′s and thex′s)
are the dependent variables.8 Note that each basis variable has a dual dependent
one; the dual pairs are(r1, x′

1), (r2, x
′
2), (r3, x

′
3), (s4, y

′
4), and(s5, y

′
5). We will

now iteratively remove some of the variables from the basis and replace them with
what were previously dependent variables to get a new basis. The rule for which
variable enters is simple; initially the choice is arbitrary, and thereafter it is the
dual to the variable that previously left. The rule for which variable leaves is more
complicated and is called theminimum ratio test. When a variable enters, theminimum ratio

test candidates to leave are all the “clashing variables"; these are all the current basis
variables in whose equation the entering variable appears. If there is only one such

7. Beside the minor rearrangement of terms and slight notational change, the reader will note that we have
lost the differentU values and replaced them by the unit values1; this turns out to be convenient computa-
tionally and does not alter the solutions.
8. From the definitions of matrix theory, in our particular system the basis variables are independent of each
other (i.e., their values can be chosen independently), but together they determine the values of all other
variables.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

100 4 Computing Solution Concepts of Normal-Form Games

equation we are done, but otherwise we choose as follows. Each such equation has
the formv = c+ qu+T , wherev is the clashing variable,c is a constant (initially
they are all 1),u is the entering variable,q is a constant coefficient, andT is a
linear combination of variables other thanv or u. The clashing variable to leave is
the one in whose equation theq/c ratio is smallest.

We illustrate the procedure on our example. Let us arbitrarily pickx′
2 as the

first entering variable. In this case we see immediately thats5 must leave, since
it is the only clashing variable. (x′2 does not appear in the equation of any other
basis variable.) Withx′

2 in the basis the equations much be updated to remove any
occurrence ofx′

2 on the right-hand side, which in this case is achieved simply by
rearranging the terms of the second equation in (4.21). This gives us the following.

s4 = 1 −x′
1 −4x′

3

x′
2 = 1

2
− 3

2
x′

3 − 1
2
s5

(4.22)

The next variable that must enter the basisy′5, s5’s dual. Now the choice for
which variable should leave the basis is less obvious; all three variablesr1, r2, r3
clash withy′5. The variable we choose isr1, since it has the lowest ratio:1

6
, versus

1
5

for r2 and 1
3

for r3. Equation (4.20) is now replaced by the following.

y′5 = 1
6

− 1
6
r1

r2 = 1
6
−2y′4 + 5

6
r1

r3 = 1
2
−3y′4 + 1

2
r1

(4.23)

In this case the first equation is rearranged as above, and then, in the second two
equations, the occurrences ofy′5 are replaced by1

6
− 1

6
r1.

With r1 having leftx′
1 must enter. This entails thats4 must leave (in this case

again, the only clashing variable). Equation (4.22) now changes as follows.

x′
1 = 1 −4x′

3 −s4

x′
2 = 1

2
− 3

2
x′

3 − 1
2
s5

(4.24)

With y′4 entering, eitherr2 or r3 must leave, and it isr2 that leaves since its ratio

of
1
6

2
= 1

12
is lower thanr3’s ratio of

1
2

3
= 1

6
. Equation (4.23) changes as follows.

y′5 = 1
6
− 1

6
r1

y′4 = 1
12

+ 5
12
r1 − 1

2
r2

r3 = 1
4
− 3

4
r1 + 3

2
r2

(4.25)

At this point the algorithm terminates since, between them, Equations (4.25) and
(4.24) contain all the labels. Renormalizing the vectorsx′ and y′ to be proper
probabilities, one gets the solution((2

3
, 1

3
, 0), (1

3
, 2

3
)) with payoffs4 and 2

3
to the

row and column players, respectively.

Properties of the Lemke–Howson algorithm

The Lemke–Howson algorithm has some good properties. First, it is guaranteed
to find a sample Nash equilibrium. Indeed, its constructive nature constitutes an

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.2 Computing Nash equilibria of two-player, general-sum games 101

alternative proof of the existence of a Nash equilibrium (Theorem 3.3.22). Also,
note the following interesting fact: Since the algorithm repeatedly seeks to cover
a missing label, after choosing the initial move away from(0, 0), the path through
almost completely labeled pairs to an equilibrium is unique. So while the al-
gorithm is nondeterministic, all the nondeterminism is concentrated in its first
move. Finally, it can be used to find more than one Nash equilibrium. The rea-
son the algorithm is initialized to start at the origin is that this is the only pair
that is knowna priori to be completely labeled. However, once we have found
another completely labeled pair, we can useit as the starting point, allowing us to
reach additional equilibria. For example, starting at the equilibrium we just found
and making an appropriate first choice, we can quickly find another equilibrium
by the path

((
2
3
, 1

3
, 0
)
,
(

1
3
, 2

3

))
→
((

0, 1
3
, 2

3

)
,
(

1
3
, 2

3

))
→
((

0, 1
3
, 2

3

)
,
(

2
3
, 1

3

))
.

The remaining equilibrium can be found using the following path from the origin:
((0, 0, 0), (0, 0)) → ((0, 0, 1), (0, 0)) → ((0, 0, 1), (1, 0)).

However, the algorithm is not without its limitations. Whilewe were able to use
the algorithm to find all equilibria in our running example, in general we are not
guaranteed to be able to do so. As we have seen, the Lemke–Howson algorithm can
be thought of as exploring a graph of all completely and almost completely labeled
pairs. The bad news is that this graph can be disconnected, and the algorithm is
only able to find the equilibria in the connected component that contains the origin
(although luckily, there is guaranteed to be at least one such equilibrium). Not only
are we unable to guarantee that we will find all equilibria—there is not even an
efficient way to determine whether or not all equilibria have been found.

Even with respect to finding a single equilibrium we are not trouble free. First,
there is still indeterminacy in the first move, and the algorithm provides no guid-
ance on how to make a good first choice, one that will lead to a relatively short
path to the equilibrium, if one exists. And one may not exist—there are cases
in which all paths are of exponential length (and thus the time complexity of the
Lemke–Howson algorithm is provably exponential). Finally, even if one gives up
on worst-case guarantees and hopes for good heuristics, the fact that the algorithm
has no objective function means that it provides no obvious guideline to assess how
close it is to a solution before actually finding one.

Nevertheless, despite all these limitations, the Lemke–Howson algorithm re-
mains a key element in understanding the algorithmic structure of Nash equilibria
in general two-person games.

4.2.3 Searching the space of supports

One can identify a spectrum of approaches to the design of algorithms. At one end
of the spectrum one can develop deep insight into the structure of the problem, and
craft a highly specialized algorithm based on this insight. The Lemke–Howson
algorithm lies close to this end of the spectrum. At the other end of the spectrum,
one identifies relatively shallow heuristics and hopes that these, coupled with ever-
increasing computing power, will do the job. Of course, in order to be effective,

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

102 4 Computing Solution Concepts of Normal-Form Games

even these heuristics must embody some insight into the problem. However, this
insight tends to be limited and local, yielding rules of thumb that aid in guiding
the search through the space of possible solutions, but that do not directly yield a
solution. One of the lessons from computer science is that sometimes heuristic ap-
proaches can outperform more sophisticated algorithms in practice. In this section
we discuss such a heuristic algorithm.

The basic idea behind the algorithm is straightforward. We first note that while
the general problem of computing a Nash equilibrium (NE) is a complementarity
problem, computing whether there exists a NE with aparticular support9 for each
player is a relatively simple feasibility program. So the problem is reduced to
searching the space of supports. Of course the size of this space is exponential in
the number of actions, and this is where the heuristics come in.

We start with the feasibility program. Given a support profileσ = (σ1, σ2) as
input (where eachσi ⊆ Ai), feasibility program TGS (for “test given supports”)
finds a NEp consistent withσ or proves that no such strategy profile exists. In this
program,vi corresponds to the expected utility of playeri in an equilibrium, and
the subscript−i indicates the player other thani as usual. The complete program
follows.

∑

a−i∈σ−i

p(a−i)ui(ai, a−i) = vi ∀i ∈ {1, 2}, ai ∈ σi (4.26)

∑

a−i∈σ−i

p(a−i)ui(ai, a−i) ≤ vi ∀i ∈ {1, 2}, ai ∈/ σi (4.27)

pi(ai) ≥ 0 ∀i ∈ {1, 2}, ai ∈ σi (4.28)

pi(ai) = 0 ∀i ∈ {1, 2}, ai ∈/ σi (4.29)
∑

ai∈σi

pi(ai) = 1 ∀i ∈ {1, 2} (4.30)

Constraints (4.26) and (4.27) require that each player must be indifferent be-
tween all actions within his support and must not strictly prefer an action outside
of his support. These imply that neither player can deviate to a pure strategy that
improves his expected utility, which is exactly the condition for the strategy profile
to be a NE. Constraints (4.28) and (4.29) ensure that eachSi can be interpreted as
the support of playeri’s mixed strategy: the pure strategies inSi must be played
with zero or positive probability, and the pure strategies not inSi must be played
with zero probability.10 Finally, constraint (4.30) ensures that eachpi can be inter-
preted as a probability distribution. A solution will be returned only when there
exists an equilibrium with supportS (subject to the caveat in footnote 10).

9. Recall that the support specifies the pure strategies played with nonzero probability (see Definition 3.2.6).
10. Note that constraint (4.28) allows an actionai ∈ Si to be played with zero probability, and so the
feasibility program may sometimes find a solution even when someSi includes actions that are not in the
support. However, playeri must still be indifferent between actionai and each other actiona′

i ∈ Si. Thus,
simply substituting inSi = Ai would not necessarily yield a Nash equilibrium as a solution.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.2 Computing Nash equilibria of two-player, general-sum games 103

With this feasibility program in our arsenal, we can proceed to search the space
of supports. There are three keys to the efficiency of the following algorithm, called
SEM (forsupport-enumeration method). The first two are the factors used to ordersupport-

enumeration
method

the search space. Specifically, SEM considers every possible support size profile
separately, favoring support sizes that are balanced and small. The third key to
SEM is that it separately instantiates each player’s support, making use of what we
will call conditional strict dominanceto prune the search space.conditional strict

dominance

Definition 4.2.2 (Conditionally strictly dominated action) An actionai ∈ Ai is
conditionally strictly dominated, given a profile of sets of available actionsR−i ⊆
A−i for the remaining agents, if the following condition holds:∃a′i ∈ Ai ∀a−i ∈
R−i : ui(ai, a−i) < ui(a

′
i, a−i).

Observe that this definition is strict because, in a Nash equilibrium, no action that
is played with positive probability can be conditionally dominated given the actions
in the support of the opponents’ strategies. The problem of checking whether an
action is conditionally strictly dominated is equivalent to the problem of checking
whether the action is strictly dominated by a pure strategy in a reduced version of
the original game. As we show in Section 4.5.1, this problem can be solved in time
linear in the size of the game.

The preference for small support sizes amplifies the advantages of checking for
conditional dominance. For example, after instantiating a support of size two for
the first player, it will often be the case that many of the second player’s actions
are pruned, because only two inequalities must hold for one action to conditionally
dominate another.

Pseudocode for SEM is given in Figure 4.6.

forall support size profilesx = (x1, x2), sorted in increasing order of, first,
|x1 − x2| and, second,(x1 + x2) do

forall σ1 ⊆ A1 s.t. |σ1| = x1 do
A′

2 ← {a2 ∈ A2 not conditionally dominated, givenσ1 }
if ∄a1 ∈ σ1 conditionally dominated, givenA′

2 then
forall σ2 ⊆ A′

2 s.t. |σ2| = x2 do
if ∄a1 ∈ σ1 conditionally dominated, givenσ2 andTGS is
satisfiable forσ = (σ1, σ2) then

return the solution found; it is a NE

Figure 4.6: The SEM algorithm

Note that SEM is complete, because it considers all support size profiles and
because it prunes only those actions that arestrictly dominated. As mentioned
earlier, the number of supports is exponential in the number of actions and hence
this algorithm has an exponential worst-case running time.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

104 4 Computing Solution Concepts of Normal-Form Games

Of course, any enumeration order would yield a solution; the particular ordering
here has simply been shown to yield solutions quickly in practice. In fact, extensive
testing on a wide variety of games encountered throughout the literature has shown
SEM to performbetter than the more sophisticated algorithms. Of course, this
result tells us as much about the games in the literature (e.g., they tend to have
small-support equilibria) as it tells us about the algorithms.

4.2.4 Beyond sample equilibrium computation

In this section we consider two problems related to the computation of Nash equi-
libria in two-player, general-sum games that go beyond simply identifying a sample
equilibrium.

First, instead of just searching for a sample equilibrium, we might want to find an
equilibrium with a specific property. Listed below are several different questions
we could ask about the existence of such an equilibrium.

1. (Uniqueness)Given a gameG, does there exist a unique equilibrium inG?

2. (Pareto optimality) Given a gameG, does there exist a strictly Pareto efficient
equilibrium inG?

3. (Guaranteed payoff)Given a gameG and a valuev, does there exist an equi-
librium inG in which some playeri obtains an expected payoff of at leastv?

4. (Guaranteed social welfare)Given a gameG, does there exist an equilibrium
in which the sum of agents’ utilities is at leastk?

5. (Action inclusion) Given a gameG and an actionai ∈ Ai for some player
i ∈ N , does there exist an equilibrium ofG in which playeri plays actionai

with strictly positive probability?

6. (Action exclusion) Given a gameG and an actionai ∈ Ai for some player
i ∈ N , does there exist an equilibrium ofG in which playeri plays actionai

with zero probability?

The answers to these questions are more useful that they might appear at first
glance. For example, the ability to answer theguaranteed payoffquestion in poly-
nomial time could be used to find, in polynomial time, the maximum expected
payoff that can be guaranteed in a Nash equilibrium. Unfortunately, all of these
questions are hard in the worst case.

Theorem 4.2.3The following problems are NP-hard when applied to Nash equi-
libria: uniqueness, Pareto optimality, guaranteed payoff,guaranteed social welfare,
action inclusion, andaction exclusion.

This result holds even for two-player games. Further, it is possible to show that
the guaranteed payoffandguaranteed social welfareproperties cannot even be
approximated to any constant factor by a polynomial-time algorithm.

A second problem is to determineall equilibria of a game.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.3 Computing Nash equilibria ofn-player, general-sum games 105

Theorem 4.2.4Computing all of the equilibria of a two-player, general-sum game
requires worst-case time that is exponential in the number of actions for each
player.

This result follows straightforwardly from the observation that a game withk
actions can have2k − 1 Nash equilibria, even if the game is nondegenerate (when
the game is degenerate, it can have an infinite number of equilibria). Consider a
two-player Coordination game in which both players havek actions and a utility
function given by the identity matrix possesses2k − 1 Nash equilibria: one for
each nonempty subset of thek actions. The equilibrium for each subset is for both
players to randomize uniformly over each action in the subset. Any algorithm that
finds all of these equilibria must have a running time that is at least exponential in
k.

4.3 Computing Nash equilibria of n-player, general-sum games

Forn-player games wheren ≥ 3, the problem of finding a Nash equilibrium can
no longer be represented even as an LCP. While it does allow a formulation as a
nonlinear complementarity problem, such problems are often hopelessly impracti-nonlinear

complementarity
problem

cal to solve exactly. Unlike the two-player case, therefore, it is unclear how to best
formulate the problem as input to an algorithm. In this section we discuss three
possibilities.

Instead of solving the nonlinear complementarity problem exactly, there has
been some success approximating the solution using asequence of linear com-
plementarity problems (SLCP). Each LCP is an approximation of the problem, and
its solution is used to create the next approximation in the sequence. This method
can be thought of as a generalization toNewton’s methodof approximating the
local maximum of a quadratic equation. Although this method is not globally con-
vergent, in practice it is often possible to try a number of different starting points
because of its relative speed.

Another approach is to formulate the problem as a minimum of a function. First,
we need to define some more notation. Starting from a strategy profiles, let cj

i (s)
be the change in utility to playeri if he switches to playing actionaj

i as a pure
strategy. Then, definedj

i (s) ascj
i (s) bounded from below by zero.

cj
i (s) = ui(a

j
i , s−i)− ui(s)

dj
i (s) = max(cj

i (s), 0)

Note thatdj
i (s) is positive if and only if playeri has an incentive to deviate to

action aj
i . Thus, strategy profiles is a Nash equilibrium if and only ifdj

i (s) = 0
for all playersi, and all actionsj for each player.

We capture this property in the objective function given in Equation (4.31); we

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

106 4 Computing Solution Concepts of Normal-Form Games

will refer to this function asf(s).

minimize f(s) =
∑

i∈N

∑

j∈Ai

(
dj

i (s)
)2

(4.31)

subject to
∑

j∈Ai

sj
i = 1 ∀i ∈ N (4.32)

sj
i ≥ 0 ∀i ∈ N,∀j ∈ Ai (4.33)

This function has one or more global minima at 0, and the set of alls such that
f(s) = 0 is exactly the set of Nash equilibria. Of course, this property holds even
if we did not square eachdj

i (s), but doing so makes the function differentiable
everywhere. The constraints on the function are the obvious ones: each player’s
distribution over actions must sum to one, and all probabilities must be nonnegative.
The advantage of this method is its flexibility. We can now apply any method for
constrained optimization.

If we instead want to use an unconstrained optimization method, we can roll
the constraints into the objective function (which we now callg(s)) in such a way
that we still have a differentiable function that is zero if and only ifs is a Nash
equilibrium. This optimization problem follows.

minimize
∑

i∈N

∑

j∈Ai

(
dj

i (s)
)2

+
∑

i∈N

(

1−
∑

j∈Ai

sj
i

)2

+
∑

i∈N

∑

j∈Ai

(
min(sj

i , 0)
)2

Observe that the first term ing(s) is justf(s) from Equation (4.31). The second
and third terms ing(s) enforce the constraints given in Equations (4.32) and (4.33)
respectively.

A disadvantage in the formulations given in both Equations (4.31)–(4.33) and
Equation (4.3) is that both optimization problems have local minima which do not
correspond to Nash equilibria. Thus, global convergence is an issue. For example,
considering the commonly-used optimization methods hill-climbing and simulated
annealing, the former get stuck in local minima while the latter often converge
globally only for parameter settings that yield an impractically long running time.

When global convergence is required, a common choice is to turn to the class
of simplicial subdivision algorithms. Before describing these algorithms we willsimplicial

subdivision revisit some properties of the Nash equilibrium. Recall from the Nash existence
theorem (Theorem 3.3.22) that Nash equilibria are fixed points of the best response
function,f . (As defined previously, given a strategy profiles = (s1, s2, . . . , sn),
f(s) consists of all strategy profiles(s′1, s

′
2, . . . , s

′
n) such thats′i is a best response

by playeri to s−i.) Since the space of mixed-strategy profiles can be viewed as
a product of simplexes—a so-calledsimplotope—f is a function mapping from asimplotope
simplotope to a set of simplotopes.

Scarf’s algorithm is a simplicial subdivision method for finding the fixed point
of any function on a simplex or simplotope. It divides the simplotope into small

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.3 Computing Nash equilibria ofn-player, general-sum games 107

regions and then searches over the regions. Unfortunately, such a search is approx-
imate, since a continuous space is approximated by a mesh of small regions. The
quality of the approximation can be controlled by refining the meshes into smaller
and smaller subdivisions. One way to do this is by restarting the algorithm with a
finer mesh after an initial solution has been found. Alternately, ahomotopy methodhomotopy

method can be used. In this approach, a new variable is added that represents the fidelity of
the approximation, and the variable’s value is gradually adjusted until the algorithm
converges.

An alternative approach, due to Govindan and Wilson, uses a homotopy method
in a different way. (This homotopy method actually turns out to be ann-player
extension of the Lemke–Howson algorithm, although this correspondence is not
obvious.) Instead of varying between coarse and fine approximations, the new
added variable interpolates between the given game and an easy-to-solve game.
That is, we define a set of games indexed by a scalarλ ∈ [0, 1] such that when
λ = 0, we have our original game, and whenλ = 1, we have a very simple game.
(One way to do this is to change the original game by adding a “bonus”λk to
each player’s payoff in one outcomea = (a1, . . . , an). Consider a choice ofk
big enough that for each playeri, playingai is a strictly dominant strategy. Then,
whenλ = 1, a will be a (unique) Nash equilibrium, and whenλ = 0, we will
have our original game.) We begin with an equilibrium to the simple game and
λ = 1 and let both the equilibrium to the game and the index vary in a continuous
fashion to trace the path of game-equilibrium pairs. Along this pathλ may both
decrease and increase; however, if the path is followed correctly, it will necessarily
pass through a point whereλ = 0. This point’s corresponding equilibrium is a
sample Nash equilibrium of the original game.

Finally, it is possible to generalize the SEM algorithm to then-player case. Un-
fortunately, the feasibility program becomes nonlinear, as follows. We call this
feasibility program TGS-n.

∑

a−i∈σ−i

(
∏

j 6=i

pj(aj)

)
ui(ai, a−i) = vi ∀i ∈ N, ai ∈ σi (4.34)

∑

a−i∈σ−i

(
∏

j 6=i

pj(aj)

)
ui(ai, a−i) ≤ vi ∀i ∈ N, ai ∈/ σi (4.35)

pi(ai) ≥ 0 ∀i ∈ N, ai ∈ σi (4.36)

pi(ai) = 0 ∀i ∈ N, ai ∈/ σi (4.37)
∑

ai∈σi

pi(ai) = 1 ∀i ∈ N (4.38)

The expressionp(a−i) from constraints (4.26) and (4.27) is no longer a sin-
gle variable, but must now be written as

∏
j 6=i pj(aj) in constraints (4.34) and

(4.35). The resulting feasibility problem can be solved using standard numerical
techniques for nonlinear optimization. As with two-player games, in principle any

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

108 4 Computing Solution Concepts of Normal-Form Games

enumeration method would work; the question is which search heuristic works the
fastest. It turns out that a minor modification of the SEM heuristic described in
Figure 4.6 is effective for the general case as well: one simply reverses the lex-
icographic ordering between size and balance of supports (SEM first sorts them
by size, and then by a measure of balance; in then-player case we reverse the
ordering). The resulting heuristic algorithm performs very well in practice, and
better than the algorithms discussed earlier. We should note that while the ordering
between balance and size becomes extremely important to the efficiency of the al-
gorithm asn increases, this reverse ordering does not perform substantially worse
than SEM in the two-player case, because the smallest of the balanced support size
profiles still appears very early in the ordering.

4.4 Computing maxmin and minmax strategies for two-player, general-
sum games

Recall from Section 3.4.1 that in a two-player, general-sum game a maxmin strat-
egy for playeri is a strategy that maximizes his worst-case payoff, presuming that
the other playerj follows the strategy that will cause the greatest harm toi. A
minmax strategy forj againsti is such a maximum-harm strategy. Maxmin and
minmax strategies can be computed in polynomial time because they correspond
to Nash equilibrium strategies in related zero-sum games.

LetG be an arbitrary two-player gameG = ({1, 2}, A1 × A2, (u1, u2)). Let
us consider how to compute a maxmin strategy for player1. It will be useful to
define the zero-sum gameG′ = ({1, 2}, A1 × A2, (u1,−u1)), in which player
1’s utility function is unchanged and player2’s utility is the negative of player1’s.
By the minmax theorem (Theorem 3.4.4), sinceG′ is zero sum every strategy for
player 1 which is part of a Nash equilibrium strategy profile forG′ is a maxmin
strategy for player 1 inG′. Notice that by definition, player1’s maxmin strategy is
independent of player2’s utility function. Thus, player1’s maxmin strategy is the
same inG and inG′. Our problem of finding a maxmin strategy inG thus reduces
to finding a Nash equilibrium ofG′, a two-player, zero-sum game. We can thus
solve the problem by applying the techniques given earlier in Section 4.1.

The computation of minmax strategies follows the same pattern. We can again
use the minmax theorem to argue that player2’s Nash equilibrium strategy inG′ is
a minmax strategy for him against player1 in G. (If we wanted to compute player
1’s minmax strategy, we would have to construct another gameG′′ where player
1’s payoff is−u2, the negative of player2’s payoff inG.) Thus, both maxmin and
minmax strategies can be computed efficiently for two-player games.

4.5 Identifying dominated strategies

Recall that one strategy dominates another when the first strategy is always at least
as good as the second, regardless of the other players’ actions. (Section 3.4.3 gave

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.5 Identifying dominated strategies 109

the formal definitions.) In this section we discuss some computational uses for
identifying dominated strategies, and consider the computational complexity of
this process.

As discussed earlier, iterated removal of strictly dominated strategies is concep-
tually straightforward: the same set of strategies will be identified regardless of the
elimination order, and all Nash equilibria of the original game will be contained
in this set. Thus, this method can be used to narrow down the set of strategies
to consider before attempting to identify a sample Nash equilibrium. In the worst
case this procedure will have no effect—many games havenodominated strategies.
In practice, however, it can make a big difference to iteratively remove dominated
strategies before attempting to compute an equilibrium.

Things are a bit trickier with the iterated removal ofweaklyor very weaklydomi-
nated strategies. In this case the elimination order does make a difference: the set of
strategies that survive iterated removal can differ depending on the order in which
dominated strategies are removed. As a consequence, removing weakly or very
weakly dominated strategiescan eliminate some equilibria of the original game.
There is still a computational benefit to this technique, however. Since no new
equilibria are ever created by this elimination (and since every game has at least
one equilibrium), at least one of the original equilibria always survives. This is
enough if all we want to do is to identify a sample Nash equilibrium. Furthermore,
iterative removal of weakly or very weakly dominated strategies can eliminate a
larger set of strategies than iterative removal of strictly dominated strategies and so
will often produce a smaller game.

What is the complexity of determining whether a given strategy can be removed?
This depends on whether we are interested in checking the strategy for domination
by a pure or mixed strategies, whether we are interested in strict, weak or very
weak domination, and whether we are interested only in domination or in survival
under iterated removal of dominated strategies.

4.5.1 Domination by a pure strategy

The simplest case is checking whether a (not necessarily pure) strategysi for player
i is (strictly; weakly; very weakly) dominated by any pure strategy for i. For
concreteness, let us consider the case of strict dominance. To solve the problem we
must check every pure strategyai for playeri and every pure-strategy profile for
the other players to determine whether there exists someai for which it is never
weakly better fori to play si instead ofai. If so, si is strictly dominated. An
algorithm for this case is given in Figure 4.7.

Observe that this algorithm works because we do not need to check everymixed-
strategy profile of the other players, even though the definition of dominance refers
to such strategies. Why can we get away with this? If it is the case (as the inner
loop of our algorithm attempts to prove) that for every pure-strategy profilea−i ∈
A−i, ui(si, a−i) < ui(ai, a−i), then there cannot exist any mixed-strategy profile
s−i ∈ S−i for whichui(si, s−i) ≥ ui(ai, s−i). This holds because of the linearity

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

110 4 Computing Solution Concepts of Normal-Form Games

forall pure strategiesai ∈ Ai for playeri whereai 6= si do
dom← true
forall pure-strategy profilesa−i ∈ A−i for the players other thani do

if ui(si, a−i) ≥ ui(ai, a−i) then
dom← false
break

if dom = true then
return true

return false

Figure 4.7: Algorithm for determining whethersi is strictly dominated by any pure
strategy

of expectation.
The case of very weak dominance can be tested using essentially the same al-

gorithm as in Figure 4.7, except that we must test the conditionui(si, s−i) >
ui(s

′
i, s−i). For weak dominance we need to do a bit more book-keeping: we

can test the same condition as for very weak dominance, but we must also set
dom← false if there is not at least ones−i for whichui(si, s−i) < ui(s

′
i, s−i).

For all of the definitions of domination, the complexity of the procedure isO(|A|),
linear in the size of the normal-form game.

4.5.2 Domination by a mixed strategy

Recall that sometimes a strategy is not dominated by any pure strategy, butis dom-
inated by some mixed strategy. (We saw an example of this in Figure 3.16.) We
cannot use a simple algorithm like the one in Figure 4.7 to test whether a given
strategysi is dominated by a mixed strategy because these strategies cannot be
enumerated. However, it turns out that we can still answer the question in polyno-
mial time by solving a linear program. In this section, we will assume that player
i’s utilities are strictly positive. This assumption is without loss of generality be-
cause if any playeri’s utilities were negative, we could add a constant to all ofi’s
payoffs without changing the game (see Section 3.1.2).

Each flavor of domination requires a somewhat different linear program. First,
let us consider strict domination by a mixed strategy. This would seem to have the
following straightforward LP formulation (indeed, a mere feasibility program).

∑

j∈Ai

pjui(aj, a−i) > ui(si, a−i) ∀a−i ∈ A−i (4.39)

pj ≥ 0 ∀j ∈ Ai (4.40)
∑

j∈Ai

pj = 1 (4.41)

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.5 Identifying dominated strategies 111

While constraints (4.39)–(4.41) do indeed describe strict domination by a mixed
strategy, they do not constitute a linear program. The problem is that the constraints
in linear programs must beweakinequalities (see Appendix B), and thus we cannot
write constraint (4.39) as we have done here. Instead, we must use the LP that
follows.

minimize
∑

j∈Ai

pj (4.42)

subject to
∑

j∈Ai

pjui(aj , a−i) ≥ ui(si, a−i) ∀a−i ∈ A−i (4.43)

pj ≥ 0 ∀j ∈ Ai (4.44)

This linear program simulates the strict inequality of constraint (4.39) through
the objective function, as we will describe in a moment. Because no constraints
restrict thepj ’s from above, this LP will always be feasible. However, in the op-
timal solution thepj ’s may not sum to 1; indeed, their sum can be greater than 1
or less than 1. In the optimal solution thepj ’s will be set so that their sum cannot
be reduced any further without violating constraint (4.43). Thus for at least some
a−i ∈ A−i we will have

∑
j∈Ai

pjui(aj , a−i) = ui(si, a−i). A strictly domi-
nating mixed strategy therefore exists if and only if the optimal solution to the LP
has objective function value strictly less than1. In this case, we can add a positive
amount to eachpj in order to cause constraint (4.43) to hold in its strict version
everywhere while achieving the condition

∑
j pj = 1.

Next, let us consider very weak domination. This flavor of domination does
not require any strict inequalities, so things are easy here. Here wecanconstruct
a feasibility program—nearly identical to our earlier failed attempt from Equa-
tions (4.39)–(4.41)—which follows.

∑

j∈Ai

pjui(aj, a−i) ≥ ui(si, a−i) ∀a−i ∈ A−i (4.45)

pj ≥ 0 ∀j ∈ Ai (4.46)
∑

j∈Ai

pj = 1 (4.47)

Finally, let us consider weak domination by a mixed strategy. Again our inability
to write a strict inequality will make things more complicated. However, we can
derive an LP by adding an objective function to the feasibility program given in

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

112 4 Computing Solution Concepts of Normal-Form Games

Equations (4.45)–(4.47).

maximize
∑

a−i∈A−i

[(
∑

j∈Ai

pj · ui(aj, a−i)

)
− ui(si, a−i)

]
(4.48)

subject to
∑

j∈Ai

pjui(aj, a−i) ≥ ui(si, a−i) ∀a−i ∈ A−i

(4.49)

pj ≥ 0 ∀j ∈ Ai

(4.50)
∑

j∈Ai

pj = 1 (4.51)

Because of constraint (4.49), any feasible solution will have a nonnegative ob-
jective value. If the optimal solution has a strictly positive objective, the mixed
strategy given by thepj ’s achieves strictly positive expected utility for at least one
a−i ∈ A−i, meaning thatsi is weakly dominated by this mixed strategy.

As a closing remark, observe that all of our linear programs can be modified to
check whether a strategysi is strictly dominated by any mixed strategy that only
places positive probability on some subset ofi’s actionsT ⊂ Ai. This can be
achieved simply by replacing all occurrences ofAi by T in the linear programs
given earlier.

4.5.3 Iterated dominance

Finally, we consider the iterated removal of dominated strategies. We only consider
pure strategies as candidates for removal; indeed, as it turns out, it never helps
to remove dominated mixed strategies when performing iterated removal. Itis
important, however, that we consider the possibility that pure strategies may be
dominatedbymixed strategies, as we saw in Section 3.4.3.

For all three flavors of domination, it requires only polynomial time to itera-
tively remove dominated strategies until the game has been maximally reduced
(i.e., no strategy is dominated for any player). A single step of this process con-
sists of checking whether every pure strategy of every player is dominated by any
other mixed strategy, which requires us to solve at worst

∑
i∈N |Ai| linear pro-

grams. Each step removes one pure strategy for one player, so there can be at most∑
i∈N(|Ai| − 1) steps.
However, recall that some forms of dominance can produce different reduced

games depending on the order in which dominated strategies are removed. We
might therefore want to ask other computational questions, regarding which strate-
gies remain in reduced games. Listed below are some such questions.

1. (Strategy elimination) Does there exist some elimination path under which the
strategysi is eliminated?

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.6 Computing correlated equilibria 113

2. (Reduction identity) Given action subsetsA′
i ⊆ Ai for each playeri, does

there exist a maximally reduced game where each playeri has the actionsA′
i?

3. (Reduction size)Given constantski for each playeri, does there exist a maxi-
mally reduced game where each playeri has exactlyki actions?

It turns out that the complexity of answering these questions depends on the form
of domination under consideration.

Theorem 4.5.1For iterated strict dominance, thestrategy elimination, reduction
identity, uniquenessandreduction sizeproblems are in P. For iterated weak domi-
nance, these problems are NP-complete.

The first part of this result, considering iterated strict dominance, is straightfor-
ward: it follows from the fact that iterated strict dominance always arrives at the
same set of strategies regardless of elimination order. The second part is tricker; in-
deed, our statement of this theorem sweeps under the carpet some subtleties about
whether domination by mixed strategies is considered (it is in some cases, and is
not in others) and the minimum number of utility values permitted for each player.
For all the details, the reader should consult the papers cited at the end of the chap-
ter.

4.6 Computing correlated equilibria

The final solution concept that we will consider is correlated equilibrium. It turns
out that correlated equilibria are (probably) easier to compute than Nash equilibria:
a sample correlated equilibrium can be found in polynomial time using a linear pro-
gramming formulation. It is not hard to see (e.g., from the proof of Theorem 3.4.13)
that every game has at least one correlated equilibrium in which the value of the
random variable can be interpreted as a recommendation to each agent of what ac-
tion to play, and in equilibrium the agents all follow these recommendations. Thus,
we can find a sample correlated equilibrium if we can find a probability distribution
over pure action profiles with the property that each agent would prefer to play the
action corresponding to a chosen outcome when told to do so, given that the other
agents are doing the same.

As in Section 3.2, leta ∈ A denote a pure-strategy profile, and letai ∈ Ai

denote a pure strategy for playeri. The variables in our linear program arep(a),
the probability of realizing a given pure-strategy profilea; since there is a variable
for every pure-strategy profile there are thus|A| variables. Observe that as above

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

114 4 Computing Solution Concepts of Normal-Form Games

the valuesui(a) are constants. The linear program follows.
∑

a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|ai∈a

p(a)ui(a
′
i, a−i) ∀i ∈ N, ∀ai, a

′
i ∈ Ai (4.52)

p(a) ≥ 0 ∀a ∈ A (4.53)
∑

a∈A

p(a) = 1 (4.54)

Constraints (4.53) and (4.54) ensure thatp is a valid probability distribution. The
interesting constraint is (4.52), which expresses the requirement that playeri must
be (weakly) better off playing actiona when he is told to do so than playing any
other actiona′i, given that other agents play their prescribed actions. This con-
straint effectively restates the definition of a correlated equilibrium given in Defini-
tion 3.4.12. Note that it can be rewritten as

∑
a∈A|ai∈a[ui(a)−ui(a

′
i, a−i)]p(a) ≥

0; in other words, whenever agenti is “recommended” to play actionai with pos-
itive probability, he must get at least as much utility from doing so as he would
from playing any other actiona′i.

We can select a desired correlated equilibrium by adding an objective function
to the linear program. For example, we can find a correlated equilibrium that max-
imizes the sum of the agents’ expected utilities by adding the objective function

maximize:
∑

a∈A

p(a)
∑

i∈N

ui(a). (4.55)

Furthermore, all of the questions discussed in Section 4.2.4 can be answered
about correlated equilibria in polynomial time, making them (most likely) funda-
mentally easier problems.

Theorem 4.6.1The following problems are in the complexity class P when applied
to correlated equilibria: uniqueness, Pareto optimal, guaranteed payoff,subset
inclusion, andsubset containment.

Finally, it is worthwhile to consider the reason for the computational difference
between correlated equilibria and Nash equilibria. Why can we express the defini-
tion of a correlated equilibrium as a linear constraint (4.52), while we cannot do
the same with the definition of a Nash equilibrium, even though both definitions
are quite similar? The difference is that a correlated equilibrium involves a single
randomization over action profiles, while in a Nash equilibrium agents randomize
separately. Thus, the (nonlinear) version of constraint (4.52) which would instruct
a feasibility program to find a Nash equilibrium would be
∑

a∈A

ui(a)
∏

j∈N

pj(aj) ≥
∑

a∈A

ui(a
′
i, a−i)

∏

j∈N\{i}

pj(aj) ∀i ∈ N, ∀a′i ∈ Ai.

This constraint now mimics constraint (4.52), directly expressing the definition of
Nash equilibrium. It states that each playeri attains at least as much expected

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

4.7 History and references 115

utility from following his mixed strategypi as from any pure strategy deviationa′i,
given the mixed strategies of the other players. However, the constraint is nonlinear
because of the product

∏
j∈N pj(aj).

4.7 History and references

The complexity of finding a sample Nash equilibrium is explored in a series of
articles. First came the original definition of the class TFNP [Megiddo and Pa-
padimitriou, 1991], a super-class of PPAD, followed by the definition of PPAD
by Papadimitriou [1994]. Next, Goldberg and Papadimitriou [2006] showed that
finding an equilibrium of a game with any constant number of players is no harder
than finding the equilibrium of a four-player game, and Daskalakis et al. [2006b]
showed that these computational problems are PPAD-complete. The result was
almost immediately tightened to encompass two-player games by Chen and Deng
[2006]. The NP-completeness results for Nash equilibria with specific properties
are due to Gilboa and Zemel [1989] and Conitzer and Sandholm [2003b]; the inap-
proximability result appeared in Conitzer [2006].

A general survey of the classical algorithms for computing Nash equilibria in 2-
person games is provided in von Stengel [2002]. Another good survey is McKelvey
and McLennan [1996]. Some specific references, both to these classical algorithms
and to the newer ones discussed in the chapter, are as follows. The Lemke–Howson
algorithm [Lemke and Howson, 1964] can be understood as a a specialization of
Lemke’s pivoting procedure for solving linear complementarity problems [Lemke,
1978]. The graphical exposition of the Lemke–Howson algorithm appeared first
in Shapley [1974], and then in a modified version in von Stengel [2002]. Our de-
scription of the Lemke–Howson algorithm is based on the latter. An example of
games for whichall Lemke–Howson paths are of exponential length appears in
Savani and von Stengel [2004]. Scarf’s simplicial-subdivision-based algorithm is
described in Scarf [1967]. Homotopy-based approximation methods are covered,
for example, in García and Zangwill [1981]. Govindan and Wilson’s homotopy
method was presented in Govindan and Wilson [2003]; its path-following proce-
dure depends on topological results due to Kohlberg and Mertens [1986]. The
support-enumeration method for finding a sample Nash equilibrium is described in
Porter et al. [2004a]. The complexity of iteratedly eliminating dominated strategies
is described in Gilboa et al. [1989] and Conitzer and Sandholm [2005].

Two online resources are of particular note.GAMBIT [McKelvey et al., 2006]GAMBIT
(http://econweb.tamu.edu/gambit) is a library of game-theoretic algorithms
for finite normal-form and extensive-form games. It includes many different al-
gorithms for finding Nash equilibria. In addition to several algorithms that can be
used on general sum,n-player games, it includes implementations of algorithms de-
signed for special cases, including two-player games, zero-sum games, and finding
all equilibria. Finally,GAMUT [Nudelman et al., 2004] (http://gamut.stanford.edu)GAMUT
is a suite of game generators designed for testing game-theoretic algorithms.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://econweb.tamu.edu/gambit
http://gamut.stanford.edu
http://www.masfoundations.org

5
Games with Sequential Actions:
Reasoning and Computing with the
Extensive Form

In Chapter 3 we assumed that a game is represented in normal form: effectively,
as a big table. In some sense, this is reasonable. The normal form is conceptually
straightforward, and most see it as fundamental. While many other representations
exist to describe finite games, we will see in this chapter and in Chapter 6 that
each of them has an “induced normal form”: a corresponding normal-form repre-
sentation that preserves game-theoretic properties such as Nash equilibria. Thus
the results given in Chapter 3 hold for all finite games, no matter how they are
represented; in that sense the normal-form representation is universal.

In this chapter we will look at extensive-form games, a finite representation that
does not always assume that players act simultaneously. This representation is in
general exponentially smaller than its induced normal form, and furthermore can
be much more natural to reason about. While the Nash equilibria of an extensive-
form game can be found through its induced normal form, computational benefit
can be had by working with the extensive form directly. Furthermore, there are
other solution concepts, such as subgame-perfect equilibrium (see Section 5.1.3),
which explicitly refer to the sequence in which players act and which are therefore
not meaningful when applied to normal-form games.

5.1 Perfect-information extensive-form games

The normal-form game representation does not incorporate any notion of sequence,
or time, of the actions of the players. Theextensive (ortree) formis an alternative
representation that makes the temporal structure explicit. We start by discussing
the special case ofperfect informationextensive-form games, and then move on to
discuss the more general class ofimperfect-informationextensive-form games in
Section 5.2. In both cases we will restrict the discussion to finite games, that is, to
games represented as finite trees.

118 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

5.1.1 Definition

Informally speaking, a perfect-information game in extensive form (or, more sim-
ply, a perfect-information game) is a tree in the sense of graph theory, in which
each node represents the choice of one of the players, each edge represents a pos-
sible action, and the leaves represent final outcomes over which each player has a
utility function. Indeed, in certain circles (in particular, in artificial intelligence),
these are known simply as game trees. Formally, we define them as follows.

Definition 5.1.1 (Perfect-information game)A (finite) perfect-information game
(in extensive form) is a tupleG = (N,A,H,Z, χ, ρ, σ, u), where:Perfect-

information
game • N is a set ofn players;

• A is a (single) set of actions;

• H is a set of nonterminal choice nodes;

• Z is a set of terminal nodes, disjoint fromH ;

• χ : H 7→ 2A is the action function, which assigns to each choice node a set of
possible actions;

• ρ : H 7→ N is the player function, which assigns to each nonterminal node a
playeri ∈ N who chooses an action at that node;

• σ : H×A 7→ H ∪Z is the successor function, which maps a choice node and
an action to a new choice node or terminal node such that for allh1, h2 ∈ H
anda1, a2 ∈ A, if σ(h1, a1) = σ(h2, a2) thenh1 = h2 anda1 = a2; and

• u = (u1, . . . , un), whereui : Z 7→ R is a real-valued utility function for
playeri on the terminal nodesZ.

Since the choice nodes form a tree, we can unambiguously identify a node with
its history, that is, the sequence of choices leading from the root node to it. We can
also define thedescendantsof a nodeh, namely all the choice and terminal nodes
in the subtree rooted ath.

An example of such a game is theSharing game. Imagine a brother and sister
following the following protocol for sharing two indivisible and identical presents
from their parents. First the brother suggests a split, which can be one of three—he
keeps both, she keeps both, or they each keep one. Then the sister chooses whether
to accept or reject the split. If she accepts they each get their allocated present(s),
and otherwise neither gets any gift. Assuming both siblings value the two presents
equally and additively, the tree representation of this game is shown in Figure 5.1.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.1 Perfect-information extensive-form games 119

•1

2–0
1–1

0–2

•2

no yes

•2

no yes

•2

no yes

•
(0,0)

•
(2,0)

•
(0,0)

•
(1,1)

•
(0,0)

•
(0,2)

Figure 5.1: The Sharing game.

5.1.2 Strategies and equilibria

A pure strategy for a player in a perfect-information game is acomplete specifica-
tion of which deterministic action to take at every node belonging to that player. A
more formal definition follows.

Definition 5.1.2 (Pure strategies)LetG = (N,A,H,Z, χ, ρ, σ, u) be a perfect-
information extensive-form game. Then the pure strategies of playeri consist of
the Cartesian product

∏
h∈H,ρ(h)=i χ(h).

Notice that the definition contains a subtlety. An agent’s strategy requires a
decision at each choice node, regardless of whether or not it is possible to reach
that node given the other choice nodes. In the Sharing game above the situation
is straightforward—player 1 has three pure strategies, and player 2 has eight, as
follows.

S1 = {2–0, 1–1, 0–2}
S2 = {(yes, yes, yes), (yes, yes, no), (yes, no, yes), (yes, no, no), (no, yes, yes),
(no, yes, no), (no, no, yes), (no, no, no)}

But now consider the game shown in Figure 5.2.
In order to define a complete strategy for this game, each of the players must

choose an action at each of his two choice nodes. Thus we can enumerate the pure
strategies of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F), (D,E), (D,F)}

It is important to note that we have to include the strategies(A,G) and(A,H),
even though once player 1 has chosenA then his ownG-versus-Hchoice is moot.

The definition of best response and Nash equilibria in this game are exactly
as they are for normal-form games. Indeed, this example illustrates how every

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

120 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

•1
A B

•2

C D

•2

E F

•
(3,8)

•
(8,3)

•
(5,5)

•1

G H

•
(2,10)

•
(1,0)

Figure 5.2: A perfect-information game in extensive form.

perfect-information game can be converted to an equivalent normal-form game.
For example, the perfect-information game of Figure 5.2 can be converted into the
normal form image of the game, shown in Figure 5.3. Clearly, the strategy spaces
of the two games are the same, as are the pure-strategy Nash equilibria. (Indeed,
both the mixed strategies and the mixed-strategy Nash equilibria of the two games
are also the same; however, we defer further discussion of mixed strategies until
we consider imperfect-information games in Section 5.2.)

(C,E) (C,F) (D,E) (D,F)

(A,G) 3, 8 3, 8 8, 3 8, 3

(A,H) 3, 8 3, 8 8, 3 8, 3

(B,G) 5, 5 2, 10 5, 5 2, 10

(B,H) 5, 5 1, 0 5, 5 1, 0

Figure 5.3: The game from Figure 5.2 in normal form.

In this way, for every perfect-information game there exists a corresponding
normal-form game. Note, however, that the temporal structure of the extensive-
form representation can result in a certain redundancy within the normal form. For
example, in Figure 5.3 there are 16 different outcomes, while in Figure 5.2 there
are only 5 (the payoff(3, 8) occurs only once in Figure 5.2 but four times in Fig-

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.1 Perfect-information extensive-form games 121

ure 5.3, etc.). One general lesson is that while this transformation can always be
performed, it can result in an exponential blowup of the game representation. This
is an important lesson, since the didactic examples of normal-form games are very
small, wrongly suggesting that this form is more compact.

The normal form gets its revenge, however, since the reverse transformation—
from the normal form to the perfect-information extensive form—does not always
exist. Consider, for example, the Prisoner’s Dilemma game from Figure 3.3. A
little experimentation will convince the reader that there does not exist a perfect-
information game that is equivalent in the sense of having the same strategy profiles
and the same payoffs. Intuitively, the problem is that perfect-information extensive-
form games cannot model simultaneity. The general characterization of the class of
normal-form games for which there exist corresponding perfect-information games
in extensive form is somewhat complex.

The reader will have noticed that we have so far concentrated on pure strategies
and pure Nash equilibria in extensive-form games. There are two reasons for this,
or perhaps one reason and one excuse. The reason is that mixed strategies introduce
a new subtlety, and it is convenient to postpone discussion of it. The excuse (which
also allows the postponement, though not for long) is the following theorem.

Theorem 5.1.3Every (finite) perfect-information game in extensive form has a
pure-strategy Nash equilibrium.

This is perhaps the earliest result in game theory, due to Zermelo in 1913 (see
the historical notes at the end of the chapter). The intuition here should be clear;
since players take turns, and everyone gets to see everything that happened thus far
before making a move, it is never necessary to introduce randomness into action
selection in order to find an equilibrium. We will see this plainly when we discuss
backward inductionbelow. Both this intuition and the theorem will cease to holdbackward

induction when we discuss more general classes of games such as imperfect-information
games in extensive form. First, however, we discuss an important refinement of
the concept of Nash equilibrium.

5.1.3 Subgame-perfect equilibrium

As we have discussed, the notion of Nash equilibrium is as welldefined in perfect-
information games in extensive form as it is in the normal form. However, as
the following example shows, the Nash equilibrium can be too weak a notion for
the extensive form. Consider again the perfect-information extensive-form game
shown in Figure 5.2. There are three pure-strategy Nash equilibria in this game:
{(A,G), (C,F)}, {(A,H), (C,F)}, and{(B,H), (C,E)}. This can be deter-
mined by examining the normal form image of the game, as indicated in Figure 5.4.

However, examining the normal form image of an extensive-form game ob-
scures the game’s temporal nature. To illustrate a problem that can arise in cer-
tain equilibria of extensive-form games, in Figure 5.5 we contrast the equilibria

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

122 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

(C, E) (C, F) (D, E) (D, F)

(A, G) 3, 8 3, 8 8, 3 8, 3

(A, H) 3, 8 3, 8 8, 3 8, 3

(B, G) 5, 5 2, 10 5, 5 2, 10

(B, H) 5, 5 1, 0 5, 5 1, 0

Figure 5.4: Equilibria of the game from Figure 5.2.

{(A,G), (C,F)} and{(B,H), (C,E)} by drawing them on the extensive-form
game tree.

First consider the equilibrium{(A,G), (C,F)}. If player 1 choosesA then
player 2 receives a higher payoff by choosingC than by choosingD. If player 2
played the strategy(C,E) rather than(C,F) then player1 would prefer to playB
at the first node in the tree; as it is, player 1 gets a payoff of3 by playingA rather
than a payoff of2 by playingB. Hence we have an equilibrium.

The second equilibrium{(B,H), (C,E)} is less intuitive. First, note that{(B,G),
(C,E)} is not an equilibrium: player 2’s best response to(B,G) is (C,F). Thus,
the only reason that player 2 chooses to play the actionE is that he knows that
player 1 would playH at his second decision node. This behavior by player 1 is
called athreat: by committing to choose an action that is harmful to player 2 in
his second decision node, player 1 can cause player 2 to avoid that part of the tree.
(Note that player 1 benefits from making this threat: he gets a payoff of5 instead of
2 by playing(B,H) instead of(B,G).) So far so good. The problem, however, is
that player 2 may not consider player 1’s threat to be credible: if player 1 did reach
his final decision node, actually choosingH overG would also reduce player 1’s
own utility. If player 2 playedF , would player 1 really follow through on his threat
and playH , or would he relent and pickG instead?

To formally capture the reason why the{(B,H), (C,E)} equilibrium is unsat-
isfying, and to define an equilibrium refinement concept that does not suffer from
this problem, we first define the notion of a subgame.

Definition 5.1.4 (Subgame)Given a perfect-information extensive-form gameG,
thesubgameofG rooted at nodeh is the restriction ofG to the descendants ofh.
The set of subgames ofG consists of all of subgames ofG rooted at some node in
G.

Now we can define the notion of asubgame-perfect equilibrium, a refinement

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.1 Perfect-information extensive-form games 123

•1
A B

•2

C D

•2

E F

•
(3,8)

•
(8,3)

•
(5,5)

•1

G H

•
(2,10)

•
(1,0)

•1
A B

•2

C D

•2

E F

•
(3,8)

•
(8,3)

•
(5,5)

•1

G H

•
(2,10)

•
(1,0)

Figure 5.5: Two out of the three equilibria of the game from Figure 5.2:
{(A,G), (C,F)} and{(B,H), (C,E)}. Bold edges indicate players’ choices
at each node.

of the Nash equilibrium in perfect-information games in extensive form, which
eliminates those unwanted Nash equilibria.1

Definition 5.1.5 (Subgame-perfect equilibrium) Thesubgame-perfect equilibriasubgame-perfect
equilibrium
(SPE)

(SPE) of a gameG are all strategy profiless such that for any subgameG′ of G,
the restriction ofs toG′ is a Nash equilibrium ofG′.

SinceG is its own subgame, every SPE is also a Nash equilibrium. Furthermore,
although SPE is a stronger concept than Nash equilibrium (i.e., every SPE is a
NE, but not every NE is a SPE) it is still the case that every perfect-information
extensive-form game has at least one subgame-perfect equilibrium.

This definition rules out “noncredible threats” of the sort illustrated in the above
example. In particular, note that the extensive-form game in Figure 5.2 has only

1. Note that the word “perfect” is used in two different senses here.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

124 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

one subgame-perfect equilibrium,{(A,G), (C,F)}. Neither of the other Nash
equilibria is subgame perfect. Consider the subgame rooted at player 1’s second
choice node. The unique Nash equilibrium of this (trivial) game is for player 1 to
playG. Thus the actionH , the restriction of the strategies(A,H) and(B,H)
to this subgame, is not optimal in this subgame, and cannot be part of a subgame-
perfect equilibrium of the larger game.

5.1.4 Computing equilibria: backward induction

n-player, general-sum games: the backward induction algorithm

Inherent in the concept of subgame-perfect equilibrium is the principle ofback-
ward induction. One identifies the equilibria in the “bottom-most” subgame trees,backward

induction and assumes that those equilibria will be played as one backs up and considers
increasingly larger trees. We can use this procedure to compute a sample Nash
equilibrium. This is good news: not only are we guaranteed to find a subgame-
perfect equilibrium (rather than possibly finding a Nash equilibrium that involves
noncredible threats), but also this procedure is computationally simple. In partic-
ular, it can be implemented as a single depth-first traversal of the game tree and
thus requires time linear in the size of the game representation. Recall in contrast
that the best known methods for finding Nash equilibria of general games require
time exponential in the size of the normal form; remember as well that the induced
normal form of an extensive-form game is exponentially larger than the original
representation.

function BACKWARD INDUCTION (nodeh) returns u(h)
if h ∈ Z then

return u(h) // h is a terminal node

best_util← −∞
forall a ∈ χ(h) do

util_at_child←BACKWARDINDUCTION(σ(h, a))
if util_at_childρ(h) > best_utilρ(h) then

best_util← util_at_child

return best_util

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash
equilibrium of a perfect-information extensive-form game.

The algorithm BACKWARD INDUCTION is described in Figure 5.6. The variable
util_at_child is a vector denoting the utility for each player at the child node;
util_at_childρ(h) denotes the element of this vector corresponding to the utility
for playerρ(h) (the player who gets to move at nodeh). Similarly, best_util is a
vector giving utilities for each player.

Observe that this procedure does not return an equilibrium strategy for each of

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.1 Perfect-information extensive-form games 125

then players, but rather describes how to label each node with a vector of n real
numbers. This labeling can be seen as an extension of the game’s utility function
to the nonterminal nodesH . The players’ equilibrium strategies follow straight-
forwardly from this extended utility function: every time a given playeri has the
opportunity to act at a given nodeh ∈ H (i.e.,ρ(h) = i), that player will choose
an actionai ∈ χ(h) that solvesarg maxai∈χ(h) ui(σ(ai, h)). These strategies can
also be returned by BACKWARD INDUCTION given some extra bookkeeping.

While the procedure demonstrates that in principle a sample SPE is effectively
computable, in practice many game trees are not enumerated in advance and are
hence unavailable for backward induction. For example, the extensive-form repre-
sentation of chess has around10150 nodes, which is vastly too large to represent
explicitly. For such games it is more common to discuss the size of the game tree
in terms of the average branching factorb (the average number of actions which
are possible at each node) and a maximum depthm (the maximum number of
sequential actions). A procedure which requires time linear in the size of the repre-
sentation thus expandsO(bm) nodes. Unfortunately, we can do no better than this
on arbitrary perfect-information games.

Two-player, zero-sum games: minimax and alpha-beta pruning

We canmake some computational headway in the widely applicable case of two-
player, zero-sum games. We first note that BACKWARD INDUCTION has another
name in the two-player, zero-sum context: theminimax algorithm. Recall that inminimax

algorithm such games, only a single payoff number is required to characterize any outcome.
Player 1 wants to maximize this number, while player 2 wants to minimize it. In
this context BACKWARD INDUCTION can be understood as propagating these sin-
gle payoff numbers from the leaves of the tree up to the root. Each decision node
for player 1 is labeled with the maximum of the labels of its child nodes (repre-
senting the fact that player 1 would choose the corresponding action), and each
decision node for player 2 is labeled with the minimum of that node’s children’s
labels. The label on the root node is the value of the game: player 1’s payoff in
equilibrium.

How can we improve on the minimax algorithm? The fact that player 1 and
player 2 always have strictly opposing interests means that we canpruneawaypruning
some parts of the game tree: we can recognize that certain subtrees will never
be reached in equilibrium, even without examining the nodes in these subtrees.
This leads us to a new algorithm called ALPHABETAPRUNING, which is given in
Figure 5.7.

There are several ways in which ALPHABETAPRUNING differs from BACK-
WARDINDUCTION. Some concern the fact that we have now restricted ourselves to
a setting where there are only two players, and one player’s utility is the negative
of the other’s. We thus deal only with the utility for player 1. This is why we treat
the two players separately, maximizing for player 1 and minimizing for player 2.

At each nodeh eitherα or β is updated. These variables take the value of the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

126 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

function ALPHABETAPRUNING (nodeh, realα, realβ) returns u1(h)
if h ∈ Z then

return u1(h) // h is a terminal node

best_util← (2ρ(h) − 3)×∞ // −∞ for player 1;∞ for player 2
forall a ∈ χ(h) do

if ρ(h) = 1 then
best_util← max(best_util,ALPHABETAPRUNING(σ(h, a), α, β))
if best_util ≥ β then

return best_util
α← max(α, best_util)

else
best_util← min(best_util,ALPHABETAPRUNING(σ(h, a), α, β))
if best_util ≤ α then

return best_util
β ← min(β, best_util)

return best_util

Figure 5.7: The alpha-beta pruning algorithm. It is invoked at the root nodeh as
ALPHABETAPRUNING(h,−∞,∞).

previously encountered node that their corresponding player (player 1 forα and
player 2 forβ) would most prefer to chooseinsteadof h. For example, consider
the variableβ at some nodeh. Now consider all the different choices that player
2 could make at ancestors ofh that would preventh from ever being reached, and
that would ultimately lead to previously encountered terminal nodes.β is the best
value that player 2 could obtain at any of these terminal nodes. Because the players
do not have any alternative to starting at the root of the tree, at the beginning of the
searchα = −∞ andβ =∞.

We can now concentrate on the important difference between BACKWARD IN-
DUCTION and ALPHABETAPRUNING: in the latter procedure, the search can back-
track at a node that is not terminal. Let us think about things from the point of view
of player 1, who is considering what action to play at nodeh. (As we encourage
you to check for yourself, a similar argument holds when it is player 2’s turn to
move at nodeh.) For player 1, this backtracking occurs on the line that reads “if
best_util ≥ β then returnbest_util.” What is going on here? We have just ex-
plored some, but not all, of the children of player 1’s decision nodeh; the highest
value among these explored nodes isbest_util. The value of nodeh is therefore
lower bounded bybest_util (it is best_util if h has no children with larger values,
and is some larger amount otherwise). Either way, ifbest_util ≥ β then player
1 knows that player2 prefers choosing his best alternative (at some ancestor node
of h) rather than allowing player 1 to act at nodeh. Thus nodeh cannot be on

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.1 Perfect-information extensive-form games 127

•1 α=8

β=∞

•2 α=−∞

β=8
•2 α=8

β=∞

•
(10)

•
(8)

•
(6)

· · · · · ·

Figure 5.8: An example of alpha-beta pruning. We can backtrack after expanding
the first child of the right choice node for player 2.

the equilibrium path2 and so there is no need to continue exploring the game tree
belowh.

A simple example of ALPHABETAPRUNING in action is given in Figure 5.8. The
search begins by heading down the left branch and visiting both terminal nodes,
and eventually settingβ = 8. (Do you see why?) It then returns the value8 as
the value of this subgame, which causesα to be set to8 at the root node. In the
right subgame the search visits the first terminal node and so setsbest_util = 6 at
the shaded node, which we will callh. Now ath we havebest_util ≤ α, which
means that we can backtrack. This is safe to do because we have just shown that
player 1 would never choose this subgame: he can guarantee himself a payoff of
8 by choosing the left subgame, whereas his utility in the rightsubgame would be
no more than6.

The effectiveness of the alpha-beta pruning algorithm depends on the order in
which nodes are considered. For example, if player 1 considers nodes in increas-
ing order of their value, and player 2 considers nodes in decreasing order of value,
then no nodes will ever be pruned. In the best case (where nodes are ordered in
decreasing value for player 1 and in increasing order for player 2), alpha-beta prun-
ing has complexity ofO(b

m
2). We can rewrite this expression asO(

√
b

m
), making

more explicit the fact that the game’s branching factor would effectively be cut to
the square root of its original value. If nodes are examined in random order then the
analysis becomes somewhat more complicated; whenb is fairly small, the complex-
ity of alpha-beta pruning isO(b

3m
4), which is still an exponential improvement. In

practice, it is usually possible to achieve performance somewhere between the best
case and the random case. This technique thus offers substantial practical benefit
over straightforward backward induction in two-player, zero-sum games for which
the game tree is represented implicitly.

2. In fact, in the casebest_util = β, it is possible thath could be reached on an equilibrium path; however,
in this case there is still always an equilibrium in which player 2 plays his best alternative andh is not
reached.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

128 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

Techniques like alpha-beta pruning are commonly used to build strong computer
players for two-player board games such as chess. (However, they perform poorly
on games with extremely large branching factors, such as go.) Of course, building
a good computer player involves a great deal of engineering, and requires consider-
able attention to game-specific heuristics such as those used to order actions. One
general technique is required by many such systems, however, and so is worth dis-
cussing here. The game tree in practical games can be so large that it is infeasible
to search all the way down to leaf nodes. Instead, the search proceeds to some shal-
lower depth (which is chosen either statically or dynamically). Where do we get
the node values to propagate up using backward induction? The trick is to use an
evaluation functionto estimate the value of the deepest node reached (taking intoevaluation

function account game-relevant features such as board position, number of pieces for each
player, who gets to move next, etc., and either built by hand or learned). When
the search has reached an appropriate depth, the node is treated as terminal with a
call to the evaluation function replacing the evaluation of the utility function at that
node. This requires a small change to the beginning of ALPHABETAPRUNING;
otherwise, the algorithm works unchanged.

Two-player, general-sum games: computing all subgame-perfect equilibria

While the BACKWARD INDUCTION procedure identifies one subgame-perfect equi-
librium in linear time, it does not provide an efficient way of finding all of them.
One might wonder how there could evenbe more than one SPE in a perfect-
information game. Multiple subgame-perfect equilibria can exist when there ex-
ist one or more decision nodes at which a player chooses between subgames in
which he receives the same utility. In such cases BACKWARD INDUCTION simply
chooses the first subgame it encountered. It could be useful to find the set of all
subgame-perfect equilibria if we wanted to find a specific SPE (as we did with Nash
equilibria of normal-form games in Section 4.2.4) such as the one that maximizes
social welfare.

Here let us restrict ourselves to two-player perfect-information extensive-form
games, but lift our previous restriction that the game be zero-sum. A somewhat
more complicated algorithm can find the set ofall subgame-perfect equilibrium
values in worst-case cubic time.

Theorem 5.1.6Given a two-player perfect-information extensive-form game with
ℓ leaves, the set of subgame-perfect equilibrium payoffs can be represented as the
union ofO(ℓ2) axis-aligned rectangles and can be computed in timeO(ℓ3).

Intuitively, the algorithm works much like BACKWARD INDUCTION, but the vari-
ableutil_at_child holds a representation of all equilibrium values instead of just
one. The “max” operation we had previously implemented throughbest_util is
replaced by a subroutine that returns a representation of all the values that can be
obtained in subgame-perfect equilibria of the node’s children. This can include

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.1 Perfect-information extensive-form games 129

mixed strategies if multiple children are simultaneously best responses. More in-
formation about this algorithm can be found in the reference cited in the chapter
notes.

An example and criticisms of backward induction

Despite the fact that strong arguments can be made in its favor, the concept of
backward induction is not without controversy. To see why this is, consider the
well-knownCentipede game, depicted in Figure 5.9. (The game starts at the nodeCentipede game
at the upper left.) In this game two players alternate in making decisions, at each
turn choosing between going “down” and ending the game or going “across” and
continuing it (except at the last node where going “across” also ends the game).
The payoffs are constructed in such a way that the only SPE is for each player to
always choose to go down. To see why, consider the last choice. Clearly at that
point the best choice for the player is to go down. Since this is the case, going
down is also the best choice for the other player in the previous choice point. By
induction the same argument holds for all choice points.

•1 A

D

•2 A

D

•1 A

D

•2 A

D

•1 A

D

•
(3,5)

•
(1,0)

•
(0,2)

•
(3,1)

•
(2,4)

•
(4,3)

Figure 5.9: The Centipede game.

This would seem to be the end of this story, except for two pesky factors. The
first problem is that the SPE prediction in this case flies in the face of intuition.
Indeed, in laboratory experiments subjects in fact continue to play “across” until
close to the end of the game. The second problem is theoretical. Imagine that you
are the second player in the game, and in the first step of the game the first player
actually goes across. What should you do? The SPE suggests you should go
down, but the same analysis suggests that you would not have gotten to this choice
point in the first place. In other words, you have reached a state to which your
analysis has given a probability of zero. How should you amend your beliefs and
course of action based on this measure-zero event? It turns out this seemingly small
inconvenience actually raises a fundamental problem in game theory. We will not
develop the subject further here, but let us only mention that there exist different
accounts of this situation, and they depend on the probabilistic assumptions made,
on what is common knowledge (in particular, whether there is common knowledge
of rationality), and on exactly how one revises one’s beliefs in the face of measure-
zero events. The last question is intimately related to the subject of belief revision

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

130 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

discussed in Chapter 14.

5.2 Imperfect-information extensive-form games

Up to this point, in our discussion of extensive-form games we have allowed play-
ers to specify the action that they would take at every choice node of the game. This
implies that players know the node they are in, and—recalling that in such games
we equate nodes with the histories that led to them—all the prior choices, includ-
ing those of other agents. For this reason we have called theseperfect-information
games.

We might not always want to make such a strong assumption about our players
and our environment. In many situations we may want to model agents needing
to act with partial or no knowledge of the actions taken by others, or even agents
with limited memory of their own past actions. The sequencing of choices allows
us to represent such ignorance to a limited degree; an “earlier” choice might be
interpreted as a choice made without knowing the “later” choices. However, so far
we could not represent two choices made in the same play of the game in mutual
ignorance of each other.

5.2.1 Definition

Imperfect-informationgames in extensive form address this limitation. An imperfect-
information game is an extensive-form game in which each player’s choice nodes
are partitioned into information sets; intuitively, if two choice nodes are in the same
information set then the agent cannot distinguish between them.3

Definition 5.2.1 (Imperfect-information game) An imperfect-information game
(in extensive form) is a tuple(N,A,H,Z, χ, ρ, σ, u, I), where:

• (N,A,H,Z, χ, ρ, σ, u) is a perfect-information extensive-form game; and

• I = (I1, . . . , In), whereIi = (Ii,1, . . . , Ii,ki
) is a set of equivalence classes

on (i.e., a partition of){h ∈ H : ρ(h) = i} with the property thatχ(h) =
χ(h′) and ρ(h) = ρ(h′) whenever there exists aj for which h ∈ Ii,j and
h′ ∈ Ii,j .

Note that in order for the choice nodes to be truly indistinguishable, we require
that the set of actions at each choice node in an information set be the same (oth-
erwise, the player would be able to distinguish the nodes). Thus, ifIi,j ∈ Ii is an
equivalence class, we can unambiguously use the notationχ(Ii,j) to denote the set
of actions available to playeri at any node in information setIi,j .

3. From the technical point of view, imperfect-information games are obtained by overlaying a partition
structure, as defined in Chapter 13 in connection with models of knowledge, over a perfect-information
game.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.2 Imperfect-information extensive-form games 131

•1
L R

•2
A B

•
(1,1)

•1

ℓ r

•1

ℓ r

•
(0,0)

•
(2,4)

•
(2,4)

•
(0,0)

Figure 5.10: An imperfect-information game.

Consider the imperfect-information extensive-form game shown in Figure 5.10.
In this game, player 1 has two information sets: the set including the top choice
node, and the set including the bottom choice nodes. Note that the two bottom
choice nodes in the second information set have the same set of possible actions.
We can regard player 1 as not knowing whether player 2 choseA or B when he
makes his choice betweenℓ andr.

5.2.2 Strategies and equilibria

A pure strategy for an agent in an imperfect-information gameselects one of the
available actions in each information set of that agent.

Definition 5.2.2 (Pure strategies)LetG = (N,A,H,Z, χ, ρ, σ, u, I) be an imperfect-
information extensive-form game. Then the pure strategies of playeri consist of
the Cartesian product

∏
Ii,j∈Ii

χ(Ii,j).

Thus perfect-information games can be thought of as a special case of imperfect-
information games, in which every equivalence class of each partition is a single-
ton.

Consider again the Prisoner’s Dilemma game, shown as a normal-form game in
Figure 3.3. An equivalent imperfect-information game in extensive form is given
in Figure 5.11.

Note that we could have chosen to make player 2 choose first and player 1 choose
second.

Recall that perfect-information games were not expressive enough to capture
the Prisoner’s Dilemma game and many other ones. In contrast, as is obvious from
this example, any normal-form game can be trivially transformed into an equiva-
lent imperfect-information game. However, this example is also special in that the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

132 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

•1
C D

•2

c d

•2

c d

•
(−1,−1)

•
(−4,0)

•
(0,−4)

•
(−3,−3)

Figure 5.11: The Prisoner’s Dilemma game in extensive form.

Prisoner’s Dilemma is a game with a dominant strategy solution, and thus in par-
ticular a pure-strategy Nash equilibrium. This is not true in general for imperfect-
information games. To be precise about the equivalence between a normal-form
game and its extensive-form image we must consider mixed strategies, and this is
where we encounter a new subtlety.

As we did for perfect-information games, we can define the normal-form game
corresponding to any given imperfect-information game; this normal game is again
defined by enumerating the pure strategies of each agent. Now, we define the set
of mixed strategies of an imperfect-information game as simply the set of mixed
strategies in its image normal-form game; in the same way, we can also define
the set of Nash equilibria.4 However, we can also define the set ofbehavioral
strategiesin the extensive-form game. These are the strategies in which, rather thanbehavioral

strategy randomizing over complete pure strategies, the agent randomizes independently
at each information set. And so, whereas a mixed strategy is a distribution over
vectors (each vector describing a pure strategy), a behavioral strategy is a vector of
distributions.

In general, the expressive power of behavioral strategies and the expressive
power of mixed strategies are noncomparable; in some games there are outcomes
that are achieved via mixed strategies but not any behavioral strategies, and in some
games it is the other way around.

Consider for example the game in Figure 5.12. In this game, when considering
mixed strategies (but not behavioral strategies),R is a strictly dominant strategy
for agent 1,D is agent 2’s strict best response, and thus(R,D) is the unique
Nash equilibrium. Note in particular that in a mixed strategy, agent 1 decides
probabilistically whether to playL orR in his information set, but once he decides
he plays that pure strategy consistently. Thus the payoff of 100 is irrelevant in the

4. Note that we have defined two transformations—one from any normal-form game to an imperfect-
information game, and one in the other direction. However the first transformation is not one to one, and so
if we transform a normal-form game to an extensive-form one and then back to normal form, we will not in
general get back the same game we started out with. However, we will get a game with identical strategy
spaces and equilibria.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.2 Imperfect-information extensive-form games 133

•1
L R

•1

L R

•2

U D

•
(1,0)

•
(100,100)

•
(5,1)

•
(2,2)

Figure 5.12: A game with imperfect recall

context of mixed strategies. On the other hand, with behavioral strategies agent 1
gets to randomize afresh each time he finds himself in the information set. Noting
that the pure strategyD is weakly dominant for agent 2 (and in fact is the unique
best response to all strategies of agent 1 other than the pure strategyL), agent 1
computes the best response toD as follows. If he uses the behavioral strategy
(p, 1 − p) (i.e., choosingL with probability p each time he finds himself in the
information set), his expected payoff is

1 ∗ p2 + 100 ∗ p(1− p) + 2 ∗ (1− p).

The expression simplifies to−99p2 +98p+2, whose maximum is obtained atp =
98/198. Thus(R,D) = ((0, 1), (0, 1)) is no longer an equilibrium in behavioral
strategies, and instead we get the equilibrium((98/198, 100/198), (0, 1)).

There is, however, a broad class of imperfect-information games in which the
expressive power of mixed and behavioral strategies coincides. This is the class
of games ofperfect recall. Intuitively speaking, in these games no player forgets
any information he knew about moves made so far; in particular, he remembers
precisely all his own moves. A formal definition follows.

Definition 5.2.3 (Perfect recall) Playeri hasperfect recallin an imperfect-informationperfect recall
gameG if for any two nodesh, h′ that are in the same information set for player
i, for any pathh0, a0, h1, a1, h2, . . . , hm, am, h from the root of the game toh
(where thehj are decision nodes and theaj are actions) and for any pathh0, a

′
0, h

′
1, a

′
1, h

′
2, . . . , h

′
m′ , a′m′ , h′

from the root toh′ it must be the case that:

1. m = m′;

2. for all 0 ≤ j ≤ m, if ρ(hj) = i (i.e.,hj is a decision node of playeri), thenhj

andh′
j are in the same equivalence class fori; and

3. for all 0 ≤ j ≤ m, if ρ(hj) = i (i.e.,hj is a decision node of playeri), then
aj = a′j .

G is a game of perfect recall if every player has perfect recall in it.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

134 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

Clearly, every perfect-information game is a game of perfect recall.

Theorem 5.2.4 (Kuhn, 1953)In a game of perfect recall, any mixed strategy of a
given agent can be replaced by an equivalent behavioral strategy, and any behav-
ioral strategy can be replaced by an equivalent mixed strategy. Here two strategies
are equivalent in the sense that they induce the same probabilities on outcomes, for
any fixed strategy profile (mixed or behavioral) of the remaining agents.

As a corollary we can conclude that the set of Nash equilibria does not change if
we restrict ourselves to behavioral strategies. This is true only in games of perfect
recall, and thus, for example, in perfect-information games. We stress again, how-
ever, that in general imperfect-information games, mixed and behavioral strategies
yield noncomparable sets of equilibria.

5.2.3 Computing equilibria: the sequence form

Because any extensive-form game can be converted into an equivalent normal-form
game, an obvious way to find an equilibrium of an extensive-form game is to first
convert it into a normal-form game, and then find the equilibria using, for exam-
ple, the Lemke–Howson algorithm. This method is inefficient, however, because
the number of actions in the normal-form game isexponentialin the size of the
extensive-form game. The normal-form game is created by considering all combi-
nations of information set actions for each player, and the payoffs that result when
these strategies are employed.

One way to avoid this problem is to operate directly on the extensive-form repre-
sentation. This can be done by employing behavioral strategies to express a game
using a description called the sequence form.

Defining the sequence form

The sequence form is (primarily) useful for representing imperfect-information
extensive-form games of perfect recall. Definition 5.2.5 describes the elements
of the sequence-form representation of such games; we then go on to explain what
each of these elements means.

Definition 5.2.5 (Sequence-form representation)LetG be an imperfect-information
game of perfect recall. Thesequence-form representationofG is a tuple(N,Σ, g, C),sequence form
where

• N is a set of agents;

• Σ = (Σ1, . . . ,Σn), whereΣi is the set ofsequencesavailable to agenti;

• g = (g1, . . . , gn), wheregi : Σ 7→ R is the payoff function for agenti;

• C = (C1, . . . , Cn), whereCi is a set of linear constraints on the realization
probabilities of agenti.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.2 Imperfect-information extensive-form games 135

Now let us define all these terms. To begin with, what is a sequence? The
key insight of the sequence form is that, while there are exponentially many pure
strategies in an extensive-form game, there are only a small number of nodes in
the game tree. Rather than building a player’s strategy around the idea of pure
strategies, the sequence form builds it around paths in the tree from the root to
each node.

Definition 5.2.6 (Sequence)A sequenceof actions of playeri ∈ N , defined by asequence
nodeh ∈ H ∪ Z of the game tree, is the ordered set of playeri’s actions that lie
on the path from the root toh. Let∅ denote the sequence corresponding to the root
node. The set of sequences of playeri is denotedΣi, andΣ = Σ1 × · · · × Σn is
the set of all sequences.

A sequence can thus be thought of as a string listing the action choices that player
i would have to take in order to get from the root to a given nodeh. Observe that
h may or may not be a leaf node; observe also that the other players’ actions that
form part of this path are not part of the sequence.

Definition 5.2.7 (Payoff function) Thepayoff functiongi : Σ 7→ R for agenti issequence-form
payoff function given byg(σ) = u(z) if a leaf nodez ∈ Z would be reached when each player

played his sequenceσi ∈ σ, and byg(σ) = 0 otherwise.

Given the set of sequencesΣ and the payoff functiong, we can think of the
sequence form as defining a tabular representation of an imperfect-information
extensive-form game, much as the induced normal form does. Consider the game
given in Figure 5.10 (see p. 131). The sets of sequences for the two players are
Σ1 = {∅, L,R,Lℓ, Lr} andΣ2 = {∅, A,B}. The payoff function is given in Fig-
ure 5.13. For comparison, the induced normal form of the same game is given in
Figure 5.14. Written this way, the sequence form is larger than the induced normal
form. However, many of the entries in the game matrix in Figure 5.13 correspond
to cases where the payoff function is defined to be zero because the given pair of
sequences does not correspond to a leaf node in the game tree. These entries are
shaded in gray to indicate that they could not arise in play. Each payoff thatis
defined at a leaf in the game tree occurs exactly once in the sequence-form table.
Thus, ifg was represented using a sparse encoding, only five values would have to
be stored. Compare this to the induced normal form, where all of the eight entries
correspond to leaf nodes from the game tree.

We now have a set of players, a set of sequences, and a mapping from sequences
to payoffs. At first glance this may look like everything we need to describe our
game. However, sequences do not quite take the place of actions. In particular,
a player cannot simply select a single sequence in the way that he would select a
pure strategy—the other player(s) might not play in a way that would allow him to
follow it to its end. Put another way, players still need to define what they would
do in every information set that could be reached in the game tree.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

136 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

∅ A B

∅ 0, 0 0, 0 0, 0

L 0, 0 0, 0 0, 0

R 1, 1 0, 0 0, 0

Lℓ 0, 0 0, 0 2, 4

Lr 0, 0 2, 4 0, 0

Figure 5.13: The sequence form of the
game from Figure 5.10.

A B

Lℓ 0, 0 2, 4

Lr 2, 4 0, 0

Rℓ 1, 1 1, 1

Rr 1, 1 1, 1

Figure 5.14: The induced normal
form of the game from Figure 5.10.

What we want is for agents to select behavioral strategies. (Since we have as-
sumed that our gameG has perfect recall, Theorem 5.2.4 tells us that any equi-
librium will be expressible using behavioral strategies.) However, it turns out that
it is not a good idea to work with behavioral strategies directly—if we did so,
the optimization problems we develop later would be computationally harder to
solve. Instead, we will develop the alternate concept of arealization plan, which
corresponds to the probability that a given sequence would arise under a given
behavioral strategy.

Consider an agenti following a behavioral strategy that assigned probability
βi(h, ai) to taking actionai at a given decision nodeh. Then we can construct a
realization planthat assigns probabilities to sequences in a way that recoversi’s
behavioral strategyβ.

Definition 5.2.8 (Realization plan ofβi) Therealization plan ofβi for playeri ∈realization plan
of βi N is a mappingri : Σi 7→ [0, 1] defined asri(σi) =

∏
c∈σi

βi(c). Each value
ri(σi) is called arealization probability.

realization
probability Definition 5.2.8 is not the most useful way of defining realization probabilities.

There is a second, equivalent definition with the advantage that it involves a set of
linear equations, although it is a bit more complicated. This definition relies on
two functions that we will make extensive use of in this section.

To define the first function, we make use of our assumption thatG is a game
of perfect recall. This entails that, given an information setI ∈ Ii, there must be
one single sequence that playeri can play to reach all of his nonterminal choice
nodesh ∈ I. We denote this mapping asseqi : Ii 7→ Σi, and callseqi(I) the
sequenceleading toinformation setI. Note that while there is only one sequenceseqi(I): the

sequence
leading toI Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press

Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.2 Imperfect-information extensive-form games 137

that leads to a given information set, a given sequence can lead to multiple different
information sets. For example, if player 1 moves first and player 2 observes his
move, then the sequence∅ will lead to multiple information sets for player 2.

The second function considers ways that sequences can be built from other se-
quences. Byσiai denote a sequence that consists of the sequenceσi followed by
the single actionai. As long as the new sequence still belongs toΣi, we say that
the sequenceσiai extendsthe sequenceσi. A sequence can often be extended
in multiple ways—for example, perhaps agenti could have chosen an actiona′i
instead ofai after playing sequenceσi. We denote byExti : Σi 7→ 2Σi a func-Exti(σi):

sequences
extendingσi

tion mapping from sequences to sets of sequences, whereExti(σi) denotes the
set of sequences that extend the sequenceσi. We defineExti(∅) to be the set of
all single-action sequences. Note that extension always refers to playing asingle
action beyond a given sequence; thus,σiaia

′
i does not belong toExti(σi), even

if it is a valid sequence. (Itdoesbelong toExti(σiai).) Also note that not all se-
quences have extensions; one example is sequences leading to leaf nodes. In such
casesExti(σ) returns the empty set. Finally, to reduce notation we introduce the
shorthandExti(I) = Exti(seqi(I)): the sequences extending an information setExti(I) =

Exti(seqi(I)) are the sequences extending the (unique) sequence leading to that information set.

Definition 5.2.9 (Realization plan) A realization planfor playeri ∈ N is a func-realization plan
tion ri : Σi 7→ [0, 1] satisfying the following constraints.

ri(∅) = 1 (5.1)
∑

σ′
i
∈Exti(I)

ri(σ
′
i) = ri(seqi(I)) ∀I ∈ Ii (5.2)

ri(σi) ≥ 0 ∀σi ∈ Σi (5.3)

If a playeri follows a realization planri, we must be able to recover a behavioral
strategyβi from it. For a decision nodeh for playeri that is in information set
I ∈ Ii, and for any sequence(seqi(I)ai) ∈ Exti(I), βi(h, ai) is defined as
ri(seqi(I)ai)

ri(seqi(I))
, as long asri(seqi(I)) > 0. If ri(seqi(I)) = 0 then we can assign

βi(h, ai) an arbitrary value from[0, 1]: hereβi describes the player’s behavioral
strategy at a node that could never be reached in play because of the player’s own
previous decisions, and so the value we assign toβi is irrelevant.

Let Ci be the set of constraints (5.2) on realization plans of playeri. Let
C = (C1, . . . , Cn). We have now defined all the elements5 of a sequence-form
representationG = (N,Σ, g, C), as laid out in Definition 5.2.5.

What is the space complexity of the sequence-form representation? Unlike the
normal form, the size of this representation is linear in the size of the extensive-
form game. There is one sequence for each node in the game tree, plus the∅
sequence for each player. As argued previously, the payoff functiong can be rep-
resented sparsely, so that each payoff corresponding to a leaf node is stored only

5. We do not need to explicitly store constraints (5.1) and (5.3), because they are always the same for every
sequence-form representation.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

138 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

once, and no other payoffs are stored at all. There is one version of constraint (5.2)
for each edge in the game tree. Each such constraint for playeri references only
|Exti(I)|+ 1 variables, again allowing sparse encoding.

Computing best responses in two-player games

The sequence-form representation can be leveraged to allow the computation of
equilibria far more efficiently than can be done using the induced normal form.
Here we will consider the case of two-player games, as it is these games for which
the strongest results hold. First we consider the problem of determining player 1’s
best response to a fixed behavioral strategy of player 2 (represented as a realization
plan). This problem can be written as the following linear program.

maximize
∑

σ1∈Σ1

(
∑

σ2∈Σ2

g1(σ1, σ2)r2(σ2)

)

r1(σ1) (5.4)

subject to r1(∅) = 1 (5.5)
∑

σ′
1∈Ext1(I)

r1(σ
′
1) = r1(seq1(I)) ∀I ∈ I1 (5.6)

r1(σ1) ≥ 0 ∀σ1 ∈ Σ1 (5.7)

This linear program is straightforward. First, observe thatg1(·) andr2(·) are
constants, whiler1(·) are variables. The LP states that player 1 should chooser1
to maximize his expected utility (given in the objective function (5.4)) subject to
constraints (5.5)–(5.7) which require thatr1 corresponds to a valid realization plan.

In an equilibrium, player 1 and player 2 best respond simultaneously. However,
if we treated bothr1 andr2 as variables in Equations (5.4)–(5.7) then the objective
function (5.4) would no longer be linear. Happily, this problem does not arise in
the dual of this linear program.6 Denote the variables of our dual LP asv; there
will be onevI for every information setI ∈ I1 (corresponding to constraint (5.6)
from the primal) and one additional variablev0 (corresponding to constraint (5.5)).
For notational convenience, we define a “dummy” information set0 for player 1;
thus, we can consider every dual variable to correspond to an information set.

We now define one more function. LetIi : Σi 7→ Ii ∪ {0} be a mapping fromIi(σi): the last
information set
encountered in
σi

player i’s sequences to information sets. We defineIi(σi) to be0 iff σi = ∅,
and to be the information setI ∈ Ii in which the final action inσi was taken
otherwise. Note that the information set in which each action in a sequence was
taken is unambiguous because of our assumption that the game has perfect recall.
Finally, we again overload notation to simplify the expressions that follow. Given
a set of sequencesΣ′, let Ii(Σ

′) denote{Ii(σ
′)|σ′

i ∈ Σ′
i}. Thus, for example,

Ii(Exti(σ1)) is the (possibly empty) set of final information sets encountered inIi(Exti(σ1)) =
{Ii(σ

′)|σ′ ∈
Exti(σ1)}

the (possibly empty) set of extensions ofσi.

6. The dual of a linear program is defined in Appendix B.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.2 Imperfect-information extensive-form games 139

The dual LP follows.

minimize v0 (5.8)

subject to vI1(σ1) −
∑

I′∈I1(Ext1(σ1))

vI′ ≥
∑

σ2∈Σ2

g1(σ1, σ2)r2(σ2) ∀σ1 ∈ Σ1

(5.9)

The variablev0 represents player 1’s expected utility under the realization plan
he chooses to play, given player 2’s realization plan. In the optimal solutionv0 will
correspond to player 1’s expected utility when he plays his best response. (This
follows from LP duality—primal and dual linear programs always have the same
optimal solutions.) Each other variablevI can be understood as the portion of this
expected utility that player 1 will achieve under his best-response realization plan
in the subgame starting from information setI, again given player 2’s realization
planr2.

There is one version of constraint (5.9) for every sequenceσ1 of player 1. Ob-
serve that there is always exactly one positive variable on the left-hand side of the
inequality, corresponding to the information set of the last action in the sequence.
There can also be zero or more negative variables, each of which corresponds to
a different information set in which player 1 can end up after playing the given
sequence. To understand this constraint, we will consider three different cases.

First, there are zero of these negative variables when the sequence cannot be
extended—that is, when player 1 never gets to move again afterI1σ1, no matter
what player 2 does. In this case, the right-hand side of the constraint will evaluate
to player 1’s expected payoff from the subgame beyondσ1, given player 2’s real-
ization probabilitiesr2. (This subgame is either a terminal node or one or more
decision nodes for player 2 leading ultimately to terminal nodes.) Thus, here the
constraint states that the expected utility from a decision at information setI1(σ1)
must be at least as large as the expected utility from making the decision according
to σ1. In the optimal solution this constraint will be realized as equality ifσ1 is
played with positive probability; contrapositively, if the inequality is strict,σ1 will
never be played.

The second case is when the structure of the game is such that player 1 will
face another decision node no matter how he plays at information setI1(σ1).
For example, this occurs ifσ1 = ∅ and player 1 moves at the root node: then
I1(Ext1(σ1)) = {1} (the first information set). As another example, if player 2
takes one of two moves at the root node and player 1 observes this move before
choosing his own move, then forσ1 = ∅ we will haveI1(Ext1(σ1)) = {1, 2}.
Whenever player 1 is guaranteed to face another decision node, the right-hand side
of constraint (5.9) will evaluate to zero becauseg1(σ1, σ2) will equal0 for all σ2.
Thus the constraint can be interpreted as stating that player 1’s expected utility at
information setI1(σ1) must be equal to the sum of the expected utilities at the
information setsI1(Ext1(σ1)). In the optimal solution, wherev0 is minimized,
these constraints are always be realized as equality.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

140 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

Finally, there is the case where there exist extensions of sequenceσ1, but where it
is also possible that player 2 will play in a way that will deny player 1 another move.
For example, consider the game in Figure 5.2 from earlier in the chapter. If player
1 adopts the sequenceB at his first information set, then he will reach his second
information set if player 2 playsF , and will reach a leaf node otherwise. In this
case there will be both negative terms on the left-hand side of constraint (5.9) (one
for every information set that player 1 could reach beyond sequenceσ1) and posi-
tive terms on the right-hand side (expressing the expected utility player 1 achieves
for reaching a leaf node). Here the constraint can be interpreted as asserting thati’s
expected utility atI1(σ1) can only exceed the sum of the expected utilities ofi’s
successor information sets by the amount of the expected payoff due to reaching
leaf nodes from player 2’s move(s).

Computing equilibria of two-player zero-sum games

For two-player zero-sum games the sequence form allows us to write a linear pro-
gram for computing a Nash equilibrium that can be solved in time polynomial in
the size of the extensive form. Note that in contrast, the methods described in Sec-
tion 4.1 would require time exponential in the size of the extensive form, because
they require construction of an LP with a constraint for each pure strategy of each
player and a variable for each pure strategy of one of the players.

This new linear program for games in sequence form can be constructed quite
directly from the dual LP given in Equations (5.8)–(5.9). Intuitively, we simply
treat the termsr2(·) as variables rather than constants, and add in the constraints
from Definition 5.2.9 to ensure thatr2 is a valid realization plan. The program
follows.

minimize v0 (5.10)

subject to vI1(σ1) −
∑

I′∈I1(Ext1(σ1))

vI′ ≥
∑

σ2∈Σ2

g1(σ1, σ2)r2(σ2) ∀σ1 ∈ Σ1 (5.11)

r2(∅) = 1 (5.12)
∑

σ′
2∈Ext2(I)

r2(σ
′

2) = r2(seq2(I)) ∀I ∈ I2 (5.13)

r2(σ2) ≥ 0 ∀σ2 ∈ Σ2 (5.14)

The fact thatr2 is now a variable means that player 2’s realization plan will now
be selected to minimize player 1’s expected utility when player 1 best responds
to it. In other words, we find a minmax strategy for player 2 against player 1,
and since we have a two-player zero-sum game it is also a Nash equilibrium by
Theorem 3.4.4. Observe that if we had tried this same trick with the primal LP
given in Equations (5.4)–(5.7) we would have ended up with a quadratic objective
function, and hence not a linear program.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.2 Imperfect-information extensive-form games 141

Computing equilibria of two-player general-sum games

For two-player general-sum games, the problem of finding a Nash equilibrium can
be formulated as a linear complementarity problem as follows.

r1(∅) = 1 (5.15)

r2(∅) = 1 (5.16)
∑

σ′
1∈Ext1(I)

r1(σ′
1) = r1(seq1(I)) ∀I ∈ I1

(5.17)
∑

σ′
2∈Ext2(I)

r2(σ′
2) = r2(seq2(I)) ∀I ∈ I2

(5.18)

r1(σ1) ≥ 0 ∀σ1 ∈ Σ1

(5.19)

r2(σ2) ≥ 0 ∀σ2 ∈ Σ2

(5.20)
(

v1
I1(σ1) −

∑

I′∈I1(Ext1(σ1))

v1
I′

)
−

(
∑

σ2∈Σ2

g1(σ1, σ2)r2(σ2)

)
≥ 0 ∀σ1 ∈ Σ1

(5.21)
(

v2
I2(σ2) −

∑

I′∈I2(Ext2(σ2))

v2
I′

)
−

(
∑

σ1∈Σ1

g2(σ1, σ2)r1(σ1)

)
≥ 0 ∀σ2 ∈ Σ2

(5.22)

r1(σ1)

[(
v1
I1(σ1) −

∑

I′∈I1(Ext1(σ1))

v1
I′

)
−

(
∑

σ2∈Σ2

g1(σ1, σ2)r2(σ2)

)]
= 0 ∀σ1 ∈ Σ1

(5.23)

r2(σ2)

[(
v2
I2(σ2) −

∑

I′∈I2(Ext2(σ2))

v2
I′

)
−

(
∑

σ1∈Σ1

g2(σ1, σ2)r1(σ1)

)]
= 0 ∀σ2 ∈ Σ2

(5.24)

Like the linear complementarity problem for two-player games in normal form
given in Equations (4.14)–(4.19) on Page 93, this is a feasibility problem consist-
ing of linear constraints and complementary slackness conditions. The linear con-
straints are those from the primal LP for player 1 (constraints (5.15), (5.17), and
(5.19)), from the dual LP for player 1 (constraint (5.21)), and from the correspond-
ing versions of these primal and dual programs for player 2 (constraints (5.16),
(5.18), (5.20), and (5.22)). Note that we have rearranged some of these constraints
by moving all terms to the left side, and have superscripted thev’s with the appro-
priate player number.

If we stopped at constraint (5.22) we would have a linear program, but the vari-
ablesv would be allowed to take arbitrarily large values. The complementary
slackness conditions (constraints (5.23) and (5.24)) fix this problem at the expense
of shifting us from a linear program to a linear complementarity problem. Let us
examine constraint (5.23). It states that either sequenceσ1 is never played (i.e.,

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

142 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

r1(σ1) = 0) or that

v1
I1(σ1)

−
∑

I′∈I1(Ext1(σ1))

v1
I′ =

∑

σ2∈Σ2

g1(σ1, σ2)r2(σ2). (5.25)

What does it mean for Equation (5.25) to hold? The short answer is that this equa-
tion requires a property that we previously observed of the optimal solution to the
dual LP given in Equations (5.8)–(5.9): that the weak inequality in constraint (5.9)
will be realized as strict equality whenever the corresponding sequence is played
with positive probability. We were able to achieve this property in the dual LP by
minimizing v0; however, this does not work in the two-player general-sum case
where we have bothv1

0 andv2
0 . Instead, we use the complementary slackness idea

that we previously applied in the LCP for normal-form games (constraint (4.19)).
This linear complementarity program cannot be solved using the Lemke–Howson

algorithm, as we were able to do with our LCP for normal-form games. However,
it can be solved using the Lemke algorithm, a more general version of Lemke–
Howson. Neither algorithm is polynomial time in the worst case. However, it is
exponentially faster to run the Lemke algorithm on a game in sequence form than
it is to run the Lemke–Howson algorithm on the game’s induced normal form. We
omit the details of how to apply the Lemke algorithm to sequence-form games, but
refer the interested reader to the reference given at the end of the chapter.

5.2.4 Sequential equilibrium

We have already seen that the Nash equilibrium concept is too weak for perfect-
information games, and how the more selective notion of subgame-perfect equilib-
rium can be more instructive. The question is whether this essential idea can be
applied to the broader class of imperfect-information games; it turns out that it can,
although the details are considerably more involved.

Recall that in a subgame-perfect equilibrium we require that the strategy of each
agent be a best response in every subgame, not only overall. It is immediately
apparent that the definition does not apply in imperfect-information games, if for
no other reason than we no longer have a well-defined notion of a subgame. What
we have instead at each information set is a “subforest” or a collection of subgames.
We could require that each player’s strategy be a best response in each subgame in
each forest, but that would be both too strong a requirement and too weak. To see
why it is too strong, consider the game in Figure 5.15.

The pure strategies of player 1 are{L,C,R} and of player 2{U,D}. Note
also that the two pure Nash equilibria are(L,U) and(R,D). But should either of
these be considered “subgame perfect?” On the face of it the answer is ambiguous,
since in one subtreeU (dramatically) dominatesD and in the otherD dominatesU .
However, consider the following argument.R dominatesC for player 1, and player
2 knows this. So although player 2 does not have explicit information about which
of the two nodes he is in within his information set, he can deduce that he is in the
rightmost one based on player 1’s incentives, and hence will goD. Furthermore

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.2 Imperfect-information extensive-form games 143

•1
L

C
R

•
(1,1)

•2

U D

•2

U D

•
(0,1000)

•
(0,0)

•
(1,0)

•
(3,1)

Figure 5.15: Player 2 knows where in the information set he is.

player 1 knows that player 2 can deduce this, and therefore player 1 should goR
(rather thanL). Thus,(R,D) is the only subgame-perfect equilibrium.

This example shows how a requirement that a substrategy be a best response in
all subgames is too simplistic. However, in general it is not the case that subtrees of
an information set can be pruned as in the previous example so that all remaining
ones agree on the best strategy for the player. In this case the naive application of
the SPE intuition would rule out all strategies.

There have been several related proposals that apply the intuition underlying
subgame-perfection in more sophisticated ways. One of the more influential no-
tions has been that ofsequential equilibrium(SE). It shares some features with thesequential

equilibrium notion of trembling-hand perfection, discussed in Section 3.4.6. Note that indeed
trembling-hand perfection, which was defined for normal-form games, applies here
just as well; just think of the normal form induced by the extensive-form game.
However, this notion makes no reference to the tree structure of the game. SE does,
but at the expense of additional complexity.

Sequential equilibrium is defined for games of perfect recall. As we have seen, in
such games we can restrict our attention to behavioral strategies. Consider for the
moment a fully mixed-strategy profile.7 Such a strategy profile induces a positive
probability on every node in the game tree. This means in particular that every
information set is given a positive probability. Therefore, for a given fully mixed-
strategy profile, one can meaningfully speak ofi’s expected utility, given that he
finds himself in any particular information set. (The expected utility of starting at
any node is well defined, and since each node is given positive probability, one
can apply Bayes’ rule to aggregate the expected utilities of the different nodes in
the information set.) If the fully mixed-strategy profile constitutes an equilibrium,
it must be that each agent’s strategy maximizes his expected utility in each of his
information sets, holding the strategies of the other agents fixed.

All of the preceding discussion is for a fully mixed-strategy profile. The problem
is that equilibria are rarely fully mixed, and strategy profiles that are not fully

7. Again, recall that a strategy is fully mixed if, at every information set, each action is given some positive
probability.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

144 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

mixed donot induce a positive probability on every information set. The expected
utility of starting in information sets whose probability is zero under the given
strategy profile is simply not well defined. This is where the ingenious device of
SE comes in. Given any strategy profiles (not necessarily fully mixed), imagine
a probability distributionµ(h) over each information set.µ has to beconsistent
with s, in the sense that for sets whose probability is nonzero undertheir parents’
conditional distributions, this distribution is precisely the one defined by Bayes’
rule. However, for other information sets, it can be any distribution. Intuitively, one
can think of these distributions as the new beliefs of the agents, if they are surprised
and find themselves in a situation they thought would not occur.8 This means that
each agent’s expected utility is now well defined in any information set, including
those having measure zero. For information seth belonging to agenti, with the
associated probability distributionµ(h), the expected utility under strategy profile
s is denoted byui(s | h, µ(h)).

With this, the precise definition of SE is as follows.

Definition 5.2.10 (Sequential equilibrium) A strategy profiles is a sequential
equilibrium of an extensive-form gameG if there exist probability distributions
µ(h) for each information seth in G, such that the following two conditions hold:

1. (s, µ) = limm→∞(sm, µm) for some sequence(s1, µ1), (s2, µ2), . . ., where
sm is fully mixed, andµm is consistent withsm (in fact, sincesm is fully mixed,
µm is uniquely determined bysm); and

2. For any information seth belonging to agenti, and any alternative strategys′i
of i, we have that

ui(s | h, µ(h)) ≥ ui((s
′, s−i) | h, µ(h)).

Analogous to subgame-perfect equilibria in games of perfectinformation, se-
quential equilibria are guaranteed to always exist.

Theorem 5.2.11Every finite game of perfect recall has a sequential equilibrium.

Finally, while sequential equilibria are defined for games of imperfect informa-
tion, they are obviously also well defined for the special case of games of perfect
information. This raises the question of what relationship holds between the two
solution concepts in games of perfect information.

Theorem 5.2.12In extensive-form games of perfect information, the sets of subgame-
perfect equilibria and sequential equilibria are always equivalent.

8. This construction is essentially that of an LPS, discussed in Chapter 13.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

5.3 History and references 145

5.3 History and references

As in Chapter 3, much of the material in this chapter is covered in modern game
theory textbooks. Some of the historical references are as follows. The earliest
game-theoretic publication is arguably that of Zermelo, who in 1913 introduced the
notions of a game tree and backward induction and argued that in principle chess
admits a trivial solution [Zermelo, 1913]. It was already mentioned in Chapter 3
that extensive-form games were discussed explicitly in von Neumann and Morgen-
stern [1944], as was backward induction. Subgame perfection was introduced by
Selten [1965], who received a Nobel Prize in 1994. The material on computing
all subgame-perfect equilibria is based on Littman et al. [2006]. The Centipede
game was introduced by Rosenthal [1981]; many other papers discuss the rational-
ity of backward induction in such games [Aumann, 1995; Binmore, 1996; Aumann,
1996].

In 1953 Kuhn introduced extensive-form games of imperfect information, in-
cluding the distinction and connection between mixed and behavioral strategies
[Kuhn, 1953]. The sequence form, and its application to computing the equilibria
of zero-sum games of imperfect information with perfect recall, is due to von Sten-
gel [1996]. Many of the same ideas were developed earlier by Koller and Megiddo
[1992]; see von Stengel [1996] pp. 242–243 for the distinctions. The use of the
sequence form for computing the equilibria of general-sum two-player games of
imperfect information is explained by Koller et al. [1996]. Sequential equilibria
were introduced by Kreps and Wilson [1982]. Here, as in normal-form games, the
full list of alternative solution concepts and connection among them is long, and
the interested reader is referred to Hillas and Kohlberg [2002] and Govindan and
Wilson [2005b] for a more extensive survey than is possible here.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

6 Richer Representations: Beyond the
Normal and Extensive Forms

In this chapter we will go beyond the normal and extensive forms by considering a
variety of richer game representations. These further representations are important
because the normal and extensive forms are not always suitable for modeling large
or realistic game-theoretic settings.

First, we may be interested in games that are not finite and that therefore cannot
be represented in normal or extensive form. For example, we may want to consider
what happens when a simple normal-form game such as the Prisoner’s Dilemma is
repeated infinitely. We might want to consider a game played by an uncountably
infinite set of agents. Or we may want to use an interval of the real numbers as
each player’s action space.1

Second, both of the representations we have studied so far presume that agents
have perfect knowledge of everyone’s payoffs. This seems like a poor model of
many realistic situations, where, for example, agents might have private informa-
tion that affects their own payoffs and other agents might have only probabilistic
information about each others’ private information. An elaboration like this can
have a big impact, because one agent’s actions can depend on what he knows about
another agent’s payoffs.

Finally, as the numbers of players and actions in a game grow—even if they re-
main finite—games can quickly become far too large to reason about or even to
write down using the representations we have studied so far. Luckily, we are not
usually interested in studying arbitrary strategic situations. The sorts of noncooper-
ative settings that are most interesting in practice tend to involve highly structured
payoffs. This can occur because of constraints imposed by the fact that the play of
a game actually unfolds over time (e.g., because a large game actually corresponds
to finitely repeated play of a small game). It can also occur because of the nature
of the problem domain (e.g., while the world may involve many agents, the num-
ber of agents who are able to directly affect any given agent’s payoff is small). If
we understand the way in which agents’ payoffs are structured, we can represent
them much more compactly than we would be able to do using the normal or ex-

1. We will explore the first example in detail in this chapter. A thorough treatment of infinite sets of players
or action spaces is beyond the scope of this book; nevertheless, we will consider certain games with infinite
sets of players in Section 6.4.4 and with infinite action spaces in Chapters 10 and 11.

148 6 Richer Representations: Beyond the Normal and Extensive Forms

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

⇒

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 6.1: Twice-played Prisoner’s Dilemma.

tensive forms. Often, these compact representations also allow us to reason more
efficiently about the games they describe (e.g., the computation of Nash equilibria
can be provably faster, or pure-strategy Nash equilibria can be proved to always
exist).

In this chapter we will present various different representations that address these
limitations of the normal and extensive forms. In Section 6.1 we will begin by
considering the special case of extensive-form games that are constructed by re-
peatedly playing a normal-form game and then we will extend our consideration to
the case where the normal form is repeated infinitely. This will lead us to stochas-
tic games in Section 6.2, which are like repeated games but do not require that the
same normal-form game is played in each time step. In Section 6.3 we will consider
structure of a different kind: instead of considering time, we will consider games in-
volving uncertainty. Specifically, in Bayesian games agents face uncertainty—and
hold private information—about the game’s payoffs. Section 6.4 describes conges-
tion games, which model situations in which agents contend for scarce resources.
Finally, in Section 6.5 we will consider representations that are motivated primarily
by compactness and by their usefulness for permitting efficient computation (e.g.,
of Nash equilibria). Such compact representations can extend any other existing
representation, such as normal-form games, extensive-form games, or Bayesian
games.

6.1 Repeated games

In repeated games, a given game (often thought of in normal form) is played mul-
tiple times by the same set of players. The game being repeated is called thestage
game. For example, Figure 6.1 depicts two players playing the Prisoner’s Dilemmastage game
exactly twice in a row.

This representation of the repeated game, while intuitive, obscures some key
factors. Do agents see what the other agents played earlier? Do they remember
what they knew? And, while the utility of each stage game is specified, what is the

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.1 Repeated games 149

utility of the entire repeated game?
We answer these questions in two steps. We first consider the case in which

the game is repeated a finite and commonly-known number of times. Then we
consider the case in which the game is repeated infinitely often, or a finite but
unknown number of times.

6.1.1 Finitely repeated games

One way to completely disambiguate the semantics of a finitelyrepeated game is to
specify it as an imperfect-information game in extensive form. Figure 6.2 describes
the twice-played Prisoner’s Dilemma game in extensive form. Note that it captures
the assumption that at each iteration the players do not know what the other player
is playing, but afterward they do. Also note that the payoff function of each agent
is additive; that is, it is the sum of payoffs in the two-stage games.

•1
C D

•2
c d

•2
c d

•1
C D

•1
C D

•1
C D

•1
C D

•2
c

d

•2
c

d

•2
c

d

•2
c

d

•2
c

d

•2
c

d

•2
c

d

•2
c

d•
(−2,−2)

•
(−1,−5)

•
(−5,−1)

•
(−4,−4)

•
(−1,−5)

•
(0,−8)

•
(−4,−4)

•
(−3,−7)

•
(−5,−1)

•
(−4,−4)

•
(−8,0)

•
(−7,−3)

•
(−4,−4)

•
(−3,−7)

•
(−7,−3)

•
(−6,−6)

Figure 6.2: Twice-played Prisoner’s Dilemma in extensive form.

The extensive form also makes it clear that the strategy space of the repeated
game is much richer than the strategy space in the stage game. Certainly one strat-
egy in the repeated game is to adopt the same strategy in each stage game; clearly,
this memoryless strategy, called astationary strategy, is a behavioral strategy instationary

strategy the extensive-form representation of the game. But in general, the action (or mix-
ture of actions) played at a stage game can depend on the history of play thus far.
Since this fact plays a particularly important role in infinitely repeated games, we
postpone further discussion of it to the next section. Indeed, in the finite, known
repetition case, we encounter again the phenomenon of backward induction, which
we first encountered when we introduced subgame-perfect equilibria. Recall that
in the Centipede game, discussed in Section 5.1.3, the unique SPE was to go down
and terminate the game at every node. Now consider a finitely repeated Prisoner’s

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

150 6 Richer Representations: Beyond the Normal and Extensive Forms

Dilemma game. Again, it can be argued, in the last round it is a dominant strat-
egy to defect, no matter what happened so far. This is common knowledge, and
no choice of action in the preceding rounds will impact the play in the last round.
Thus in the second-to-last round too it is a dominant strategy to defect. Similarly,
by induction, it can be argued that the only equilibrium in this case is to always
defect. However, as in the case of the Centipede game, this argument is vulnerable
to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result
is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor
can they be defined as the sum of the payoffs in the stage games (which in general
will be infinite). There are two common ways of defining a player’s payoff in an
infinitely repeated game to get around this problem. The first is the average payoff
of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffsr(1)
i , r(2)

i , . . .
for playeri, theaverage rewardof i isaverage reward

lim
k→∞

∑k

j=1 r
(j)
i

k
.

The future discounted rewardto a player at a certain point of the game is the
sum of his payoff in the immediate stage game, plus the sum of future rewards
discounted by a constant factor. This is a recursive definition, since the future
rewards again give a higher weight to early payoffs than to later ones.

Definition 6.1.2 (Discounted reward)Given an infinite sequence of payoffsr(1)
i , r

(2)
i , . . .

for playeri, and a discount factorβ with 0 ≤ β ≤ 1, thefuture discounted rewardfuture
discounted
reward

of i is
∑∞

j=1 β
jr

(j)
i .

The discount factor can be interpreted in two ways. First, it can be taken to
represent the fact that the agent cares more about his well-being in the near term
than in the long term. Alternatively, it can be assumed that the agent cares about
the future just as much as he cares about the present, but with some probability
the game will be stopped any given round;1 − β represents that probability. The
analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,
consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there
are many strategies other than stationary ones. One of the most famous isTit-for-
Tat. TfT is the strategy in which the player starts by cooperating and thereafterTit-for-Tat (TfT)

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist. One
can extend the definition to cover these cases by using thelim sup operator in Definition 6.1.1 rather than
lim.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.1 Repeated games 151

chooses in roundj + 1 the action chosen by the other player in roundj. Beside
being both simple and easy to compute, this strategy is notoriously hard to beat; it
was the winner in several repeated Prisoner’s Dilemma competitions for computer
programs.

Since the space of strategies is so large, a natural question is whether we can
characterize all the Nash equilibria of the repeated game. For example, if the dis-
count factor is large enough, both players playing TfT is a Nash equilibrium. But
there is an infinite number of others. For example, consider thetrigger strategy.trigger strategy
This is a draconian version of TfT; in the trigger strategy, a player starts by coop-
erating, but if ever the other player defects then the first defects forever. Again, for
sufficiently large discount factor, the trigger strategy forms a Nash equilibrium not
only with itself but also with TfT.

The folk theorem—so-called because it was part of the common lore before it
was formally written down—helps us understand the space of all Nash equilibria
of an infinitely repeated game, by answering a related question. It does not char-
acterize the equilibrium strategy profiles, but rather the payoffs obtained in them.
Roughly speaking, it states that in an infinitely repeated game the set of average
rewards attainable in equilibrium are precisely those pairs attainable under mixed
strategies in a single-stage game, with the constraint on the mixed strategies that
each player’s payoff is at least the amount he would receive if the other players
adopted minmax strategies against him.

More formally, consider anyn-player gameG = (N,A, u) and any payoff
profile r = (r1, r2, . . . , rn). Let

vi = min
s−i∈S−i

max
si∈Si

ui(s−i, si).

In words,vi is playeri’s minmax value: his utility when the other players play
minmax strategies against him, and he plays his best response.

Before giving the theorem, we provide some more definitions.

Definition 6.1.3 (Enforceable)A payoff profiler = (r1, r2, . . . , rn) is enforce-
ableif ∀i ∈ N , ri ≥ vi.

Definition 6.1.4 (Feasible)A payoff profiler = (r1, r2, . . . , rn) is feasibleif
there exist rational, nonnegative valuesαa such that for alli, we can expressri as∑

a∈A αa ui(a), with
∑

a∈A αa = 1.

In other words, a payoff profile is feasible if it is a convex, rational combination
of the outcomes inG.

Theorem 6.1.5 (Folk Theorem)Consider any n-player normal-form gameGfolk theorem
and any payoff profiler = (r1, r2, . . . , rn).

1. If r is the payoff profile for any Nash equilibriums of the infinitely repeatedG
with average rewards, then for each playeri, ri is enforceable.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

152 6 Richer Representations: Beyond the Normal and Extensive Forms

2. If r is both feasible and enforceable, thenr is the payoff profile for some Nash
equilibrium of the infinitely repeatedG with average rewards.

This proof is both instructive and intuitive. The first part uses the definition
of minmax and best response to show that an agent can never receive less than
his minmax value in any equilibrium. The second part shows how to construct an
equilibrium that yields each agent the average payoffs given in any feasible and
enforceable payoff profiler. This equilibrium has the agents cycle in perfect lock-
step through a sequence of game outcomes that achieve the desired average payoffs.
If any agent deviates, the others punish him forever by playing their minmax strate-
gies against him.

Proof. Part 1: Supposer is not enforceable, that is,ri < vi for somei.
Then consider an alternative strategy fori: playingBR(s−i(h)), wheres−i(h)
is the equilibrium strategy of other players given the current history h and
BR(s−i(h)) is a function that returns a best response fori to a given strategy
profile s−i in the (unrepeated) stage gameG. By definition of a minmax strat-
egy, playeri receives a payoff of at leastvi in every stage game if he plays
BR(s−i(h)), and soi’s average reward is also at leastvi. Thus, if ri < vi

thens cannot be a Nash equilibrium.
Part 2: Sincer is a feasible enforceable payoff profile, we can write it

as ri =
∑

a∈A(βa

γ
)ui(a), whereβa and γ are nonnegative integers. (Recall

thatαa were required to be rational. So we can takeγ to be their common
denominator.) Since the combination was convex, we haveγ =

∑
a∈A βa.

We are going to construct a strategy profile that will cycle through all out-
comesa ∈ A of G with cycles of lengthγ, each cycle repeating actiona
exactlyβa times. Let(at) be such a sequence of outcomes. Let us define a
strategysi of player i to be a trigger version of playing(at): if nobody devi-
ates, thensi playsat

i in periodt. However, if there was a periodt′ in which
some playerj 6= i deviated, thensi will play (p−j)i, where(p−j) is a solution
to the minimization problem in the definition ofvj .

First observe that if everybody plays according tosi, then, by construction,
playeri receives average payoff ofri (look at averages over periods of length
γ). Second, this strategy profile is a Nash equilibrium. Suppose everybody
plays according tosi, and playerj deviates at some point. Then, forever after,
player j will receive hismin max payoff vj ≤ rj , rendering the deviation
unprofitable.

The reader might wonder why this proof appeals toi’s minmax value rather than
his maxmin value. First, notice that the trigger strategies in Part 2 of the proof use
minmax strategies to punish agenti. This makes sense because even in cases where
i’s minmax value is strictly greater than his maxmin value,3 i’s minmax value is
the smallest amount that the other agents can guarantee thati will receive. Wheni

3. This can happen in games with more than two players, as discussed in Section 3.4.1.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.1 Repeated games 153

best responds to a minmax strategy played against him by−i, he receives exactly
his minmax value; this is the deviation considered in Part 1.

Theorem 6.1.5 is actually an instance of a large family of folk theorems. As
stated, Theorem 6.1.5 is restricted to infinitely repeated games, to average reward,
to the Nash equilibrium, and to games of complete information. However, there
are folk theorems that hold for other versions of each of these conditions, as well
as other conditions not mentioned here. In particular, there are folk theorems for
infinitely repeated games with discounted reward (for a large enough discount fac-
tor), for finitely repeated games, for subgame-perfect equilibria (i.e., where agents
only administer finite punishments to deviators), and for games of incomplete in-
formation. We do not review them here, but the message of each of them is funda-
mentally the same: the payoffs in the equilibria of a repeated game are essentially
constrained only by enforceability and feasibility.

6.1.3 “Bounded rationality": repeated games played by automata

Until now we have assumed that players can engage in arbitrarily deep reasoning
and mutual modeling, regardless of their complexity. In particular, consider the
fact that we have tended to rely on equilibrium concepts as predictions of—or
prescriptions for—behavior. Even in the relatively uncontroversial case of two-
player zero-sum games, this is a questionable stance in practice; otherwise, for
example, there would be no point in chess competitions. While we will continue
to make this questionable assumption in much of the remainder of the book, we
pause here to revisit it. We ask what happens when agents are not perfectly rational
expected-utility maximizers. In particular, we ask what happens when we impose
specific computational limitations on them.

Consider (yet again) an instance of the Prisoner’s Dilemma, which is reproduced
in Figure 6.3. In the finitely repeated version of this game, we know that each
player’s dominant strategy (and thus the only Nash equilibrium) is to choose the
strategyD in each iteration of the game. In reality, when people actually play the
game, we typically observe a significant amount of cooperation, especially in the
earlier iterations of the game. While much of game theory is open to the criticism
that it does not match well with human behavior, this is a particularly stark example
of this divergence. What models might explain this fact?

C D

C 3, 3 0, 4

D 4, 0 1, 1

Figure 6.3: Prisoner’s Dilemma game.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

154 6 Richer Representations: Beyond the Normal and Extensive Forms

One early proposal in the literature is based on the notion of anǫ-equilibrium,
defined in Section 3.4.7. Recall that this is a strategy profile in which no agent can
gain more thanǫ by changing his strategy; a Nash equilibrium is thus the special
case of a0-equilibrium. This equilibrium concept is motivated by the idea that
agents’ rationality may be bounded in the sense that they are willing to settle for
payoffs that are slightly below their best response payoffs. In the finitely repeated
Prisoner’s Dilemma game, as the number of repetitions increases, the correspond-
ing sets ofǫ-equilibria include outcomes with longer and longer sequences of the
“cooperate” strategy.

Various other models of bounded rationality exist, but we will focus on what
has proved to be the richest source of results so far, namely, restricting agents’
strategies to those implemented by automata of the sort investigated in computer
science.

Finite-state automata

The motivation for using automata becomes apparent when we consider the repre-
sentation of a strategy in a repeated game. Recall that a finitely repeated game is
an imperfect-information extensive-form game, and that a strategy for playeri in
such a game is a specification of an action for every information set belonging to
that player. A strategy fork repetitions of anm-action game is thus a specifica-
tion of mk−1

m−1
different actions. However, a naive encoding of a strategy as a table

mapping each possible history to an action can be extremely inefficient. For exam-
ple, the strategy of choosingD in every round can be represented using just the
single-stage strategyD, and theTit-for-Tat strategy can be represented simply by
specifying that the player mimic what his opponent did in the previous round. One
representation that exploits this structure is thefinite-state automaton, or Moorefinite-state

automaton machine. The formal definition of a finite-state automaton in the context of a re-

Moore machine peated game is as follows.

Definition 6.1.6 (Automaton) Given a gameG = (N,A, u) that will be played
repeatedly, an automatonMi for playeri is a four-tuple(Qi, q

0
i , δi, fi), where:

• Qi is a set of states;

• q0
i is the start state;

• δi : Qi × A 7→ Qi is a transition function mapping the current state and an
action profile to a new state; and

• fi : Qi 7→ Ai is a strategy function associating with every state an action for
playeri.

An automaton is used to represent each player’s repeated game strategy as fol-
lows. The machine begins in the start stateq0

i , and in the first round plays the
action given byfi(q

0
i). Using the transition function and the actions played by

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.1 Repeated games 155

the other players in the first round, it then transitions automatically to the new
stateδi(q

0
i , a1, . . . , an) before the beginning of round 2. It then plays the action

fi(δi(q
0
i , a1, . . . , an)) in round two, and so on. More generally, we can specify the

current strategy and state at roundt using the following recursive definitions.

at
i = fi(q

t
i)

qt+1
i = δi(q

t
i , a

t
1, . . . , a

t
n)

Automaton representations of strategies are very intuitivewhen viewed graph-
ically. The following figures show compact automaton representations of some
common strategies for the repeated Prisoner’s Dilemma game. Each circle is a
state in the automaton and its label is the action to play at that state. The transi-
tions are represented as labeled arrows. From the current state, we transition along
the arrow labeled with the move the opponent played in the current game. The
unlabeled arrow enters the initial state.

The automaton represented by Figure 6.4 plays the constantD strategy, while
Figure 6.5 encodes the more interestingTit-for-Tat strategy. It starts in theC state,
and the transitions are constructed so that the automaton always mimics the oppo-
nent’s last action.

D

C,D

Figure 6.4: An automaton representing the repeatedDefectaction.

C

C

D

D

D

C

Figure 6.5: An automaton representing theTit-for-Tat strategy.

We can now define a new class of games, calledmachine games, in which eachmachine game
player selects an automaton representing a repeated game strategy.

Definition 6.1.7 (Machine game)A two-player machine gameGM = ({1, 2},M, G)
of thek-period repeated gameG is defined by:

• a pair of players{1, 2};

• M = (M1,M2), whereMi is a set of available automata for playeri; and

• a normal-form gameG = ({1, 2}, A, u).

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

156 6 Richer Representations: Beyond the Normal and Extensive Forms

A pairM1 ∈ M1 andM2 ∈ M2 deterministically yield an outcomeot(M1,M2)
at each iterationt of the repeated game. Thus,GM induces a normal-form game
({1, 2},M, U), in which each playeri chooses an automatonMi ∈ Mi, and
obtains utilityUi(M1,M2) =

∑k

t=1 ui(o
t(M1,M2)).

Note that we can easily replace thek-period repeated game with a discounted (or
limit of means) infinitely repeated game, with a corresponding change toUi(M1,M2)
in the induced normal-form game.

In what follows, the functions : M 7→ Z represents the number of states of an
automatonM , and the functionS(Mi) = maxM∈Mi

s(M) represents the size of
the largest automaton among a set of automataMi.

Automata of bounded size

Intuitively, automata with fewer states representsimplerstrategies. Thus, one way
to bound the rationality of the player is by limiting the number of states in the
automaton.

Placing severe restrictions on the number of states not only induces an equilib-
rium in which cooperation always occurs, but also causes the always-defect equilib-
rium to disappear. This equilibrium in a finitely repeated Prisoner’s Dilemma game
depends on the assumption that each player can usebackward induction(see Sec-
tion 5.1.4) to find his dominant strategy. In order to perform backward induction
in a k-period repeated game, each player needs to keep track of at leastk distinct
states: one state to represent the choice of strategy in each repetition of the game.
In the Prisoner’s Dilemma, it turns out that if2 < max(S(M1), S(M2)) < k,
then the constant-defect strategy does not yield a symmetric equilibrium, while the
Tit-for-Tat automaton does.

When the size of the automaton is not restricted to be less thank, the constant-
defect equilibrium does exist. However, there is still a large class of machine games
in which other equilibria exist in which some amount of cooperation occurs, as
shown in the following result.

Theorem 6.1.8For any integerx, there exists an integerk0 such that for allk >
k0, any machine gameGM = ({1, 2},M, G) of thek-period repeated Prisoner’s
Dilemma gameG, in whichk1/x ≤ min{S(M1), S(M2)} ≤ max{S(M1), S(M2)} ≤
kx holds has a Nash equilibrium in which the average payoffs to each player are
at least3− 1

x
.

Thus the average payoffs to each player can be much higher than(1, 1); in fact
they can be arbitrarily close to(3, 3), depending on the choice ofx. While this
result uses pure strategies for both players, a stronger result can be proved through
the use of a mixed-strategy equilibrium.

Theorem 6.1.9For everyǫ > 0, there exists an integerk0 such that for allk > k0,
any machine gameGM = ({1, 2},M, G) of thek-period repeated Prisoner’s

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.1 Repeated games 157

Dilemma gameG in whichmin{S(M1), S(M2)} < 2
ǫk

12(1+ǫ) has a Nash equilib-
rium in which the average payoffs to each player are at least3− ǫ.

Thus, if even one of the players’ automata has a size that is less than exponential
in the length of the game, an equilibrium with some degree of cooperation exists.

Automata with a cost of complexity

Now, instead of imposing constraints on the complexity of the automata, we will
incorporate this complexity as a cost into the agent’s utility function. This could
reflect, for example, the implementation cost of a strategy or the cost to learn it.
While we cannot show theorems similar to those in the preceding section, it turns
out that we can get mileage out of this idea even when we incorporate it in a
minimal way. Specifically, an agent’s disutility for complexity will only play a
tie-breaking role.

Definition 6.1.10 (Lexicographic disutility for complexity) Agents havelexico-
graphic disutility for complexityin a machine game if their utility functionsUi(·)lexicographic

disutility for
complexity

in the induced normal-form game are replaced by preference orderings�i such
that (M1,M2) ≻i (M ′

1,M
′
2) whenever eitherUi(M1,M2) > Ui(M

′
1,M

′
2) or

Ui(M1,M2) = Ui(M
′
1,M

′
2) ands(Mi) < s(M ′

i).

Consider a machine gameGM of the discounted infinitely repeated Prisoner’s
Dilemma in which both players have a lexicographic disutility for complexity.
The trigger strategy is an equilibrium strategy in the infinitely repeated Prisoner’s
Dilemma game with discounting. When the discount factorβ is large enough, if
player 2 is using the trigger strategy, then player 1 cannot achieve a higher payoff
by using any strategy other than the trigger strategy himself. We can represent the
trigger strategy using the machineM shown in Figure 6.6. However, while no
other machine can give player 1 a higher payoff, there does exist another machine
that achieves thesamepayoff and is less complex. Player 1’s machineM never
enters the stateD during play; it is designed only as a threat to the other player.
Thus the machine which contains only the stateC will achieve the same payoff as
the machineM , but with less complexity. As a result, the outcome(M,M) is not
a Nash equilibrium of the machine gameGM when agents have a lexicographic
disutility for complexity.

C

C

D
D

D

Figure 6.6: An automaton representing the Trigger strategy.

We can also show several interesting properties of the equilibria of machine
games in which agents have a lexicographic disutility for complexity. First, be-
cause machines in equilibrium must minimize complexity, they have no unused

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

158 6 Richer Representations: Beyond the Normal and Extensive Forms

states. Thus we know that in an infinite game, every state must be visited in some
period. Second, the strategies represented by the machines in a Nash equilibrium
of the machine game also form a Nash equilibrium of the infinitely repeated game.

Computing best-response automata

In the previous sections we limited the rationality of agents in repeated games by
bounding the number of states that they can use to represent their strategies. How-
ever, it could be the case that the number of states used by the equilibrium strategies
is small, but the time required to compute them is prohibitively large. Furthermore,
one can argue (by introspection, for example) that bounding the computation of an
agent is a more appropriate means of capturing bounded rationality than bounding
the number of states.

It seems reasonable that an equilibrium must be at least verifiable by agents. But
this does not appear to be the case for finite automata. (The results that follow are
for the limit-average case, but can be adapted to the discounted case as well.)

Theorem 6.1.11Given a two-player machine gameGM = (N,M, G) of a limit
average infinitely repeated two-player gameG = (N,A, u) with unknownN , and
achoice of automataM1, . . . ,Mn for all players, there does not exist a polynomial
time algorithm for verifying whetherMi is a best-response automaton for player
i.

The news is not all bad; if we holdN fixed, then the problem does belong to
P. We can explain this informally by noting that playeri does not have to scan
all of his possible strategies in order to decide whether automatonMi is the best
response; since he knows the strategies of the other players, he merely needs to
scan the actual path taken on the game tree, which is bounded by the length of the
game tree.

Notice that the previous result held even when the other players were assumed
to play pure strategies. The following result shows that the verification problem is
hard even in the two-player case when the players can randomize over machines.

Theorem 6.1.12Given a two-player machine gameGM = ({1, 2},M, G) of a
limit-average infinitely repeated gameG = ({1, 2}, A, u), and a mixed strategy
for player2 in which the set of automata that are played with positive probability is
finite, the problem of verifying that an automatonM1 is a best-response automaton
for player1 is NP-complete.

So far we have abandoned the bounds on the number of states in the automata,
and one might wonder whether such bounds could improve the worst-case com-
plexity. However, for the repeated Prisoner’s Dilemma game, it has the opposite
effect: limiting the size of the automata under consideration increases the complex-
ity of computing a best response. By Theorem 6.1.11 we know that when the size
of the automata under consideration are unbounded and the number of agents is

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.2 Stochastic games 159

two, the problem of computing the best response is in the class P. The following
result shows that when the automata under consideration are instead bounded, the
problem becomes NP-complete.

Theorem 6.1.13Given a machine gameGM = ({1, 2},M, G) of the limit av-
erage infinitely repeated Prisoner’s Dilemma gameG, an automatonM2, and an
integerk, the problem of computing a best-response automatonM1 for player1,
such thats(M1) ≤ k, is NP-complete.

From finite automata to Turing machines

Turing machines are more powerful than finite-state automata due to their infinite
memories. One might expect that in this richer model, unlike with finite automata,
game-theoretic results will be preserved. But they are not. For example, there is
strong evidence (if not yet proof) that a Prisoner’s Dilemma game of two Turing
machines can have equilibria that are arbitrarily close to the repeatedC payoff.
Thus cooperative play can be approximated in equilibrium even if the machines
memorize the entire history of the game and are capable of counting the number of
repetitions.

The problem of computing a best response yields another unintuitive result.
Even if we restrict the opponent to strategies for which the best-response Turing
machine is computable, the general problem of finding the best response for any
such input is not Turing computable when the discount factor is sufficiently close
to one.

Theorem 6.1.14For the discounted, infinitely-repeated Prisoner’s Dilemma game
G, there exists a discount factorβ > 0 such that for any rational discount fac-
tor β ∈ (β, 1) there is no Turing-computable procedure for computing a best
response to a strategy drawn from the set of all computable strategies that admit a
computable best response.

Finally, even before worrying about computing a best response, there is a more
basic challenge: the best response to a Turing machine may not be a Turing ma-
chine!

Theorem 6.1.15For the discounted, infinitely-repeated Prisoner’s Dilemma game
G, there exists a discount factorβ > 0 such that for any rational discount factor
β ∈ (β, 1) there exists an equilibrium profile(s1, s2) such thats2 can be imple-
mented by a Turing machine, but no best response tos2 can be implemented by a
Turing machine.

6.2 Stochastic games

Intuitively speaking, a stochastic game is a collection of normal-form games; the
agents repeatedly play games from this collection, and the particular game played

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

160 6 Richer Representations: Beyond the Normal and Extensive Forms

at any given iteration depends probabilistically on the previous game played and
on the actions taken by all agents in that game.

6.2.1 Definition

Stochastic games are very broad framework, generalizing both Markov decision
processes (MDPs; see Appendix C) and repeated games. An MDP is simply a
stochastic game with only one player, while a repeated game is a stochastic game
in which there is only one stage game.

Definition 6.2.1 (Stochastic game)A stochastic game(also known as aMarkovstochastic game
game) is a tuple(Q,N,A,P, r), where:

Markov game
• Q is a finite set of games;

• N is a finite set ofn players;

• A = A1 × · · · ×An, whereAi is a finite set of actions available to playeri;

• P : Q × A × Q 7→ [0, 1] is the transition probability function;P (q, a, q̂) is
the probability of transitioning from stateq to stateq̂ after action profilea; and

• R = r1, . . . , rn, whereri : Q × A 7→ R is a real-valued payoff function for
playeri.

In this definition we have assumed that the strategy space of the agents is the
same in all games, and thus that the difference between the games is only in the
payoff function. Removing this assumption adds notation, but otherwise presents
no major difficulty or insights. RestrictingQ and eachAi to be finite is a sub-
stantive restriction, but we do so for a reason; the infinite case raises a number of
complications that we wish to avoid.

We have specified the payoff of a player at each stage game (or in each state),
but not how these payoffs are aggregated into an overall payoff. To solve this prob-
lem, we can use solutions already discussed earlier in connection with infinitely
repeated games (Section 6.1.2). Specifically, the two most commonly used aggre-
gation methods areaverage rewardandfuture discounted reward.

6.2.2 Strategies and equilibria

We now define the strategy space of an agent. Letht = (q0, a0, q1, a1, . . . , at−1, qt)
denote a history oft stages of a stochastic game, and letHt be the set of all possible
histories of this length. The set of deterministic strategies is the Cartesian product∏

t,Ht
Ai, which requires a choice for each possible history at each point in time.

As in the previous game forms, an agent’s strategy can consist of any mixture over
deterministic strategies. However, there are several restricted classes of strategies
that are of interest, and they form the following hierarchy. The first restriction is
the requirement that the mixing take place at each history independently; this is the
restriction to behavioral strategies seen in connection with extensive-form games.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.2 Stochastic games 161

Definition 6.2.2 (Behavioral strategy)A behavioral strategysi(ht, aij
) returns

the probability of playing actionaij
for historyht.

A Markov strategy further restricts a behavioral strategy so that, for a given time
t, the distribution over actions depends only on the current state.

Definition 6.2.3 (Markov strategy) A Markov strategysi is a behavioral strategyMarkov strategy
in whichsi(ht, aij

) = si(h
′
t, aij

) if qt = q′t, whereqt andq′t are the final states of
ht andh′

t, respectively.

The final restriction is to remove the possible dependence on the timet.

Definition 6.2.4 (Stationary strategy) A stationary strategysi is a Markov strat-stationary
strategy egy in whichsi(ht1 , aij

) = si(h
′
t2
, aij

) if qt1 = q′t2 , whereqt1 andq′t2 are the final
states ofht1 andh′

t2
, respectively.

Now we can consider the equilibria of stochastic games, a topic that turns out
to be fraught with subtleties. The discounted-reward case is the less problematic
one. In this case it can be shown that a Nash equilibrium exists in every stochastic
game. In fact, we can state a stronger property. A strategy profile is called a
Markov perfect equilibriumif it consists of only Markov strategies, and is a NashMarkov perfect

equilibrium
(MPE)

equilibrium regardless of the starting state. In a sense, MPE plays a role analogous
to the subgame-perfect equilibrium in perfect-information games.

Theorem 6.2.5Everyn-player, general-sum, discounted-reward stochastic game
has a Markov perfect equilibrium.

The case of average rewards presents greater challenges. For one thing, the
limit average may not exist (i.e., although the stage-game payoffs are bounded,
their average may cycle and not converge). However, there is a class of stochastic
games that is well behaved in this regard. This is the class ofirreduciblestochastic
games. A stochastic game is irreducible if every strategy profile gives rise to anirreducible

stochastic game irreducible Markov chain over the set of games, meaning that every game can be
reached with positive probability regardless of the strategy adopted. In such games
the limit averages are well defined, and we have the following theorem.

Theorem 6.2.6Every two-player, general-sum, average reward, irreducible stochas-
tic game has a Nash equilibrium.

Indeed, under the same condition we can state a folk theorem similar to that
presented for repeated games in Section 6.1.2. That is, as long as we give each
player an expected payoff that is at least as large as his minmax value, any feasible
payoff pair can be achieved in equilibrium through the use of threats.

Theorem 6.2.7For every two-player, general-sum, irreducible stochastic game,
and every feasible outcome with a payoff vectorr that provides to each player
at least his minmax value, there exists a Nash equilibrium with a payoff vectorr.
This is true for games with average rewards, as well as games with large enough
discount factors (or, with players that are sufficiently patient).

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

162 6 Richer Representations: Beyond the Normal and Extensive Forms

6.2.3 Computing equilibria

The algorithms and results for stochastic games depend greatly on whether we use
discounted reward or average reward for the agent utility function. We will discuss
both separately, starting with the discounted reward case. The first question to ask
about the problem of finding a Nash equilibrium is whether a polynomial proce-
dure is available. The fact that there exists an linear programming formulation for
solving MDPs (for both the discounted reward and average reward cases) gives us
a reason for optimism, since stochastic games are a generalization of MDPs. While
such a formulation does not exist for the full class of stochastic games, it does for
several nontrivial subclasses.

One such subclass is the set of two-player, general-sum, discounted-reward stochas-
tic games in which the transitions are determined by a single player. Thesingle-
controller condition is formally defined as follows.

Definition 6.2.8 (Single-controller stochastic game)A stochastic game issingle-
controller if there exists a playeri such that∀q, q′ ∈ Q,∀a ∈ A, P (q, a, q′) =single-controller

stochastic game P (q, a′, q′) if ai = a′i.

The same results hold when we replace the single-controller restriction with the
following pair of restrictions: that the state and action profile have independent
effects on the reward achieved by each agent, and that the transition function only
depends on the action profile. Formally, this pair is called theseparable reward
state independent transitioncondition.

Definition 6.2.9 (SR-SIT stochastic game)A stochastic game isseparable reward
state independent transition(SR-SIT) if the following two conditions hold:

• there exist functionsα, γ such that∀i, q ∈ Q,∀a ∈ A it is the case that
ri(q, a) = α(q) + γ(a); and

• ∀q, q′, q′′ ∈ Q,∀a ∈ A it is the case thatP (q, a, q′′) = P (q′, a, q′′).

Even when the problem does not fall into one of these subclasses, practical so-
lutions still exist for the discounted case. One such solution is to apply a modified
version of Newton’s method to a nonlinear program formulation of the problem.
An advantage of this method is that no local minima exist. For zero-sum games,
an alternative is to use an algorithm developed by Shapley that is related to value
iteration, a commonly-used method for solving MDPs (see Appendix C).

Moving on to the average reward case, we have to impose more restrictions in
order to use a linear program than we did for the discounted reward case. Specif-
ically, for the class of two-player, general-sum, average-reward stochastic games,
the single-controller assumption no longer suffices—we also need the game to be
zero sum.

Even when we cannot use a linear program, irreducibility allows us to use an
algorithm that is guaranteed to converge. This algorithm is a combination of policy
iteration (another method used for solving MDPs) and successive approximation.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.3 Bayesian games 163

6.3 Bayesian games

All of the game forms discussed so far assumed that all players know what game
is being played. Specifically, the number of players, the actions available to each
player, and the payoff associated with each action vector have all been assumed to
be common knowledge among the players. Note that this is true even of imperfect-
information games; the actual moves of agents are not common knowledge, but the
game itself is. In contrast,Bayesian games, or games of incomplete information,Bayesian game
allow us to represent players’ uncertainties about the very game being played.4

This uncertainty is represented as a probability distribution over a set of possible
games. We make two assumptions.

1. All possible games have the same number of agents and the same strategy space
for each agent; they differ only in their payoffs.

2. The beliefs of the different agents are posteriors, obtained by conditioning a
common prior on individual private signals.

The second assumption is substantive, and we return to it shortly. The first is
not particularly restrictive, although at first it might seem to be. One can imag-
ine many other potential types of uncertainty that players might have about the
game—how many players are involved, what actions are available to each player,
and perhaps other aspects of the situation. It might seem that we have severely
limited the discussion by ruling these out. However, it turns out that these other
types of uncertainty can be reduced to uncertainty only about payoffs via problem
reformulation.

For example, imagine that we want to model a situation in which one player is
uncertain about the number of actions available to the other players. We can reduce
this uncertainty to uncertainty about payoffs by padding the game with irrelevant
actions. For example, consider the following two-player game, in which the row
player does not know whether his opponent has only the two strategiesL andR or
also the third oneC:

L R

U 1, 1 1, 3

D 0, 5 1, 13

L C R

U 1, 1 0, 2 1, 3

D 0, 5 2, 8 1, 13

Now consider replacing the leftmost, smaller game by a padded version, in
which we add a newC column.

4. It is easy to confuse the term “incomplete information” with “imperfect information”; don’t. . .

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

164 6 Richer Representations: Beyond the Normal and Extensive Forms

L C R

U 1, 1 0,−100 1, 3

D 0, 5 2,−100 1, 13

Clearly the newly added column is dominated by the others and will not par-
ticipate in any Nash equilibrium (or any other reasonable solution concept). In-
deed, there is an isomorphism between Nash equilibria of the original game and
the padded one. Thus the uncertainty about the strategy space can be reduced to
uncertainty about payoffs.

Using similar tactics, it can be shown that it is also possible to reduce uncertainty
about other aspects of the game to uncertainty about payoffs only. This is not a
mathematical claim, since we have given no mathematical characterization of all
the possible forms of uncertainty, but it is the case that such reductions have been
shown for all the common forms of uncertainty.

The second assumption about Bayesian games is thecommon-prior assumption,common-prior
assumption addressed in more detail in our discussion of multiagent probabilities and KP-

structures in Chapter 13. As discussed there, a Bayesian game thus defines not
only the uncertainties of agents about the game being played, but also their beliefs
about the beliefs of other agents about the game being played, and indeed an entire
infinite hierarchy of nested beliefs (the so-called epistemic type space). As also
discussed in Chapter 13, the common-prior assumption is a substantive assump-
tion that limits the scope of applicability. We nonetheless make this assumption
since it allows us to formulate the main ideas in Bayesian games, and without the
assumption the subject matter becomes much more involved than is appropriate for
this text. Indeed, most (but not all) work in game theory makes this assumption.

6.3.1 Definition

There are several ways of presenting Bayesian games; we will offer three different
definitions. All three are equivalent, modulo some subtleties that lie outside the
scope of this book. We include all three since each formulation is useful in different
settings and offers different intuition about the underlying structure of this family
of games.

Information sets

First, we present a definition that is based on information sets. Under this definition,
a Bayesian game consists of a set of games that differ only in their payoffs, a
common prior defined over them, and a partition structure over the games for each

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.3 Bayesian games 165

agent.5

Definition 6.3.1 (Bayesian game: information sets)A Bayesian gameis a tupleBayesian game
(N,G,P, I) where:

• N is a set of agents;

• G is a set of games withN agents each such that ifg, g′ ∈ G then for each
agenti ∈ N the strategy space ing is identical to the strategy space ing′;

• P ∈ Π(G) is a common prior over games, whereΠ(G) is the set of all proba-
bility distributions overG; and

• I = (I1, ..., IN) is a tuple of partitions ofG, one for each agent.

Figure 6.7 gives an example of a Bayesian game. It consists of four2× 2 games
(Matching Pennies, Prisoner’s Dilemma, Coordination and Battle of the Sexes),
and each agent’s partition consists of two equivalence classes.

I2,1 I2,2

I1,1

MP

2, 0 0, 2

0, 2 2, 0

p = 0.3

PD

2, 2 0, 3

3, 0 1, 1

p = 0.1

I1,2

Coord

2, 2 0, 0

0, 0 1, 1

p = 0.2

BoS

2, 1 0, 0

0, 0 1, 2

p = 0.4

Figure 6.7: A Bayesian game.

Extensive form with chance moves

A second way of capturing the common prior is to hypothesize a special agent
called Nature who makes probabilistic choices. While we could have Nature’s

5. This combination of a common prior and a set of partitions over states of the world turns out to correspond
to a KP-structure, defined in Chapter 13.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

166 6 Richer Representations: Beyond the Normal and Extensive Forms

choice be interspersed arbitrarily with the agents’ moves, without loss of general-
ity we assume that Nature makes all its choices at the outset. Nature does not have
a utility function (or, alternatively, can be viewed as having a constant one), and
has the unique strategy of randomizing in a commonly known way. The agents
receive individual signals about Nature’s choice, and these are captured by their
information sets in a standard way. The agents have no additional information; in
particular, the information sets capture the fact that agents make their choices with-
out knowing the choices of others. Thus, we have reduced games of incomplete
information to games of imperfect information, albeit ones with chance moves.
These chance moves of Nature require minor adjustments of existing definitions,
replacing payoffs by their expectations given Nature’s moves.6

For example, the Bayesian game of Figure 6.7 can be represented in extensive
form as depicted in Figure 6.8.

•Nature

MP PD

Coord

BoS

•1
U D

•1
U D

•1
U D

•1
U D

•2
L R

•2
L R

•2
L R

•2
L R

•2
L R

•2
L R

•2
L R

•2
L R

•
(2,0)

•
(0,2)

•
(0,2)

•
(2,0)

•
(2,2)

•
(0,3)

•
(3,0)

•
(1,1)

•
(2,2)

•
(0,0)

•
(0,0)

•
(1,1)

•
(2,1)

•
(0,0)

•
(0,0)

•
(1,2)

Figure 6.8: The Bayesian game from Figure 6.7 in extensive form.

Although this second definition of Bayesian games can be initially more intu-
itive than our first definition, it can also be more cumbersome to work with. This
is because we use an extensive-form representation in a setting where players are
unable to observe each others’ moves. (Indeed, for the same reason we do not rou-
tinely use extensive-form games of imperfect information to model simultaneous
interactions such as the Prisoner’s Dilemma, though we could do so if we wished.)
For this reason, we will not make further use of this definition. We close by noting
one advantage that it does have, however: it extends very naturally to Bayesian
games in which players move sequentially and do (at least sometimes) learn about
previous players’ moves.

Epistemic types

Recall that a game may be defined by a set of players, actions, and utility functions.
In our first definition agents are uncertain about which game they are playing; how-

6. Note that the special structure of this extensive-form game means that we do not have to agonize over the
refinements of Nash equilibrium; since agents have no information about prior choices made other than by
Nature, all Nash equilibria are also sequential equilibria.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.3 Bayesian games 167

ever, each possible game has the same sets of actions and players, and so agents
are really only uncertain about the game’s utility function.

Our third definition uses the notion of anepistemic type, or simply atype, as aepistemic type
way of defining uncertainty directly over a game’s utility function.

Definition 6.3.2 (Bayesian game: types)ABayesian gameis a tuple(N,A,Θ, p, u)Bayesian game
where:

• N is a set of agents;

• A = A1 × · · · ×An, whereAi is the set of actions available to playeri;

• Θ = Θ1 × . . .×Θn, whereΘi is the type space of playeri;

• p : Θ 7→ [0, 1] is a common prior over types; and

• u = (u1, . . . , un), whereui : A×Θ 7→ R is the utility function for playeri.

The assumption is that all of the above is common knowledge among the play-
ers, and that each agent knows his own type. This definition can seem mysterious,
because the notion of type can be rather opaque. In general, the type of agent
encapsulates all the information possessed by the agent that is not common knowl-
edge. This is often quite simple (e.g., the agent’s knowledge of his private payoff
function), but can also include his beliefs about other agents’ payoffs, about their
beliefs about his own payoff, and any other higher-order beliefs.

We can get further insight into the notion of a type by relating it to the for-
mulation at the beginning of this section. Consider again the Bayesian game in
Figure 6.7. For each of the agents we have two types, corresponding to his two
information sets. Denote player 1’s actions as U and D, player 2’s actions as L and
R. Call the types of the first agentθ1,1 andθ1,2, and those of the second agentθ2,1

and θ2,2. The joint distribution on these types is as follows:p(θ1,1, θ2,1) = .3,
p(θ1,1, θ2,2) = .1, p(θ1,2, θ2,1) = .2, p(θ1,2, θ2,2) = .4. The conditional prob-
abilities for the first player arep(θ2,1 | θ1,1) = 3/4, p(θ2,2 | θ1,1) = 1/4,
p(θ2,1 | θ1,2) = 1/3, andp(θ2,2 | θ1,2) = 2/3. Both players’ utility functions are
given in Figure 6.9.

6.3.2 Strategies and equilibria

Now that we have defined Bayesian games, we must explain how to reason about
them. We will do this using the epistemic type definition given earlier, because
that is the definition most commonly used in mechanism design (discussed in Chap-
ter 10), one of the main applications of Bayesian games. All of the concepts defined
below can also be expressed in terms of the first two Bayesian game definitions as
well.

The first task is to define an agent’s strategy space in a Bayesian game. Recall
that in an imperfect-information extensive-form game a pure strategy is a mapping

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

168 6 Richer Representations: Beyond the Normal and Extensive Forms

a1 a2 θ1 θ2 u1 u2

U L θ1,1 θ2,1 2 0
U L θ1,1 θ2,2 2 2
U L θ1,2 θ2,1 2 2
U L θ1,2 θ2,2 2 1
U R θ1,1 θ2,1 0 2
U R θ1,1 θ2,2 0 3
U R θ1,2 θ2,1 0 0
U R θ1,2 θ2,2 0 0

a1 a2 θ1 θ2 u1 u2

D L θ1,1 θ2,1 0 2
D L θ1,1 θ2,2 3 0
D L θ1,2 θ2,1 0 0
D L θ1,2 θ2,2 0 0
D R θ1,1 θ2,1 2 0
D R θ1,1 θ2,2 1 1
D R θ1,2 θ2,1 1 1
D R θ1,2 θ2,2 1 2

Figure 6.9: Utility functionsu1 andu2 for the Bayesian game from Figure 6.7.

from information sets to actions. The definition is similar in Bayesian games: a
pure strategyαi : Θi 7→ Ai is a mapping from every type agenti could have to the
action he would play if he had that type. We can then define mixed strategies in the
natural way as probability distributions over pure strategies. As before, we denote
a mixed strategy fori assi ∈ Si, whereSi is the set of alli’s mixed strategies.
Furthermore, we use the notationsj(aj |θj) to denote the probability under mixed
strategysj that agentj plays actionaj , given thatj’s type isθj .

Next, since we have defined an environment with multiple sources of uncer-
tainty, we will pause to reconsider the definition of an agent’s expected utility. In
a Bayesian game setting, there are three meaningful notions of expected utility:ex
post, ex interimandex ante. The first is computed based on all agents’ actual types,
the second considers the setting in which an agent knows his own type but not the
types of the other agents, and in the third case the agent does not know anybody’s
type.

Definition 6.3.3 (Ex postexpected utility) Agenti’s ex postexpected utility in aex postexpected
utility Bayesian game(N,A,Θ, p, u), where the agents’ strategies are given bys and

the agent’ types are given byθ, is defined as

EUi(s, θ) =
∑

a∈A

(
∏

j∈N

sj(aj |θj)

)
ui(a, θ). (6.1)

In this case, the only uncertainty concerns the other agents’ mixed strategies,
since agenti’s ex postexpected utility is computed based on the other agents’ actual
types. Of course, in a Bayesian game no agentwill know the others’ types; while
that does not prevent us from offering the definition given, it might make the reader
question its usefulness. We will see that this notion of expected utility is useful both
for defining the other two and also for defining a specialized equilibrium concept.

Definition 6.3.4 (Ex interimexpected utility) Agenti’s ex interim expected util-
ity in a Bayesian game(N,A,Θ, p, u), wherei’s type isθi and where the agents’

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.3 Bayesian games 169

strategies are given by the mixed-strategy profiles, is defined as

EUi(s, θi) =
∑

θ−i∈Θ−i

p(θ−i|θi)
∑

a∈A

(
∏

j∈N

sj(aj|θj)

)
ui(a, θ−i, θi), (6.2)

or equivalently as

EUi(s, θi) =
∑

θ−i∈Θ−i

p(θ−i|θi)EUi(s, (θi, θ−i)). (6.3)

Thus, i must consider every assignment of types to the other agentsθ−i and
every pure action profilea in order to evaluate his utility functionui(a, θi, θ−i).
He must weight this utility value by two amounts: the probability that the other
players’ types would beθ−i given that his own type isθi, and the probability that
the pure action profilea would be realized given all players’ mixed strategies and
types. (Observe that agents’ types may be correlated.) Because uncertainty over
mixed strategies was already handled in theex postcase, we can also writeex
interimexpected utility as a weighted sum ofEUi(s, θ) terms.

Finally, there is theex antecase, where we computei’s expected utility under
the joint mixed strategys without observing any agents’ types.

Definition 6.3.5 (Ex anteexpected utility) Agenti’s ex anteexpected utility inex anteexpected
utility a Bayesian game(N,A,Θ, p, u), where the agents’ strategies are given by the

mixed-strategy profiles, is defined as

EUi(s) =
∑

θ∈Θ

p(θ)
∑

a∈A

(
∏

j∈N

sj(aj|θj)

)

ui(a, θ), (6.4)

or equivalently as

EUi(s) =
∑

θ∈Θ

p(θ)EUi(s, θ), (6.5)

or again equivalently as

EUi(s) =
∑

θi∈Θi

p(θi)EUi(s, θi). (6.6)

Next, we define best response.

Definition 6.3.6 (Best response in a Bayesian game)The set of agenti’s best re-
sponsesto mixed-strategy profiles−i are given bybest response in

a Bayesian game
BRi(s−i) = arg max

s′
i∈Si

EUi(s
′
i, s−i). (6.7)

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

170 6 Richer Representations: Beyond the Normal and Extensive Forms

Note thatBRi is a set because there may be many strategies fori that yield
the same expected utility. It may seem odd thatBR is calculated based oni’s
ex anteexpected utility. However, writeEUi(s) as

∑
θi∈Θi

p(θi)EUi(s, θi) and
observe thatEUi(s

′
i, s−i, θi) does not depend on strategies thati would play if

his type were notθi. Thus, we are in fact performing independent maximization
of i’s ex interim expected utilities conditioned on each type that he could have.
Intuitively speaking, if a certain action is best after the signal is received, it is also
the best conditional plan devised ahead of time for what to do should that signal be
received.

We are now able to define the Bayes–Nash equilibrium.

Definition 6.3.7 (Bayes–Nash equilibrium)ABayes–Nash equilibriumis a mixed-Bayes–Nash
equilibrium strategy profiles that satisfies∀i si ∈ BRi(s−i).

This is exactly the definition we gave for the Nash equilibrium in Definition 3.3.4:
each agent plays a best response to the strategies of the other players. The differ-
ence from Nash equilibrium, of course, is that the definition of Bayes–Nash equilib-
rium is built on top of the Bayesian game definitions of best response and expected
utility. Observe that we would not be able to define equilibrium in this way if an
agent’s strategies were not defined for every possible type. In order for a given
agenti to play a best response to the other agents−i, i must know what strategy
each agent would play for each of his possible types. Without this information, it
would be impossible to evaluate the termEUi(s

′
i, s−i) in Equation (6.7).

6.3.3 Computing equilibria

Despite its similarity to the Nash equilibrium, the Bayes–Nash equilibrium may
seem conceptually more complicated. However, as we did with extensive-form
games, we can construct a normal-form representation that corresponds to a given
Bayesian game.

As with games in extensive form, the induced normal form for Bayesian games
has an action for every pure strategy. That is, the actions for an agenti are the dis-
tinct mappings fromΘi toAi. Each agenti’s payoff given a pure-strategy profiles
is hisex anteexpected utility unders. Then, as it turns out, the Bayes–Nash equi-
libria of a Bayesian game are precisely the Nash equilibria of its induced normal
form. This fact allows us to note that Nash’s theorem applies directly to Bayesian
games, and hence that Bayes–Nash equilibria always exist.

An example will help. Consider the Bayesian game from Figure 6.9. Note that in
this game each agent has four possible pure strategies (two types and two actions).
Then player 1’s four strategies in the Bayesian game can be labeledUU ,UD,DU ,
andDD: UU means that 1 choosesU regardless of his type,UD that he chooses
U when he has typeθ1,1 andD when he has typeθ1,2, and so forth. Similarly, we
can denote the strategies of player 2 in the Bayesian game byRR, RL, LR, and
LL.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.3 Bayesian games 171

We now define a4× 4 normal-form game in which these are the four strategies
of the two agents, and the payoffs are the expected payoffs in the individual games,
given the agents’ common prior beliefs. For example, player 2’sex anteexpected
utility under the strategy profile(UU,LL) is calculated as follows:

u2(UU,LL) =
∑

θ∈Θ

p(θ)u2(U,L, θ)

=p(θ1,1, θ2,1)u2(U,L, θ1,1, θ2,1) + p(θ1,1, θ2,2)u2(U,L, θ1,1, θ2,2)+

p(θ1,2, θ2,1)u2(U,L, θ1,2, θ2,1) + p(θ1,2, θ2,2)u2(U,L, θ1,2, θ2,2)

=0.3(0) + 0.1(2) + 0.2(2) + 0.4(1) = 1.

Continuing in this manner, the complete payoff matrix can be constructed as
shown in Figure 6.10.

LL LR RL RR

UU 2, 1 1, 0.7 1, 1.2 0, 0.9

UD 0.8, 0.2 1, 1.1 0.4, 1 0.6, 1.9

DU 1.5, 1.4 0.5, 1.1 1.7, 0.4 0.7, 0.1

DD 0.3, 0.6 0.5, 1.5 1.1, 0.2 1.3, 1.1

Figure 6.10: Induced normal form of the game from Figure 6.9.

Now the game may be analyzed straightforwardly. For example, we can deter-
mine that player 1’s best response toRL isDU .

Given a particular signal, the agent can compute the posterior probabilities and
recompute the expected utility of any given strategy vector. Thus in the previous
example once the row agent gets the signalθ1,1 he can update the expected payoffs
and compute the new game shown in Figure 6.11.

Note that for the row player,DU is still a best response toRL; what has changed
is how much better it is compared to the other three strategies. In particular, the
row player’s payoffs are now independent of his choice of which action to take
upon observing typeθ1,2; in effect, conditional on observing typeθ1,1 the player
needs only to select a single actionU orD. (Thus, we could have written theex
interim induced normal form in Figure 6.11 as a table with four columns but only
two rows.)

Although we can use this matrix to find best responses for player 1, it turns out to
be meaningless to analyze the Nash equilibria in this payoff matrix. This is because

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

172 6 Richer Representations: Beyond the Normal and Extensive Forms

LL LR RL RR

UU 2, 0.5 1.5, 0.75 0.5, 2 0, 2.25

UD 2, 0.5 1.5, 0.75 0.5, 2 0, 2.25

DU 0.75, 1.5 0.25, 1.75 2.25, 0 1.75, 0.25

DD 0.75, 1.5 0.25, 1.75 2.25, 0 1.75, 0.25

Figure 6.11:Ex interiminduced normal-form game, where player 1 observes type
θ1,1.

these expected payoffs are not common knowledge; if the column player were to
condition on his signal, he would arrive at a different set of numbers (though, again,
for him best responses would be preserved). Ironically, it is only in the induced
normal form, in which the payoffs do not correspond to anyex interimassessment
of any agent, that the Nash equilibria are meaningful.

Other computational techniques exist for Bayesian games that also have tempo-
ral structure—that is, for Bayesian games written using the “extensive form with
chance moves” formulation, for which the game tree is smaller than its induced nor-
mal form. First, there is an algorithm for Bayesian games of perfect information
that generalizes backward induction (defined in Section 5.1.4), calledexpectimax.expectimax

algorithm Intuitively, this algorithm is very much like the standard backward induction algo-
rithm given in Figure 5.6. Like that algorithm, expectimax recursively explores a
game tree, labeling each non-leaf nodeh with a payoff vector by examining the la-
bels of each ofh’s child nodes—the actual payoffs when these child nodes are leaf
nodes—and keeping the payoff vector in which the agent who moves ath achieves
maximal utility. The new wrinkle is that chance nodes must also receive labels.
Expectimax labels a chance nodeh with a weighted sum of the labels of its child
nodes, where the weights are the probabilities that each child node will be selected.
The same idea of labeling chance nodes with the expected value of the next node’s
label can also be applied to extend the minimax algorithm (from which expectimax
gets its name) and alpha-beta pruning (see Figure 5.7) in order to solve zero-sum
games. This is a popular algorithmic framework for building computer players for
perfect-information games of chance such as Backgammon.

There are also efficient computational techniques for computing sample equi-
libria of imperfect-information extensive-form games with chance nodes. In par-
ticular, all the computational results for computing with the sequence form that
we discussed in Section 5.2.3 still hold when chance nodes are added. Intuitively,

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.3 Bayesian games 173

the only change we need to make is to replace our definition of the payoff function
(Definition 5.2.7) with an expected payoff that supplies the expected value, ranging
over Nature’s possible actions, of the payoff the agent would achieve by following
a given sequence. This means that we can sometimes achieve a substantial compu-
tational savings by working with the extensive-form representation of a Bayesian
game, rather than considering the game’s induced normal form.

6.3.4 Ex postequilibrium

Finally, working withex postutilities allows us to define an equilibrium concept
that is stronger than the Bayes–Nash equilibrium.

Definition 6.3.8 (Ex postequilibrium) Anex postequilibrium is a mixed-strategyex post
equilibrium profiles that satisfies∀θ, ∀i, si ∈ arg maxs′

i∈Si
EUi(s

′
i, s−i, θ).

Observe that this definition does not presume that each agent actuallydoesknow
the others’ types; instead, it says that no agent would ever want to deviate from his
mixed strategyeven if he knew the complete type vectorθ. This form of equilib-
rium is appealing because it is unaffected by perturbations in the type distribution
p(θ). Said another way, anex postequilibrium does not ever require any agent to
believe that the others have accurate beliefs about his own type distribution. (Note
that a standard Bayes–Nash equilibriumcan imply this requirement.) Theex post
equilibrium is thus similar in flavor to equilibria in dominant strategies, which do
not require agents to believe that other agents act rationally.

Indeed, many dominant strategy equilibria are alsoex postequilibria, making it
easy to believe that this relationship always holds. In fact, it does not, as the follow-
ing example shows. Consider a two-player Bayesian game where each agent has
two actions and two corresponding types (∀i∈N , Ai = Θi = {H,L}) distributed
uniformly (∀i∈N , P (θi = H) = 0.5), and with the same utility function for each
agenti:

ui(a, θ) =






10 ai = θ−i = θi;
2 ai = θ−i 6= θi;
0 otherwise.

In this game, each agent has a dominant strategy of choosing the action that cor-
responds to his type,ai = θi. An equilibrium in these dominant strategies is not
ex postbecause if either agent knew the other’s type, he would prefer to deviate to
playing the strategy that corresponds to the other agent’s type,ai = θ−i.

Unfortunately, another sense in whichex postequilibria are in fact similar to
equilibria in dominant strategies is that neither kind of equilibrium is guaranteed
to exist.

Finally, we note that the term “ex postequilibrium” has been used in several
different ways in the literature. One alternate usage requires that each agent’s
strategy constitute a best response not only to every possibletypeof the others,
but also to everypure strategy profilethat can be realized given the others’ mixed

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

174 6 Richer Representations: Beyond the Normal and Extensive Forms

strategies. (Indeed, this solution concept has also been applied in settings where
there is no uncertainty about agents’ types.) A third usage even more stringently
requires that no agent ever play a mixed strategy. Both of these definitions can
be useful, e.g., in the context of mechanism design (see Chapter 10). However,
the advantage of Definition 6.3.8 is that of the three, it describes the most general
prior-free equilibrium concept for Bayesian games.

6.4 Congestion games

Congestion games are a restricted class of games that are useful for modeling some
important real-world settings and that also have attractive theoretical properties.
Intuitively, they simplify the representation of a game by imposing constraints on
the effects that a single agent’s action can have on other agents’ utilities.

6.4.1 Definition

Intuitively, in a congestion game each player chooses some subset from a set of
resources, and the cost of each resource depends on the number of other agents
who select it. Formally, a congestion game is single-shotn-player game, defined
as follows.

Definition 6.4.1 (Congestion game)A congestion gameis a tuple(N,R,A, c),congestion game
where

• N is a set ofn agents;

• R is a set ofr resources;

• A = A1 × · · · × An, whereAi ⊆ 2R \ {∅} is the set ofactionsfor agenti;
and

• c = (c1, . . . , cr), whereck : N 7→ R is acost functionfor resourcek ∈ R.

The players’ utility functions are defined in terms of the cost functionsck. Define
: R × A 7→ N as a function that counts the number of players who took any
action that involves resourcer under action profilea. For each resourcek, define a
cost functionck : N 7→ R. Now we are ready to state the utility function,7 which
is the same for all players. Given a pure-strategy profilea = (ai, a−i),

ui(a) = −
∑

r∈R|r∈ai

cr(#(r, a)).

Observe that while the agents can have different actions available to them, they all
have the same utility function. Furthermore, observe that congestion games have
an anonymityproperty: players care abouthow mayothers use a given resource,anonymity

7. This utility function is negated because the cost functions are historically understood as penalties that the
agents want to minimize. We note that thecr functions are also permitted to be negative.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.4 Congestion games 175

but they do not care aboutwhichothers do so.
One motivating example for this formulation is a computer network in which

several users want to send a message from one node to another at approximately
the same time. Each link connecting two nodes is a resource, and an action for a
user is to select a path of links connecting their source and target node. The cost
function for each resource expresses the latency on each link as a function of its
congestion.

As the name suggests, a congestion game typically features functionsck(·) that
are increasing in the number of people who choose that resource, as would be the
case in the network example. However, congestion games can just as easily handle
positive externalities (or even cost functions that oscillate). A popular formulation
that captures both types of externalities is theSanta Fe (or, El Farol) Bar problem,Santa Fe Bar

problem in which each of a set of people independently selects whether or not to go to the
bar. The utility of attending increases with the number of other people who select
the same night, up to the capacity of the bar. Beyond this point, utility decreases
because the bar gets too crowded. Deciding not to attend yields a baseline utility
that does not depend on the actions of the participants.8

6.4.2 Computing equilibria

Congestion games are interesting for reasons beyond the factthat they can com-
pactly represent realisticn-player games like the examples given earlier. One par-
ticular example is the following result.

Theorem 6.4.2Every congestion game has a pure-strategy Nash equilibrium.

We defer the proof for the moment, though we note that the property is important
because mixed-strategy equilibria are open to criticisms that they are less likely
than pure-strategy equilibria to arise in practice. Furthermore, this theorem tells
us that if we want to compute a sample Nash equilibrium of a congestion game,
we can look for a pure-strategy equilibrium. Consider themyopic best-responsemyopic

best-response process, described in Figure 6.12.
By the definition of equilibrium, MYOPICBESTRESPONSEreturns a pure-strategy

Nash equilibrium if it terminates. Because this procedure is so simple, it is an ap-
pealing way to search for an equilibrium. However, in general games MYOPICBE-
STRESPONSEcan get caught in a cycle, even when a pure-strategy Nash equilib-
rium exists. For example, consider the game in Figure 6.13.

This game has one pure-strategy Nash equilibrium,(D,R). However, if we run
MYOPICBESTRESPONSEwith a = (L,U) the procedure will cycle forever. (Do
you see why?) This suggests that MYOPICBESTRESPONSEmay be too simplistic
to be useful in practice. Interestingly, itis useful for congestion games.

8. Incidentally, this problem is typically studied in a repeated game context, in which (possibly boundedly
rational) agents must learn to play an equilibrium. It is famous partly for not having a symmetric pure-
strategy equilibrium, and has been generalized with the concept ofminority games, in which agents get the
highest payoff for choosing a minority action.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

176 6 Richer Representations: Beyond the Normal and Extensive Forms

function MYOPICBESTRESPONSE(gameG, action profilea) returns a
while there exists an agenti for whomai is not a best response toa−i do

a′i ← some best response byi to a−i

a← (a′i, a−i)
return a

Figure 6.12: Myopic best response algorithm. It is invoked starting with an arbi-
trary (e.g., random) action profilea.

L C R

U −1, 1 1,−1 −2,−2

M 1,−1 −1, 1 −2,−2

D −2,−2 −2,−2 2, 2

Figure 6.13: A game on which MYOPICBESTRESPONSEcan fail to terminate.

Theorem 6.4.3TheMYOPICBESTRESPONSEprocedure is guaranteed to find a
pure-strategy Nash equilibrium of a congestion game.

6.4.3 Potential games

To prove the two theorems from the previous section, it is useful to introduce the
concept of potential games.9

Definition 6.4.4 (Potential game)A gameG = (N,A, u) is a potential gameifpotential game
there exists a functionP : A 7→ R such that, for alli ∈ N , all a−i ∈ A−i and
ai, a

′
i ∈ Ai, ui(ai, a−i)− ui(a

′
i, a−i) = P (ai, a−i)− P (a′i, a−i).

It is easy to prove the following property.

Theorem 6.4.5Every (finite) potential game has a pure-strategy Nash equilibrium.

9. The potential games we discuss here are more formally known asexact potential games, though it is
correct to shorten their name to the termpotential games. There are other variants with somewhat different
properties, such asweighted potential gamesandordinal potential games. These variants differ in the ex-
pression that appears in Definition 6.4.4; for example, ordinal potential games generalize potential games
with the conditionui(ai, a−i)−ui(a′

i, a−i) > 0 iff P (ai, a−i)−P (a′
i, a−i) > 0. More can be learned

about these distinctions by consulting the reference given in the chapter notes; most importantly, potential
games of all these variants are still guaranteed to have pure-strategy Nash equilibria.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.4 Congestion games 177

Proof. Let a∗ = arg maxa∈A P (a). Clearly for any other action profilea′,
P (a∗) ≥ P (a′). Thus by the definition of a potential function, for any agent
i who can change the action profile froma∗ to a′ by changing his own action,
ui(a

∗) ≥ ui(a
′).

Let Ir∈ai
be an indicator function that returns1 if r ∈ ai for a given actionai,

and0 otherwise. We also overload the notation# to give the expression#(r, a−i)
its obvious meaning. Now we can show the following result.

Theorem 6.4.6Every congestion game is a potential game.

Proof. We demonstrate that every congestion game has the potential function
P (a) =

∑
r∈R

∑#(r,a)

j=1 cr(j). To accomplish this, we must show that for any
agenti and any action profiles(ai, a−i) and(a′i, a−i), the difference between
the potential function evaluated at these action profiles is the same asi’s differ-
ence in utility.

P (ai, a−i)− P (a′i, a−i)

=

[
∑

r∈R

#(r,(ai,a−i))∑

j=1

cr(j)

]

−




∑

r∈R

#(r,(a′
i,a−i))∑

j=1

cr(j)





=

[
∑

r∈R

((
#(r,(a−i))∑

j=1

cr(j)

)
+ Ir∈ai

cr(j + 1)

)]
−

[
∑

r∈R

((
#(r,(a−i))∑

j=1

cr(j)

)
+ Ir∈a′

i
cr(j + 1)

)]

=

[
∑

r∈R

Ir∈ai
cr(#(r, a−i) + 1)

]
−
[
∑

r∈R

Ir∈a′
i
cr(#(r, a−i) + 1)

]

=




∑

r∈R|r∈ai

cr(#(r, (ai, a−i)))



 −




∑

r∈R|r∈a′
i

cr(#(r, (a′i, a−i)))





= ui(ai, a−i)− ui(a
′
i, a−i)

Now that we have this result, the proof to Theorem 6.4.2 (stating that every
congestion game has a pure-strategy Nash equilibrium) follows directly from The-
orems 6.4.5 and 6.4.6. Furthermore, though we do not state this result formally, it
turns out that the mapping given in Theorem 6.4.6 also holds in the other direction:
every potential game can be represented as a congestion game.

Potential games (along with their equivalence to congestion games) also make
it easy to prove Theorem 6.4.3 (stating that MYOPICBESTRESPONSEwill always
find a pure-strategy Nash equilibrium), which we had previously deferred.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

178 6 Richer Representations: Beyond the Normal and Extensive Forms

Proof of Theorem 6.4.3.By Theorem 6.4.6 it is sufficient to show that MY-
OPICBESTRESPONSEfinds a pure-strategy Nash equilibrium of any potential
game. With every step of the while loop,P (a) strictly increases, because by
constructionui(a

′
i, a−i) > ui(ai, a−i), and thus by the definition of a poten-

tial functionP (a′i, a−i) > P (ai, a−i). Since there are only a finite number of
action profiles, the algorithm must terminate.

Thus, when given a congestion game MYOPICBESTRESPONSEwill converge
regardless of the cost functions (e.g., they do not need to be monotonic), the action
profile with which the algorithm is initialized, and which agent we choose as agent
i in the while loop (when there is more than one agent who is not playing a best
response). Furthermore, we can see from the proof that it is not even necessary
that agentsbest respondat every step. The algorithm will still converge to a pure-
strategy Nash equilibrium by the same argument as long as agents deviate to a
better response. On the other hand, it has recently been shown that the problem
of finding a pure Nash equilibrium in a congestion game is PLS-complete: as hard
to find as any other object whose existence is guaranteed by a potential function
argument. Intuitively, this means that our problem is as hard as finding a local
minimum in a traveling salesman problem using local search. This cautions us to
expect that MYOPICBESTRESPONSEwill be inefficient in the worst case.

6.4.4 Nonatomic congestion games

A nonatomic congestion game is a congestion game that is played by an uncount-
ably infinite number of players. These games are used to model congestion scenar-
ios in which the number of agents is very large, and each agent’s effect on the level
of congestion is very small. For example, consider modeling traffic congestion in
a freeway system.

Definition 6.4.7 (Nonatomic congestion game)A nonatomic congestion gameisnonatomic
congestion
games

a tuple(N,µ,R,A, ρ, c), where:

• N = {1, . . . , n} is a set oftypesof players;

• µ = (µ1, . . . , µn); for eachi ∈ N there is a continuum of players represented
by the interval[0, µi];

• R is a set ofk resources;

• A = A1 × · · · ×An, whereAi ⊆ 2R \ {∅} is the set ofactionsfor agents of
typei;

• ρ = (ρ1, . . . , ρn), where for eachi ∈ N , ρi : Ai × R 7→ R+ denotes the
amount of congestion contributed to a given resourcer ∈ R by players of type
i selecting a given actionai ∈ Ai; and

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.4 Congestion games 179

• c = (c1, . . . , ck), wherecr : R+ 7→ R is acost functionfor resourcer ∈ R,
andcr is nonnegative, continuous and nondecreasing.

To simplify notation, assume thatA1, . . . , An are disjoint; denote their union
asA. Let S = R+

|A|. An action distributions ∈ S indicates how many play-
ers choose each action; bys(ai), denote the element ofs that corresponds to the
measure of the set of players of typei who select actionai ∈ Ai. An action dis-
tribution s must have the properties that all entries are nonnegative real numbers
and that

∑
ai∈Ai

s(ai) = µi. Note thatρi(ai, r) = 0 whenr 6∈ ai. Overloading
notation, we write assr the amount of congestion induced on resourcer ∈ R by
action distributions:

sr =
∑

i∈N

∑

ai∈Ai

ρi(ai, r)s(ai).

We can now express the utility function. As in (atomic) congestion games, all
agents have the same utility function, and the function depends only on how many
agents choose each action rather than on these agents’ identities. Bycai,s we de-
note the cost, under an action distributions, to agents of typei who choose action
ai. Then

cai
(s) =

∑

r∈ai

ρ(ai, r)cr(sr),

and so we haveui(ai, s) = −cai
(s). Finally, we can define thesocial costof an

action profile as the total cost born by all the agents,

C(s) =
∑

i∈N

∑

ai∈Ai

s(ai)cai
(s).

Despite the fact that we have an uncountably infinite number ofagents, we can
still define a Nash equilibrium in the usual way.

Definition 6.4.8 (Pure-strategy Nash equilibrium of a nonatomic congestion game)
An action distributions arises in a pure-strategy equilibrium of a nonatomic con-
gestion game if for each player typei ∈ N and each pair of actionsa1, a2 ∈ Ai

with s(a1) > 0, ui(a1, s) ≥ ui(a2, s) (and henceca1
(s) ≤ ca2

(s)).

A couple of warnings are in order. First, the attentive reader will have noticed
that we have glossed over the difference between actions and strategies. This is
to simplify notation, and because we will only be concerned with pure-strategy
equilibria. We do note that results exist concerning mixed-strategy equilibria of
nonatomic congestion games; see the references cited at the end of the chapter.
Second, we say only that an action distributionarises inan equilibrium because an
action distribution does not identify the action taken by every individual agent, and
hence cannotconstitutean equilibrium. Nevertheless, from this point on we will
ignore these issues.

We can now state some properties of nonatomic congestion games.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

180 6 Richer Representations: Beyond the Normal and Extensive Forms

Theorem 6.4.9Every nonatomic congestion game has a pure-strategy Nash equi-
librium.

Furthermore, limiting ourselves by considering only pure-strategy equilibria is
in some sense not restrictive.

Theorem 6.4.10All equilibria of a nonatomic congestion game have equal social
cost.

Intuitively, because the players are nonatomic, any mixed-strategy equilibrium
corresponds to an “equivalent” pure-strategy equilibrium where the number of
agents playing a given action is the expected number under the original equilib-
rium.

6.4.5 Selfish routing and the price of anarchy

Selfish routingis a model of how self-interested agents would route traffic throughselfish routing
a congested network. This model was studied as early as 1920—long before game
theory developed as a field. Today, we can understand these problems as nonatomic
congestion games.

Defining selfish routing

First, let us formally define the problem. LetG = (V,E) be a directed graph
havingn source–sink pairs(s1, t1), . . . , (sn, tn). Some volume of traffic must be
routed from each source to each sink. For a given source–sink pair(si, ti) let Pi

denote the set of simple paths fromsi to ti. We assume thatP 6= ∅ for all i; it is
permitted for there to be multiple “parallel” edges between the same pair of nodes
in V , and for paths fromPi andPj (j 6= i) to share edges. Letµ ∈ R

n
+ denote a

vector oftraffic rates; µi denotes the amount of traffic that must be routed fromsi

to ti. Finally, every edgee ∈ E is associated with a cost functionce : R+ 7→ R

(think of it an amount of delay) that can depend on the amount of traffic carried by
the edge. The problem in selfish routing is to determine how the given traffic rates
will lead traffic to flow along each edge, assuming that agents are selfish and will
direct their traffic to minimize the sum of their own costs.

Selfish routing problems can be encoded as nonatomic congestion games as fol-
lows:

• N is the set of source–sink pairs;

• µ is the set of traffic rates;

• R is the set of edgesE;

• Ai is the set of pathsPi fromsi to ti;

• ρi is always1; and

• cr is the edge cost functionce.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.4 Congestion games 181

The price of anarchy

From the above reduction to nonatomic congestion games and from Theorems 6.4.9
and 6.4.10 we can conclude that every selfish routing problem has at least one pure-
strategy Nash equilibrium,10 and that all of a selfish routing problem’s equilibria
have equal social cost. These properties allow us to ask an interesting question:
how similar is the optimal social cost to the social cost under an equilibrium action
distribution?

Definition 6.4.11 (Price of anarchy)Theprice of anarchyof a nonatomic conges-price of anarchy
tion game(N,µ,R,A, ρ, c) having equilibriums and social cost minimizing ac-
tion distributions∗ is defined asC(s)

C(s∗)
unlessC(s∗) = 0, in which case the price

of anarchy is defined to be1.

Intuitively, the price of anarchy is the proportion of additional social cost that
is incurred because of agents’ self-interested behavior. When this ratio is close
to 1 for a selfish routing problem, one can conclude that the agents are routing
traffic about as well as possible, given the traffic rates and network structure. When
this ratio is large, however, the agents’ selfish behavior is causing significantly
suboptimal network performance. In this latter case one might want to seek ways
of changing either the network or the agents’ behavior in order to reduce the social
cost.

To gain a better understanding of the price of anarchy, and to lay the groundwork
for some theoretical results, consider the examples in Figure 6.14.

s

c(x)=1

c(x)=x

t s

c(x)=1

c(x)=xp

t

Figure 6.14: Pigou’s example: a selfish routing problem with an interesting price
of anarchy. Left: linear version; right: nonlinear version.

In this example there is only one type of agent (n= 1) and the rate of traffic is
1 (µ1 = 1). There are two paths froms to t, one of which is relatively slow but
immune to congestion, and the other of which has congestion-dependent cost.

Consider first the linear version of the problem given in Figure 6.14 (left). It
is not hard to see that the Nash equilibrium is for all agents to choose the lower
edge—indeed, this is a Nash equilibrium in dominant strategies. The social cost
of this Nash equilibrium is1. Consider what would happen if we required half
of the agents to choose the upper edge, and the other half of the agents to choose
the lower edge. In this case the social cost would be3/4, because half the agents
would continue to pay a cost of1, while half the agents would now pay a cost of

10. In the selfish routing literature these equilibria are known as Wardrop equilibria, after the author who
first proposed their use. For consistency we avoid that term here.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

182 6 Richer Representations: Beyond the Normal and Extensive Forms

only 1/2. It is easy to show that this is the smallest social cost that can be achieved
in this example, meaning that the price of anarchy here is4/3.

Now consider the nonlinear problem given in Figure 6.14 (right), wherep is
some large value. Again in the Nash equilibrium all agents will choose the lower
edge, and again the social cost of this equilibrium is1. Social cost is minimized
when the marginal costs of the two edges are equalized; this occurs when a(p +
1)−1/p fraction of the agents choose the lower edge. In this case the social cost is
1− p · (p+ 1)−(p+1)/p, which approaches 0 asp→∞. Thus we can see that the
price of anarchy tends to infinity in the nonlinear version of Pigou’s example asp
grows.

Bounding the price of anarchy

These examples illustrate that the price of anarchy is unbounded for unrestricted
cost functions. On the other hand, it turns out to be possible to offer bounds in the
case where cost functions are restricted to a particular setC. First, we must define
the so-called Pigou bound:

α(C) = sup
c∈C

sup
x,µ≥0

r · c(r)
x · c(x) + (r − x)c(r) .

Whenα(C) evaluates to0
0
, we define it to be 1. We can now state a surprisingly

strong result.

Theorem 6.4.12The price of anarchy of a selfish routing problem whose cost func-
tions are taken from the setC is never more thanα(C).

Observe that Theorem 6.4.12 makes a very broad statement, bounding a self-
ish routing problem’s price of anarchy regardless of network structure and for any
given family of cost functions. Becauseα appears difficult to evaluate, one might
find it hard to get excited about this result. However,α can be evaluated for a
variety of interesting sets of cost functions. For example, whenC is the set of lin-
ear functionsax + b with a, b ≥ 0, α(C) = 4/3. Indeed,α(C) takes the same
value whenC is the set of all convex functions. This means that the bound from
Theorem 6.4.12 is tight for this set of functions: Pigou’s linear example from Fig-
ure 6.14 (left) uses only convex cost functions and we have already shown that this
problem has a price of anarchy of precisely4/3. The linear version of Pigou’s
example thus serves as a worst case for the price of anarchy among all selfish rout-
ing problems with convex cost functions. Because the price of anarchy is relatively
close to 1 for networks with convex edge costs, this result indicates that centralized
control of traffic offers limited benefit in this case.

What about other families of cost functions, such as polynomials with nonneg-
ative coefficients and bounded degree? It turns out that the Pigou bound is also
tight for this family and that the nonlinear variant of Pigou’s example offers the
worst-possible price of anarchy in this case (wherep is the bound on the polyno-
mials’ degree). For this familyα(C) = [1− p · (p+ 1)−(p+1)/p]−1. To give some

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.4 Congestion games 183

examples, this means that the price of anarchy is about1.6 for p = 2, about2.2
for p = 4, about18 for p = 100 and—as it was earlier—unbounded asp→∞.

Results also exist bounding the price of anarchy for general nonatomic conges-
tion games. It is beyond the scope of this section to state these results formally,
but we note that they are qualitatively similar to the results given above. More
information can be found in the references cited in the chapter notes.

Reducing the social cost of selfish routing

When the equilibrium social cost is undesirably high, a network operator might
want to intervene in some way in order to reduce it. First, we give an example to
show that such interventions are possible, known asBraess’ paradox.Braess’ paradox

v

c(x)=1

c(x)=0s

c(x)=x

c(x)=1

t

w

c(x)=x

v

c(x)=1

s

c(x)=x

c(x)=1

t

w

c(x)=x

Figure 6.15: Braess’ paradox: removing an edge that has zero cost can improve
social welfare. Left: original network; Right: after edge removal.

Consider first the example in Figure 6.15 (Left). This selfish routing problem
is essentially a more complicated version of the linear version of Pigou’s example
from Figure 6.14 (left). Againn = 1 andµ1 = 1. Agents have a weakly dominant
strategy of choosing the paths-v-w-t, and so in equilibrium all traffic will flow
along this path. The social cost in equilibrium is therefore 1. Minimal social cost
is achieved by having half of the agents choose the paths-v-t and having the other
half of the agents choose the paths-w-t; the social cost in this case is3/4. Like
the linear version of Pigou’s example, therefore, the price of anarchy is4/3.

The interesting thing about this new example is the role played by the edgev-
w. One might intuitively believe that zero-cost edges can onlyhelp in routing
problems, because they provide agents with a costless way of routing traffic from
one node to another. At worst, one might reason, such edges would be ignored.
However, this intuition is wrong. Consider the network in Figure 6.15 (right). This
network was constructed from the network in Figure 6.15 (left) by removing the
zero-cost edgev-w. In this modified problem agents no longer have a dominant
strategy; the equilibrium is for half of them to choose each path. This is also the
optimal action distribution, and hence the price of anarchy in this case is1. We can
now see the (apparent) paradox: removing even a zero-cost edge can transform a
selfish routing problem from the very worst (a network having the highest price of

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

184 6 Richer Representations: Beyond the Normal and Extensive Forms

anarchy possible given its family of cost functions) to the very best (a network in
which selfish agents will choose to route themselves optimally).

A network operator facing a high price of anarchy might therefore want to re-
move one or more edges in order to improve the network’s social cost in equilib-
rium. Unfortunately, however, the problem of determining which edges to remove
is computationally hard.

Theorem 6.4.13It is NP-complete to determine whether there exists any set of
edges whose removal from a selfish routing problem would reduce the social cost
in equilibrium.

In particular, this result implies that identifying the optimal set of edges to re-
move from a selfish routing problem in order to minimize the social cost in equi-
librium is also NP-complete.

Of course, it is always possible to reduce a network’s social cost in equilibrium
by reducing all of the edge costs. (This could be done in an electronic network, for
example, by installing faster routers.) Interestingly, even in the case where the edge
functions are unconstrained and the price of anarchy is therefore unbounded, a rela-
tively modest reduction in edge costs can outperform the imposition of centralized
control in the original network.

Theorem 6.4.14Let Γ be a selfish routing problem, and letΓ′ be identical toΓ
except that each edge costce(x) is replaced byc′e(x) = ce(x/2)/2. The social
cost in equilibrium ofΓ′ is less than or equal to theoptimalsocial cost inΓ.

This result suggests that when it is relatively inexpensive to speed up a network,
doing so can have more significant benefits than getting agents to change their
behavior.

Finally, we will briefly mention two other methods of reducing social cost in
equilibrium. First, in so-calledStackelberg routinga small fraction of agents areStackelberg

routing routed centrally, and the remaining population of agents is free to choose their own
actions. It should already be apparent from the example in Figure 6.14 (right) that
such an approach can be very effective in certain networks. Second, taxes can be
imposed on certain edges in the graph in order to encourage agents to adopt more
socially beneficial behavior. The dominant idea here is to charge agents according
to “marginal cost pricing”—each agent pays the amount his presence cost other
agents who are using the same edge.11 Under certain assumptions taxes can be set
up in a way that induces optimal action distributions; however, the taxes themselves
can be very large. Various papers in the literature elaborate on and refine both of
these ideas.

11. Here we anticipate the idea ofmechanism design, introduced in Chapter 10, and especially the VCG
mechanism from Section 10.4.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.5 Computationally motivated compact representations 185

6.5 Computationally motivated compact representations

So far we have examined game representations that are motivated primarily by the
goals of capturing relevant details of real-world domains and of showing that all
games expressible in the representation share useful theoretical properties. Many
of these representations—especially the normal and extensive forms—suffer from
the problem that their encodings of interesting games are so large as to be impracti-
cal. For example, when you describe to someone the rules of poker, you do not give
them a normal or extensive-form description; such a description would fill volumes
and be almost unintelligible. Instead, you describe the rules of the game in a very
compact form, which is possible because of the inherent structure of the game. In
this section we explore some computationally motivated alternative representations
that allow certain large games to be compactly described and also make it possible
to efficiently find an equilibrium. The first two representations, graphical games
and action-graph games, apply to normal-form games, while the following two,
multiagent influence diagrams and the GALA language, apply to extensive-form
games.

6.5.1 The expected utility problem

We begin by defining a problem that is fundamental to the discussion of computa-
tionally motivated compact representations.

Definition 6.5.1 (EXPECTEDUTILITY) Given a game (possibly represented in a
compact form), a mixed-strategy profiles, and i ∈ N , the EXPECTEDUTILITY

problem is to computeEUi(s), the expected utility of playeri under mixed-strategy
EXPECTEDUTILITY

problem
profile s.

Our chief interest in this section will be in the computational complexity of the
EXPECTEDUTILITY problem for different game representations. When we consid-
ered normal-form games, we showed (in Definition 3.2.7) that EXPECTEDUTILITY

can be computed as

EUi(s) =
∑

a∈A

ui(a)

n∏

j=1

sj(aj). (6.8)

If we interpret Equation (6.8) as a simple algorithm, we have a way of solving
EXPECTEDUTILITY in time exponential in the number of agents. This algorithm is
exponential because, assuming for simplicity that all agents have the same number
of actions, the size ofA is |Ai|n. However, since the representation size of a
normal-form game is itself exponential in the number of agents (it isO(|Ai|n)),
the problem can in fact be solved in time linear in the size of the representation.
Thus EXPECTEDUTILITY does not appear to be very computationally difficult.

Interestingly though, as game representations become exponentially more com-
pact than the normal form, it grows more challenging to solve the EXPECTEDU-

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

186 6 Richer Representations: Beyond the Normal and Extensive Forms

TILITY problem efficiently. This is because our simple algorithm given by Equa-
tion (6.8) requires time exponential in the size of such more compact representa-
tions. The trick with compact representations, therefore, will not be simply finding
some way of representing payoffs compactly—indeed, there are any number of
schemes from the compression literature that could achieve this goal. Rather, we
will want the additional property that the compactness of the representation can be
leveraged by an efficient algorithm for computing EXPECTEDUTILITY .

The first challenge is to ensure that the inputs to EXPECTEDUTILITY can be
specified compactly.

Definition 6.5.2 (Polynomial type) A game representation haspolynomial typepolynomial type
if the number of agentsn and the sizes of the action sets|Ai| are polynomially
bounded in the size of the representation.

Representations always have polynomial type when their action sets are specified
explicitly. However, some representations—such as the extensive form—implicitly
specify action spaces that are exponential in the size of the representation and so
do not have polynomial type.

When we combine the polynomial type requirement with a further requirement
about EXPECTEDUTILITY being efficiently computable, we obtain the following
theorem.

Theorem 6.5.3 If a game representation satisfies the following properties:

1. the representation has polynomial type; and

2. EXPECTEDUTILITY can be computed using an arithmetic binary circuit con-
sisting of a polynomial number of nodes, where each node evaluates to a con-
stant value or performs addition, subtraction or multiplication on its inputs;

then the problem of finding a Nash equilibrium in this representation can be re-
duced to the problem of finding a Nash equilibrium in a two-player normal-form
game that is only polynomially larger.

We know from Theorem 4.2.1 in Section 4.2 that the problem of finding a Nash
equilibrium in a two-player normal-form game is PPAD-complete. Therefore this
theorem implies that if the above condition holds, the problem of finding a Nash
equilibrium for a compact game representation is in PPAD. This should be under-
stood as a positive result: if a game in its compact representation is exponentially
smaller than its induced normal form, and if computing an equilibrium for this rep-
resentation belongs to the same complexity class as computing an equilibrium of
a normal-form game, then equilibria can be computed exponentially more quickly
using the compact representation.

Observe that the second condition in Theorem 6.5.3 implies that the EXPECTE-
DUTILITY algorithm takes polynomial time; however, not every polynomial-time
algorithm will satisfy this condition. Congestion games are an example of games

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.5 Computationally motivated compact representations 187

that do meet the conditions of Theorem 6.5.3. We will see two more such represen-
tations in the next sections.

What about extensive-form games, which do not have polynomial type—might
it be harder to compute their Nash equilibria? Luckily we can use behavioral strate-
gies, which can be represented linearly in the size of the game tree. Then we obtain
the following result.

Theorem 6.5.4The problem of computing a Nash equilibrium in behavioral strate-
gies in an extensive-form game can be polynomially reduced to finding a Nash
equilibrium in a two-player normal-form game.

This shows that the speedups we achieved by using the sequence form in Sec-
tion 5.2.3 were not achieved simply because of inefficiency in our algorithms for
normal-form games. Instead, there is a fundamental computational benefit to work-
ing with extensive-form games, at least when we restrict ourselves to behavioral
strategies.

Fast algorithms for solving EXPECTEDUTILITY are useful for more than just
demonstrating the worst-case complexity of finding a Nash equilibrium for a game
representation. EXPECTEDUTILITY is also a bottleneck step in several practical
algorithms for computing Nash equilibria, such as the Govindan–Wilson algorithm
or simplicial subdivision methods (see Section 4.3). Plugging a fast method for
solving EXPECTEDUTILITY into one of these algorithms offers a simple way of
more quickly computing a Nash equilibrium of a compactly represented game.

The complexity of the EXPECTEDUTILITY problem is also relevant to the com-
putation of solution concepts other than the Nash equilibrium.

Theorem 6.5.5 If a game representation has polynomial type and has a polyno-
mial algorithm for computingEXPECTEDUTILITY , then a correlated equilibrium
can be computed in polynomial time.

The attentive reader may recall that we have already showed (in Section 4.6)
that correlated equilibria can be identified in polynomial time by solving a linear
program (Equations (4.52)–(4.54)). Thus, Theorem 6.5.5 may not seem very inter-
esting. The catch, as with expected utility, is that while this LP has size polynomial
in size of the normal form, its size would be exponential in the size of many com-
pact representations. Specifically, there is one variable in the linear program for
each action profile, and so overall the linear program has size exponential in any
representation for which the simple EXPECTEDUTILITY algorithm discussed ear-
lier is inadequate. Indeed, in these cases evenrepresentinga correlated equilibrium
using these probabilities of action profiles would be exponential. Theorem 6.5.5 is
thus a much deeper result than it may first seem. Its proof begins by showing that
there exists a correlated equilibrium of every compactly represented game that can
be written as the mixture of a polynomial number ofproduct distributions, where
a product distribution is a joint probability distribution over action profiles aris-
ing from each player independently randomizing over his actions (i.e., adopting a

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

188 6 Richer Representations: Beyond the Normal and Extensive Forms

mixed-strategy profile). Since the theorem requires that the game representation
has polynomial type, each of these product distributions can be compactly repre-
sented. Thus a polynomial mixture of product distributions can also be represented
polynomially. The rest of the proof appeals to linear programming duality and to
properties of the ellipsoid algorithm.

6.5.2 Graphical games

Graphical gamesare a compact representation of normal-form games that use
graphical models to capture thepayoff independencestructure of the game. In-
tuitively, a player’s payoff matrix can be written compactly if his payoff is affected
only by a subset of the other players.

Let us begin with an example, which we call the Road game. Considern agents,
each of whom has purchased a piece of land alongside a road. Each agent has to
decide what to build on his land. His payoff depends on what he builds himself,
what is built on the land to either side of his own, and what is built across the road.
Intuitively, the payoff relationships in this situation can be understood using the
graph shown in Figure 6.16, where each node represents an agent.

Figure 6.16: Graphical game representation of the Road game.

Now let us define the representation formally. First, we define a neighborhood
relation on a graph: the set of nodes connected to a given node, plus the node itself.

Definition 6.5.6 (Neighborhood relation) For a graph defined on a set of nodes
N and edgesE, for everyi ∈ N define theneighborhood relationν : N 7→ 2Nneighborhood

relation asν(i) = {i} ∪ {j|(j, i) ∈ E}.

Now we can define the graphical game representation.

Definition 6.5.7 (Graphical game)Agraphical gameis a tuple(N,E,A, u), where:graphical game

• N is a set ofn vertices, representing agents;

• E is a set of undirected edges connecting the nodesN ;

• A = A1 × · · · ×An, whereAi is the set of actions available to agenti; and

• u = (u1, . . . , un), ui : A(i) 7→ R, whereA(i) =
∏

j∈ν(i)Aj .

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.5 Computationally motivated compact representations 189

An edge between two vertices in the graph can be interpreted as meaning that the
two agents are able to affect each other’s payoffs. In other words, whenever two
nodesi andj arenot connected in the graph, agentimust always receive the same
payoff under any action profiles(aj, a−j) and(a′j , a−j), aj, a

′
j ∈ Aj . Graphical

games can represent any game, but of course they are not always compact. The
space complexity of the representation is exponential in the size of the largestν(i).
In the example above the size of the largestν(i) is 4, and this is independent
of the total number of agents. As a result, the graphical game representation of
the example requires space polynomial inn, while a normal-form representation
would require space exponential inn.

The following is sufficient to show that the properties we discussed above in
Section 6.5.1 hold for graphical games.

Lemma 6.5.8 TheEXPECTEDUTILITY problem can be computed in polynomial
time for graphical games, and such an algorithm can be translated to an arithmetic
circuit as required by Theorem 6.5.3.

The way that graphical games capture payoff independence in games is similar
to the way that Bayesian networks and Markov random fields capture conditional
independence in multivariate probability distributions. It should therefore be unsur-
prising that many computations on graphical games can be performed efficiently us-
ing algorithms similar to those proposed in the graphical models literature. For ex-
ample, when the graph(N,E) defines a tree, a message-passing algorithm called
NASHPROPcan compute anǫ-Nash equilibrium in time polynomial in1/ǫ and the
size of the representation. NASHPROP consists of two phases: a “downstream”
pass in which messages are passed from the leaves to the root and then an “up-
stream” pass in which messages are passed from the root to the leaves. When the
graph is a path, a similar algorithm can find an exact equilibrium in polynomial
time.

We may also be interested in finding pure-strategy Nash equilibria. Determining
whether a pure-strategy equilibrium exists in a graphical game is NP-complete.
However, the problem can be formulated as a constraint satisfaction problem (or
alternatively as a Markov random field) and solved using standard algorithms. In
particular, when the graph has constanttreewidth,12 the problem can be solved in
polynomial time.

Graphical games have also been useful as a theoretical tool. For example, they
are instrumental in the proof of Theorem 4.2.1, which showed that finding a sample
Nash equilibrium of a normal-form game is PPAD-complete. Intuitively, graphical
games are important to this proof because such games can be constructed to simu-
late arithmetic circuits in their equilibria.

12. A graph’streewidth is a measure of how similar the graph is to a tree. It is defined using thetree
decompositionof the graph. Many NP-complete problems on graphs can be solved efficiently when a graph
has small treewidth.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

190 6 Richer Representations: Beyond the Normal and Extensive Forms

6.5.3 Action-graph games

Consider a scenario similar to the Road game given in Section 6.5.2, but with one
major difference: instead of deciding what to build, here agents need to decide
whereto build. Suppose each of then agents is interested in opening a business
(say a coffee shop), and can choose to locate in any block along either side of a
road. Multiple agents can choose the same block. Agenti’s payoff depends on the
number of agents who chose the same block as he did, as well as the numbers of
agents who chose each of the adjacent blocks of land. This game has an obvious
graphical structure, which is illustrated in Figure 6.17. Here nodes correspond to
actions, and each edge indicates that an agent who takes one action affects the
payoffs of other agents who take some second action.

B1 B3

T4

B4B2

T3T2T1

B5 B7

T8

B8B6

T7T6T5

Figure 6.17: Modified Road game.

Notice that any pair of agents can potentially affect each other’s payoffs by
choosing the same or adjacent locations. This means that the graphical game repre-
sentation of this game is a clique, and the space complexity of this representation
is the same as that of the normal form (exponential inn). The problem is that
graphical games are only compact for games withstrict payoff independencies:
that is, where there exist pairs of players who can never (directly) affect each other.
This game exhibitscontext-specific independenceinstead: whether two agents are
able to affect each other’s payoffs depends on the actions they choose. The action-
graph game (AGG) representation exploits this kind of context-specific indepen-
dence. Intuitively, this representation is built around the graph structure shown in
Figure 6.17. Since this graph has actions rather than agents serving as the nodes, it
is referred to as an action graph.

Definition 6.5.9 (Action graph) An action graphis a tuple(A, E), whereA is aaction graph
set of nodes corresponding to actions andE is a set of directed edges.

We want to allow for settings where agents have different actions available to
them, and hence where an agent’s action set is not identical toA. (For example, no
two agents could be able to take the “same” action, or every agent could have the
same action set as in Figure 6.17.) We thus define as usual a set of action profiles
A = A1×· · ·×An, and then letA =

⋃
i∈N Ai. If two actions by different agents

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.5 Computationally motivated compact representations 191

have the same name, they will collapse to the same element ofA; otherwise they
will correspond to two different elements ofA.

Given an action graph and a set of agents, we can further define aconfiguration,
which is a possible arrangement of agents over nodes in an action graph.

Definition 6.5.10 (Configuration) Given an action graph(A, E) and a set of ac-
tion profilesA, a configurationc is a tuple of|A| nonnegative integers, where theconfiguration (of

an action-graph
game)

kth elementck is interpreted as the number of agents who chose thekth action
αk ∈ A, and where there exists somea ∈ A that would give rise toc. Denote the
set of all configurations asC.

Observe that multiple action profiles might give rise to the same configuration,
because configurations simply count the number of agents who took each action
without worrying about which agent took which action. For example, in the Road
game all action profiles in which exactly half of the agents take actionT1 and ex-
actly half the agents take actionB8 give rise to the same configuration. Intuitively,
configurations will allow AGGs to compactly representanonymitystructure: casesanonymity
where an agent’s payoffs depend on the aggregate behavior of other agents, but not
on which particular agents take which actions. Recall that we saw such structure
in congestion games (Section 6.4).

Intuitively, we will use the edges of the action graph to denote context-specific
independence relations in the game. Just as we did with graphical games, we will
define a utility function that depends on the actions taken in some local neighbor-
hood. As it was for graphical games, the neighborhoodν will be defined by the
edgesE; indeed, we will use exactly the same definition (Definition 6.5.6). In
action graph games the idea will be that the payoff of a player playing an action
α ∈ A only depends on the configuration over the neighbors ofα.13 We must
therefore define notation for such a configuration over a neighborhood. LetC(α)

denote the set of all restrictions of configurations to the elements corresponding to
the neighborhood ofα ∈ A. (That is, eachc ∈ C(α) is a tuple of length|ν(α)|.)
Thenuα, the utility for anyagent who takes actionα ∈ A, is a mapping fromC(α)

to the real numbers.
Summing up, we can state the formal definition of action-graph games as fol-

lows.

Definition 6.5.11 Anaction-graph game (AGG)is a tuple(N,A, (A, E), u), whereaction-graph
game (AGG)

• N is the set of agents;

• A = A1 × · · · ×An, whereAi is the set of actions available to agenti;

• (A, E) is an action graph, whereA =
⋃

i∈N Ai is the set of distinct actions;
and

13. We use the notationα rather thana to denote an element ofA in order to emphasize that we speak about
a single action rather than an action profile.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

192 6 Richer Representations: Beyond the Normal and Extensive Forms

• u = {uα|α ∈ A}, uα : C(α) 7→ R.

Since each utility function is a mapping only from the possible configurations
over the neighborhood of a given action, the utility function can be represented
concisely. In the Road game, since each node has at most four incoming edges, we
only need to storeO(n4) numbers for each node, andO(|A|n4) numbers for the
entire game. In general, when the in-degree of the action graph is bounded by a
constant, the space complexity of the AGG representation is polynomial inn.

Like graphical games, AGGs are fully expressive. Arbitrary normal-form games
can be represented as AGGs with nonoverlapping action sets. Graphical games can
be encoded in the same way, but with a sparser edge structure. Indeed, the AGG
encoding of a graphical game is just as compact as the original graphical game.

Although it is somewhat involved to show why this is true, AGGs have the theo-
retical properties we have come to expect from a compact representation.

Theorem 6.5.12Given an AGG,EXPECTEDUTILITY can be computed in time
polynomial in the size of the AGG representation by an algorithm represented as
an arithmetic circuit as required by Theorem 6.5.3. In particular, if the in-degree
of the action graph is bounded by a constant, the time complexity is polynomial in
n.

The AGG representation can be extended to includefunction nodes, which are
special nodes in the action graph that do not correspond to actions. For each func-
tion nodep, cp is defined as a deterministic function of the configuration of its
neighborsν(p). Function nodes can be used to represent a utility function’sinter-
mediate parameters, allowing the compact representation of games with additional
forms of independence structure. Computationally, when a game with function
nodes has the property that each player affects the configurationc independently,
EXPECTEDUTILITY can still be computed in polynomial time. AGGs can also be
extended to exploit additivity in players’ utility functions. Given both of these ex-
tensions, AGGs are able to compactly represent a broad array of realistic games,
including congestion games.

6.5.4 Multiagent influence diagrams

Multiagent influence diagrams(MAIDs) are a generalization ofinfluence diagramsmultiagent
influence
diagrams
(MAIDs)

(IDs), a compact representation for decision-theoretic reasoning in the single-agent
case. Intuitively, MAIDs can be seen as a combination of graphical games and
extensive-form games with chance moves (see Section 6.3). Not all variables
(moves by nature) and action nodes depend on all other variables and action nodes,
and only the dependencies need to be represented and reasoned about.

We will give a brief overview of MAIDs using the following example. Alice is
considering building a patio behind her house, and the patio would be more valu-
able to her if she could get a clear view of the ocean. Unfortunately, there is a tree
in her neighbor Bob’s yard that blocks her view. Being somewhat unscrupulous,

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.5 Computationally motivated compact representations 193

Alice considers poisoning Bob’s tree, which might cause it to become sick. Bob
cannot tell whether Alice has poisoned his tree, but he can tell if the tree is getting
sick, and he has the option of calling in a tree doctor (at some cost). The attention
of a tree doctor reduces the chance that the tree will die during the coming win-
ter. Meanwhile, Alice must make a decision about building her patio before the
weather gets too cold. When she makes this decision, she knows whether a tree
doctor has come, but she cannot observe the health of the tree directly. A MAID
for this scenario is shown in Figure 6.18.

ViewCost

BuildPatio

PoisonTree

Tree

TreeDoctor

TreeDead

TreeSick

Figure 6.18: A multiagent influence diagram. Nodes for Alice are in dark gray,
while Bob’s are in light gray.

Chance variables are represented as ovals, decision variables as rectangles, and
utility variables as diamonds. Each variable has a set of parents, which may be
chance variables or decision variables. Each chance node is characterized by a
conditional probability distribution, which defines a distribution over the variable’s
domain for each possible instantiation of its parents. Similarly, each utility node
records the conditional value for the corresponding agent. If multiple utility nodes
exist for the same agent, as they do for in this example for Bob, the total utility is
simply the sum of the values from each node. Decision variables differ in that their
parents (connected by dotted arrows) are the variables that an agent observes when
making his decision. This allows us to represent the information sets in a compact
way.

For each decision node, the corresponding agent constructs a decision rule, which
is a distribution over the domain of the decision variable for each possible instan-
tiation of this node’s parents. A strategy for an agent consists of a decision rule
for each of his decision nodes. Since a decision node acts as a chance node once
its decision rule is set, we can calculate the expected utility of an agent given a

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

194 6 Richer Representations: Beyond the Normal and Extensive Forms

strategy profile. As you would expect, a strategy profile is a Nash equilibrium in a
MAID if no agent can improve its expected utility by switching to a different set
of decision rules.

This example shows several of the advantages of the MAID representation over
the equivalent extensive-form game representation. Since there are a total of five
chance and decision nodes and all variables are binary, the game tree would have
32 leaves, each with a value for both agents. In the MAID, however, we only need
four values for each agent to fill tables for the utility nodes. Similarly, redundant
chance nodes of the game tree are replaced by small conditional probability tables.
In general, the space savings of MAIDs can be exponential (although it is possible
that this relationship is reversed if the game tree is sufficiently asymmetric).

The most important advantage of MAIDs is that they allow more efficient algo-
rithms for computing equilibria, as we will informally show for the example. The
efficiency of the algorithm comes from exploiting the property ofstrategic rele-
vancein a way that is related to backward induction in perfect-information games.strategic

relevance A decision nodeD2 is strategically relevant to another decision nodeD1 if, to
optimize the rule atD1, the agent needs to consider the rule atD2. We omit a
formal definition of strategic relevance, but point out that it can be computed in
polynomial time.

No decision nodes are strategically relevant toBuildPatiofor Alice, because she
observes both of the decision nodes (PoisonTreeandTreeDoctor) that could affect
her utility before she has to make this decision. Thus, when finding an equilibrium,
we can optimize this decision rule independently of the others and effectively con-
vert it into a chance node. Next, we observe thatPoisonTreeis not strategically
relevant toTreeDoctor, because any influence thatPoisonTreehas on a utility node
for Bob must go throughTreeSick, which is a parent ofTreeDoctor. After optimiz-
ing this decision node, we can obviously optimizePoisonTreeby itself, yielding an
equilibrium strategy profile.

Obviously not all games allow such a convenient decomposition. However, as
long as there exists some subset of the decision nodes such that no node outside
of this subset is relevant to any node in the subset, then we can achieve some com-
putational savings by jointly optimizing the decision rules for this subset before
tackling the rest of the problem. Using this general idea, an equilibrium can often
be found exponentially more quickly than in standard extensive-form games.

An efficient algorithm also exists for computing EXPECTEDUTILITY for MAIDs.

Theorem 6.5.13The EXPECTEDUTILITY problem for MAIDs can be computed
in time polynomial in the size of the MAID representation.

Unfortunately the only known algorithm for efficiently solving EXPECTEDU-
TILITY in MAIDS uses division and so cannot be directly translated to an arith-
metic circuit as required in Theorem 6.5.3, which does not allow division opera-
tions. It is unknown whether the problem of finding a Nash equilibrium in a MAID
can be reduced to finding a Nash equilibrium in a two-player game. Nevertheless
many other applications for computing EXPECTEDUTILITY we discussed in Sec-

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.5 Computationally motivated compact representations 195

tion 6.5.1 apply to MAIDs. For example, the EXPECTEDUTILITY algorithm can
be used as a subroutine to Govindan and Wilson’s algorithm for computing Nash
equilibria in extensive-form games (see Section 4.3).

6.5.5 GALA

While MAIDs allow us to capture exactly the relevant information needed to make
a decision at each point in the game, we still need to explicitly record each choice
point of the game. When, instead of modeling real-world setting, we are modeling
a board or card game, this task would be rather cumbersome, if not impossible. The
key property of these games that is not being exploited is their repetitive nature—
the game alternates between the opponents whose possible moves are independent
of the depth of the game tree, and can instead be defined in terms of the current
state of the game and an unchanging set of rules. The Prolog-based languageGALAGALA
exploits this fact to allow concise specifications of large, complex games.

We present the main ideas of the language using the code in Figure 6.19 for an
imperfect-information variant of Tic-Tac-Toe. Each player can mark a square with
either an “x” or an “o,” but the opponent sees only the position of the mark, not its
type. A player wins if his move creates a line of the same type of mark.

game(blind tic tac toe, (1)
[players : [a,b], (2)

objects : [grid_board : array(‘$size’, ‘$size’)], (3)
params : [size], (4)
flow : (take_turns(mark,unless(full),until(win))), (5)
mark : (choose(‘$player’, (X, Y, Mark), (6)

(empty(X,Y), member(Mark, [x,o]))), (7)
reveal(‘$opponent’,(X,Y)), (8)
place((X,Y),Mark)), (9)

full : (\+(empty(,)) → outcome(draw)), (10)
win : (straight_line(, ,length = 3, (11)

contains(Mark)) → outcome(wins(‘$player’)))]). (12)

Figure 6.19: A GALA description of Blind Tic-Tac-Toe.

Lines 3 and 5 define the central components of the representation—the object
grid_board that records all marks, and the flow of the game, which is defined
as two players alternating moves until either the board is full or one of the them
wins the game. Lines 6–12 then provide the definitions of the terms used in line
5. Three of the functions found in these lines are particularly important because of
their relation to the corresponding extensive-form game:choose (line 8) defines
the available actions at each node,reveal (line 6) determines the information sets
of the players, andoutcome (lines 10 and 12) defines the payoffs at the leaves.

Reading through the code in Figure 6.19, one finds not only primitives like
array, but also several high-level modules, likestraight_line, that are not
defined. The GALA language contains many such predicates, built up from primi-
tives, that were added to handle conditions common to games people play. For ex-

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

196 6 Richer Representations: Beyond the Normal and Extensive Forms

ample, the high-level predicatestraight_line is defined using the intermediate-
level predicatechain, which in turn is defined to take a predicate and a set as
input and return true if the predicate holds for the entire set. The idea behind
intermediate-level predicates is that they make it easier to define the high-level
predicates specific to a game. For example,chain can be used in poker to define
a flush.

On top of the language, the GALA system was implemented to take a description
of a game in the GALA language, generate the corresponding game tree, and then
solve the game using the sequence form of the game (defined in Section 5.2.3).

Since we lose the space savings of the GALA language when we actually solve
the game, the main advantage of the language is the ease with which it allows a
human to describe a game to the program that will solve it.

6.6 History and references

Some of the earliest and most influential work on repeated games is Luce and
Raiffa [1957a] and Aumann [1959]. Of particular note is that the former provided
the main ideas behind the folk theorem and that the latter explored the theoreti-
cal differences between finitely and infinitely repeated games. Aumann’s work on
repeated games led to a Nobel Prize in 2005. Our proof of the folk theorem is
based on Osborne and Rubinstein [1994]. For an extensive discussion of the Tit-
for-Tat strategy in repeated Prisoner’s Dilemma, and in particular this strategy’s
strong performance in a tournament of computer programs, see Axelrod [1984].
While most game theory textbooks have material on so-called bounded rationality,
the most comprehensive repository of results in the area was assembled by Ru-
binstein [1998]. Some of the specific references are as follows. Theorem 6.1.8
is due to Neyman [1985], while Theorem 6.1.9 is due to Papadimitriou and Yan-
nakakis [1994]. Theorem 6.1.11 is due to Gilboa [1988], and Theorem 6.1.12 is
due to Ben-Porath [1990]. Theorem 6.1.13 is due to Papadimitriou [1992]. Finally,
Theorems 6.1.14 and 6.1.15 are due to Nachbar and Zame [1996].

Stochastic games were introduced in Shapley [1953]. The state of the art re-
garding them circa 2003 appears in the edited collection Neyman and Sorin [2003].
Filar and Vrieze [1997] provide a rigorous introduction to the topic, integrating
MDPs (or single-agent stochastic games) and two-person stochastic games.

Bayesian games were introduced by Harsanyi [1967–1968]; in 1994 he received
a Nobel Prize, largely because of this work.

Congestion games were first defined by Rosenthal [1973]; later potential games
were introduced by Monderer and Shapley [1996a] and were shown to be equiv-
alent to congestion games (up to isomorphism). The PLS-completeness result is
due to Fabrikant et al. [2004]. Nonatomic congestion games are due to Schmeidler
[1973]. Selfish routing was first studied as early as 1920 [Pigou, 1920; Beckmann
et al., 1956]. Pigou’s example comes from the former reference; Braess’ para-
dox was introduced in Braess [1968]. The Wardrop equilibrium is due to Wardrop

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

6.6 History and references 197

[1952]. The concept of the price of anarchy is due to Koutsoupias and Papadim-
itriou [1999]. Most of the results in Section 6.4.5 are due to Roughgarden and his
coauthors; see his recent book Roughgarden [2005]. Similar results have also been
shown for broader classes of nonatomic congestion games; see Roughgarden and
Tardos [2004] and Correa et al. [2005].

Theorems 6.5.3 and 6.5.4 are due to Daskalakis et al. [2006a]. Theorem 6.5.5
is due to Papadimitriou [2005]. Graphical games were introduced in Kearns et al.
[2001]. The problem of finding pure Nash equilibria in graphical games was an-
alyzed in Gottlob et al. [2003] and Daskalakis and Papadimitriou [2006]. Ac-
tion graph games were defined in Bhat and Leyton-Brown [2004] and extended in
Jiang and Leyton-Brown [2006]. Multiagent influence diagrams were introduced
in Koller and Milch [2003], which also contains the running example we used for
that section. A related notion ofgame networkswas concurrently developed bygame network
La Mura [2000]. Theorem 6.5.13 is due to Blum et al. [2006]. GALA is described
in Koller and Pfeffer [1995], which also contained the sample code for the Tic-Tac-
Toe example.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

7 Learning and Teaching

The capacity to learn is a key facet of intelligent behavior, and it is no surprise that
much attention has been devoted to the subject in the various disciplines that study
intelligence and rationality. We will concentrate on techniques drawn primarily
from two such disciplines—artificial intelligence and game theory—although those
in turn borrow from a variety of disciplines, including control theory, statistics,
psychology and biology, to name a few. We start with an informal discussion
of the various subtle aspects of learning in multiagent systems and then discuss
representative theories in this area.

7.1 Why the subject of “learning” is complex

The subject matter of this chapter is fraught with subtleties, and so we begin with
an informal discussion of the area. We address three issues—the interaction be-
tween learning and teaching, the settings in which learning takes place and what
constitutes learning in those settings, and the yardsticks by which to measure this
or that theory of learning in multiagent systems.

7.1.1 The interaction between learning and teaching

Most work in artificial intelligence concerns the learning performed by an indi-
vidual agent. In that setting the goal is to design an agent that learns to function
successfully in an environment that is unknown and potentially also changes as the
agent is learning. A broad range of techniques have been developed, and learning
rules have become quite sophisticated.

In a multiagent setting, however, an additional complication arises, since the en-
vironment contains (or perhaps consists entirely of) other agents. The problem is
not only that the other agents’ learning will change the environment for our protag-
onist agent—dynamic environments feature already in the single-agent case—but
that these changes will depend in part on the actions of the protagonist agent. That
is, the learning of the other agents will be impacted by the learning performed by
our protagonist.

200 7 Learning and Teaching

The simultaneous learning of the agents means that every learning rule leads to
a dynamical system, and sometimes even very simple learning rules can lead to
complex global behaviors of the system. Beyond this mathematical fact, however,
lies a conceptual one. In the context of multiagent systems one cannot separate the
phenomenon oflearning from that ofteaching; when choosing a course of action,learning and

teaching an agent must take into account not only what he has learned from other agents’
past behavior, but also how he wishes to influence their future behavior.

The following example illustrates this point. Consider the infinitely repeated
game with average reward (i.e., where the payoff to a given agent is the limit aver-
age of his payoffs in the individual stage games, as in Definition 6.1.1), in which
the stage game is the normal-form game shown in Figure 7.1.Stackelberg

game

L R

T 1, 0 3, 2

B 2, 1 4, 0

Figure 7.1: Stackelberg game: player 1 must teach player 2.

First note that player 1 (the row player) has a dominant strategy, namelyB.
Also note that(B,L) is the unique Nash equilibrium of the game. Indeed, if
player 1 were to playB repeatedly, it is reasonable to expect that player 2 would
always respond withL. Of course, if player 1 were to chooseT instead, then
player 2’s best response would beR, yielding player 1 a payoff of 3 which is
greater than player 1’s Nash equilibrium payoff. In a single-stage game it would
be hard for player 1 to convince player 2 that he (player 1) will playT , since it is
a strictly dominated strategy.1 However, in a repeated-game setting agent 1 has an
opportunity to put his payoff where his mouth is, and adopt the role of a teacher.
That is, player 1 could repeatedly playT ; presumably, after a while player 2, if he
has any sense at all, would get the message and start responding withR.

In the preceding example it is pretty clear who the natural candidate for adopting
the teacher role is. But consider now the repetition of the Coordination game, re-
produced in Figure 7.2. In this case, either player could play the teacher with equal
success. However, if both decide to play teacher and happen to select uncoordi-
nated actions(Left,Right) or (Right, Left) then the players will receive a payoff
of zero forever.2 Is there a learning rule that will enable them to coordinate without
an external designation of a teacher?

1. See related discussion on signaling and cheap talk in Chapter 8.
2. This is reminiscent of the “sidewalk shuffle,” that awkward process of trying to get by the person walking
toward you while he is doing the same thing, the result being that you keep blocking each other.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.1 Why the subject of “learning” is complex 201

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Figure 7.2: Who’s the teacher here?

7.1.2 What constitutes learning?

In the preceding examples the setting was a repeated game. We consider this a
“learning” setting because of the temporal nature of the domain, and the regularity
across time (at each time the same players are involved, and they play the same
game as before). This allows us to consider strategies in which future action is
selected based on the experience gained so far. When discussing repeated games
in Chapter 6 we mentioned a few simple strategies. For example, in the context
of repeated Prisoner’s Dilemma, we mentioned the Tit-for-Tat (TfT) and trigger
strategies. These, in particular TfT, can be viewed as very rudimentary forms of
learning strategies. But one can imagine much more complex strategies, in which
an agent’s next choice depends on the history of play in more sophisticated ways.
For example, the agent could guess that the frequency of actions played by his
opponent in the past might be his current mixed strategy, and play a best response
to that mixed strategy. As we shall see in Section 7.2, this basic learning rule is
calledfictitious play.

Repeated games are not the only context in which learning takes place. Cer-
tainly the more general category of stochastic games (also discussed in Chapter 6)
is also one in which regularity across time allows meaningful discussion of learn-
ing. Indeed, most of the techniques discussed in the context of repeated games are
applicable more generally to stochastic games, though specific results obtained for
repeated games do not always generalize.

In both cases—repeated and stochastic games—there are additional aspects of
the settings worth discussing. These have to do with whether the (e.g., repeated)
game is commonly known by the players. If it is, any “learning” that takes place
is only about the strategies employed by the other. If the game is not known, the
agent can in addition learn about the structure of the game itself. For example,
in a stochastic game setting, the agent may start out not knowing the payoff func-
tions at a given stage game or the transition probabilities, but learn those over time
in the course of playing the game. It is most interesting to consider the case in
which the game being played is unknown; in this case there is a genuine process
of discovery going on. (Such a setting could be modeled as a Bayesian game, as
described in Section 6.3, though the formal modeling details are not necessary for
the discussion in this chapter.) Some of the remarkable results are that, with certain

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

202 7 Learning and Teaching

Yield Dare

Yield 2, 2 1, 3

Dare 3, 1 0, 0

Figure 7.3: The game of Chicken.

learning strategies, agents can sometimes converge to an equilibrium of the game
even without knowing the game being played. Additionally, there is the question
of whether the game isobservable; do the players see each others’ actions, and/orobservability
each others’ payoffs? (Of course, in the case of a known game, the actions also
reveal the payoffs.)

While repeated and stochastic games constitute the main setting in which we will
investigate learning, there are other settings as well. Chief among them are models
of large populations. These models, which were largely inspired by evolutionary
models in biology, are superficially quite different from the setting of repeated or
stochastic games. Unlike the latter, which involve a small number of players, the
evolutionary models consist of a large number of players, who repeatedly play a
given game among themselves (e.g., pairwise in the case of two-player games).
A closer look, however, shows that these models are in fact closely related to the
models of repeated games. We discuss this further in the last section of this chapter.

7.1.3 If learning is the answer, what is the question?

It is very important to be clear on why we study learning in multiagent systems, and
how we judge whether a given learning theory is successful or not. These might
seem like trivial questions, but in fact the answers are not obvious, and not unique.

First, note that in the following, when we speak about learning strategies, these
should be understood as complete strategies, which involve learning in the sense
of choosing action as well as updating beliefs. One consequence is that learning
in the sense of “accumulated knowledge" is not always beneficial. In the abstract,
accumulating knowledge never hurts, since one can always ignore what has been
learned. But when one precommits to a particular strategy for acting on accumu-
lated knowledge, sometimes less is more.

This point is related to the inseparability of learning from teaching, discussed
earlier. For example, consider a protagonist agent planning to play an infinitely
repeated game ofChicken, depicted in Figure 7.3. In the presence of any opponentChicken game
who attempts to learn the protagonist agent’s strategy and play a best response, an
optimal strategy is to play the stationary policy of always daring; this is the “watch
out: I’m crazy” policy. The opponent will learn to always yield, a worse outcome

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.1 Why the subject of “learning” is complex 203

for him than never learning anything.3

Broadly speaking, we can divide theories of learning in multiagent systems into
two categories—descriptive theoriesandprescriptive theories.descriptive

theory

prescriptive
theory

Descriptive theories

Descriptive theories attempt to study the way learning takes place in real life—
usually by people, but sometimes by other entities such as organizations or animal
species. The goal here is to show experimentally that a certain model of learning
agrees with behavior (typically, in laboratory experiments) and then to identify
interesting properties of the formal model.

The ideal descriptive theory would have two properties.

Property 7.1.1 (Realism)There should be a good match between the formal the-realism
ory and the natural phenomenon being studied.

Property 7.1.2 (Convergence)The formal theory should exhibit interesting be-convergence
havioral properties, in particular convergence of the strategy profile being played
to some solution concept (e.g., equilibrium) of the game being played.

One approach to demonstrating realism is to apply the experimental methodol-
ogy of the social sciences. While we will not focus on this approach, there are
several good examples of it in economics and game theory. But there can be other
reasons for studying a given learning process. For example, to the extent that one
accepts the Bayesian model as at least an idealized model of human decision mak-
ing, this model provides support for the idea ofrational learning, which we discuss
later.

Convergence properties come in various flavors. Here we survey four of them.
First of all, the holy grail has been showing convergence to stationary strategies

which form a Nash equilibrium of the stage game. In fact often this is the hidden
motive of the research. It has been noted that game theory is somewhat unusual in
having the notion of an equilibrium without associated dynamics that give rise to
the equilibrium. Showing that the equilibrium arises naturally would correct this
anomaly.4

A second approach recognizes that actual convergence to Nash equilibria is a
rare occurrence under many learning processes. It pursues an alternative: not re-
quiring that the agents converge to a strategy profile that is a Nash equilibrium,
but rather requiring that the empirical frequency of play converge to such an equi-
librium. For example, consider a repeated game of Matching Pennies. If both
agents repeatedly played (H,H) and (T,T), the frequency of both their plays would

3. The literary-minded reader may be reminded of the quote from Oscar Wilde’sA Woman of No Importance:
“[...] the worst tyranny the world has ever known; the tyranny of the weak over the strong. It is the only
tyranny that ever lasts.” Except here it is the tyranny of the simpleton over the sophisticated.
4. However, recent theoretical progress on the complexity of computing a Nash equilibrium (see Sec-
tion 4.2.1) raises doubts about whether any such procedure could be guaranteed to converge to an equilibrium,
at least within polynomial time.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

204 7 Learning and Teaching

converge to(.5, .5), the strategy in the unique Nash equilibrium, even though the
payoffs obtained would be very different from the equilibrium payoffs.

Third and yet more radically, we can give up entirely on Nash equilibrium as the
relevant solution concept. One alternative is to seek convergence to acorrelated
equilibrium of the stage game. This is interesting in a number of ways. No-regret
learning, which we discuss later, can be shown to converge to correlated equilibria
in certain cases. Indeed, convergence to a correlated equilibrium provides a justi-
fication for the no-regret learning concept; the “correlating device" in this case is
not an abstract notion, but the prior history of play.

Finally, we can give up on convergence to stationary policies, but require that
the non-stationary policies converge to an interesting state. In particular, learning
strategies that include building an explicit model of the opponents’ strategies (as we
shall see, these are calledmodel-basedlearning rules) can be required to converge
to correct models of the opponents’ strategies.

Prescriptive theories

In contrast with descriptive theories, prescriptive theories ask how agents—people,
programs, or otherwise—should learn. A such they are not required to show a
match with real-world phenomena. By the same token, their main focus is not
on behavioral properties, though they may investigate convergence issues as well.
For the most part, we will concentrate onstrategicnormative theories, in which
individual agents are self-motivated.

In zero-sum games, and even in repeated or stochastic zero sum games, it is
meaningful to ask whether an agent is learning in an optimal fashion. But in gen-
eral this question is not meaningful, since the answer depends not only on the
learning being done but also on the behavior of other agents in the system. When
all agents adopt the same strategy (e.g., they all adopt TfT, or all adopt reinforce-
ment learning, to be discussed shortly), this is calledself-play. One way to judgeself-play
learning procedures is based on their performance in self-play. However, learning
agents can be judged also by how they do in the context of other types of agents;
a TfT agent may perform well against another TfT agent, but less well against an
agent using reinforcement learning.

No learning procedure is optimal against all possible opponent behaviors. This
observation is simply an instance of the general move in game theory away from the
notion of “optimal strategy” and toward “best response” and equilibrium. Indeed,
in the broad sense in which we use the term, a “learning strategy” is simply a
strategy in a game that has a particular structure (namely, the structure of a repeated
or stochastic game) that happens to have a component that is naturally viewed as
adaptive.

So how do we evaluate a prescriptive learning strategy? There are several an-
swers. The first is to adopt the standard game-theoretic stance: give up on judging
a strategy in isolation, and instead ask which learning rules are in equilibrium with
each other. Note that requiring that repeated-game learning strategies be in equilib-

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.1 Why the subject of “learning” is complex 205

rium with each other is very different from the convergence requirements discussed
above; those speak about equilibrium in the stage game, not in the repeated game.
For example, TfT is in equilibrium with itself in an infinitely repeated Prisoner’s
Dilemma game, but does not lead to the repeated Defect play, the only Nash equi-
librium of the stage game. This “equilibrium of learning strategies” approach is
not common, but we shall see one example of it later on.

A more modest, but by far more common and perhaps more practical approach
is to ask whether a learning strategy achieves payoffs that are “high enough.” This
approach is both stronger and weaker than the requirement of “best response.” Best
response requires that the strategy yield the highest possible payoff against a partic-
ular strategy of the opponent(s). A focus on “high enough” payoffs can consider a
broader class of opponents, but makes weaker requirements regarding the payoffs,
which are allowed to fall short of best response.

There are several different versions of such high-payoff requirements, each adopt-
ing and/or combining different basic properties.

Property 7.1.3 (Safety)A learning rule is safe if it guarantees the agent at leastsafety of a
learning rule its maxmin payoff, or “security value.” (Recall that this is the payoff the agent

can guarantee to himself regardless of the strategies adopted by the opponents; see
Definition 3.4.1.)

Property 7.1.4 (Rationality) A learning rule is rational if whenever the opponentrationality of a
learning rule settles on a stationary strategy of the stage game (i.e., the opponent adopts the

same mixed strategy each time, regardless of the past), the agent settles on a best
response to that strategy.

Property 7.1.5 (No-regret, informal) A learning rule isuniversally consistent, oruniversal
consistency Hannan consistent, or exhibitsno regret(these are all synonymous terms), if, loosely

Hannan
consistency

no-regret

speaking, against any set of opponents it yields a payoff that is no less than the
payoff the agent could have obtained by playing any one of his pure strategies
throughout. We give a more formal definition of this condition later in the chapter.

Some of these basic requirements are quite strong, and can be weakened in a
variety of ways. One way is to allow slight deviations, either in terms of the magni-
tude of the payoff obtained, or the probability of obtaining it, or both. For example,
rather than require optimality, one can requireǫ, δ-optimality, meaning that with
probability of at least1 − δ the agent’s payoff comes withinǫ of the payoff ob-
tained by the best response. Another way of weakening the requirements is to limit
the class of opponents against which the requirement holds. For example, attention
can be restricted to the case of self play, in which the agent plays a copy of itself.
(Note that while the learning strategies are identical, the game being played may
not be symmetric.) For example, one might require that the learning rule guarantee
convergence in self play. More broadly, as in the case oftargeted optimality, which
we discuss later, one might require a best response only against a particular class
of opponents.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

206 7 Learning and Teaching

In the next sections, as we discuss several learning rules, we will encounter
various versions of these requirements and their combinations. For the most part
we will concentrate on repeated, two-player games, though in some cases we will
broaden the discussion and discuss stochastic games and games with more than
two players.

7.2 Fictitious play

Fictitious play is one of the earliest learning rules. It was actually not proposedfictitious play
initially as a learning model at all, but rather as an iterative method for computing
Nash equilibria in zero-sum games. It happens to not be a particularly effective
way of performing this computation, but since it employs an intuitive update rule,
it is usually viewed as a model of learning, albeit a simplistic one, and subjected to
convergence analyses of the sort discussed above.

Fictitious play is an instance of model-based learning, in which the learner ex-
plicitly maintains beliefs about the opponent’s strategy. The structure of such tech-
niques is straightforward.

Initialize beliefs about the opponent’s strategy
repeat

Play a best response to the assessed strategy of the opponent
Observe the opponent’s actual play and update beliefs accordingly

Note that in this scheme the agent is oblivious to the payoffs obtained or ob-
tainable by other agents. We do however assume that the agent knows his own
payoff matrix in the stage game (i.e., the payoff he would get in each action profile,
whether or not encountered in the past).

In fictitious play, an agent believes that his opponent is playing the mixed strat-
egy given by the empirical distribution of the opponent’s previous actions. That is,
if A is the set of the opponent’s actions, and for everya ∈ A we letw(a) be the
number of times that the opponent has played actiona, then the agent assesses the
probability ofa in the opponent’s mixed strategy as

P (a) =
w(a)∑

a′∈Aw(a′)
.

For example, in a repeated Prisoner’s Dilemma game, if the opponent has played
C,C,D,C,D in the first five games, before the sixth game he is assumed to be
playing the mixed strategy(0.6, 0.4). Note that we can represent a player’s beliefs
with either a probability measure or with the set of counts(w(a1), . . . , w(ak)).

We have not fully specified fictitious play. There exist different versions of fic-
titious play which differ on the tie-breaking method used to select an action when
there is more than one best response to the particular mixed strategy induced by

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.2 Fictitious play 207

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1

Figure 7.4: Matching Pennies game.

an agent’s beliefs. In general the tie-breaking rule chosen has little effect on the
results of fictitious play.

On the other hand, fictitious play is very sensitive to the players’ initial beliefs.
This choice, which can be interpreted as action counts that were observed before
the start of the game, can have a radical impact on the learning process. Note that
one must pick some nonempty prior belief for each agent; the prior beliefs cannot
be(0, . . . , 0) since this does not define a meaningful mixed strategy.

Fictitious play is somewhat paradoxical in that each agent assumes a stationary
policy of the opponent, yet no agent plays a stationary policy except when the pro-
cess happens to converge to one. The following example illustrates the operation
of fictitious play. Recall the Matching Pennies game from Chapter 3, reproduced
here as Figure 7.4. Two players are playing a repeated game of Matching Pennies.
Each player is using the fictitious play learning rule to update his beliefs and select
actions. Player 1 begins the game with the prior belief that player 2 has played
heads 1.5 times and tails 2 times. Player 2 begins with the prior belief that player 1
has played heads 2 times and tails 1.5 times. How will the players play?

The first seven rounds of play of the game is shown in Table 7.1.

Round 1’s action 2’s action 1’s beliefs 2’s beliefs

0 (1.5,2) (2,1.5)
1 T T (1.5,3) (2,2.5)
2 T H (2.5,3) (2,3.5)
3 T H (3.5,3) (2,4.5)
4 H H (4.5,3) (3,4.5)
5 H H (5.5,3) (4,4.5)
6 H H (6.5,3) (5,4.5)
7 H T (6.5,4) (6,4.5)
...

...
...

...
...

Table 7.1: Fictitious play of a repeated game of Matching Pennies.

As you can see, each player ends up alternating back and forth between playing
heads and tails. In fact, as the number of rounds tends to infinity, the empiri-

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

208 7 Learning and Teaching

cal distribution of the play of each player will converge to(0.5, 0.5). If we take
this distribution to be the mixed strategy of each player, the play converges to the
unique Nash equilibrium of the normal form stage game, that in which each player
plays the mixed strategy(0.5, 0.5).

Fictitious play has several nice properties. First, connections can be shown to
pure-strategy Nash equilibria, when they exist.

Definition 7.2.1 (Steady state)An action profilea is a steady state(or absorbingsteady state
state) of fictitious play if it is the case that whenevera is played at roundt it is also

absorbing state played at roundt+ 1 (and hence in all future rounds as well).

The following two theorems establish a tight connection between steady states
and pure-strategy Nash equilibria.

Theorem 7.2.2 If a pure-strategy profile is a strict Nash equilibrium of a stage
game, then it is a steady state of fictitious play in the repeated game.

Note that the pure-strategy profile must be astrict Nash equilibrium, which
means that no agent can deviate to another action without strictly decreasing its
payoff. We also have a converse result.

Theorem 7.2.3 If a pure-strategy profile is a steady state of fictitious play in the
repeated game, then it is a (possibly weak) Nash equilibrium in the stage game.

Of course, one cannot guarantee that fictitious play always converges to a Nash
equilibrium, if only because agents can only play pure strategies and a pure-strategy
Nash equilibrium may not exist in a given game. However, while the stage game
strategies may not converge, the empirical distribution of the stage game strategies
over multiple iterations may. And indeed this was the case in the Matching Pen-
nies example given earlier, where the empirical distribution of the each player’s
strategy converged to their mixed strategy in the (unique) Nash equilibrium of the
game. The following theorem shows that this was no accident.

Theorem 7.2.4 If the empirical distribution of each player’s strategies converges
in fictitious play, then it converges to a Nash equilibrium.

This seems like a powerful result. However, notice that although the theorem
gives sufficient conditions for the empirical distribution of the players’ actions to
converge to a mixed-strategy equilibrium, we have not made any claims about the
distribution of the particular outcomes played.

To better understand this point, consider the following example. Consider the
Anti-Coordination gameshown in Figure 7.5.Anti-

Coordination
game

Clearly there are two pure Nash equilibria of this game,(A,B) and(B,A), and
one mixed Nash equilibrium, in which each agent mixesA andB with probability
0.5. Either of the two pure-strategy equilibria earns each player a payoff of 1, and
the mixed-strategy equilibrium earns each player a payoff of 0.5.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.2 Fictitious play 209

A B

A 0, 0 1, 1

B 1, 1 0, 0

Figure 7.5: The Anti-Coordination game.

Now let us see what happens when we have agents play the repeated Anti-
Coordination game using fictitious play. Let us assume that the weight function
for each player is initialized to(1, 0.5). The play of the first few rounds is shown
in Table 7.2.

Round 1’s action 2’s action 1’s beliefs 2’s beliefs

0 (1,0.5) (1,0.5)
1 B B (1,1.5) (1,1.5)
2 A A (2,1.5) (2,1.5)
3 B B (2,2.5) (2,2.5)
4 A A (3,2.5) (3,2.5)
...

...
...

...
...

Table 7.2: Fictitious play of a repeated Anti-Coordination game.

As you can see, the play of each player converges to the mixed strategy(0.5, 0.5),
which is the mixed strategy Nash equilibrium. However, the payoff received by
each player is 0, since the players never hit the outcomes with positive payoff.
Thus, although the empirical distribution of the strategies converges to the mixed
strategy Nash equilibrium, the players may not receive the expected payoff of the
Nash equilibrium, because their actions are miscorrelated.

Finally, the empirical distributions of players’ actions need not converge at all.
Consider the game in Figure 7.6. Note that this example, due to Shapley, is a
modification of the rock-paper-scissors game; this game is not constant sum.

The unique Nash equilibrium of this game is for each player to play the mixed
strategy(1/3, 1/3, 1/3). However, consider the fictitious play of the game when
player 1’s weight function has been initialized to(0, 0, 0.5) and player 2’s weight
function has been initialized to(0, 0.5, 0). The play of this game is shown in
Table 7.3. Although it is not obvious from these first few rounds, it can be shown
that the empirical play of this game never converges to any fixed distribution.

For certain restricted classes of games weareguaranteed to reach convergence.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

210 7 Learning and Teaching

Rock Paper Scissors

Rock 0, 0 0, 1 1, 0

Paper 1, 0 0, 0 0, 1

Scissors 0, 1 1, 0 0, 0

Figure 7.6: Shapley’s Almost-Rock-Paper-Scissors game.

Round 1’s action 2’s action 1’s beliefs 2’s beliefs

0 (0,0,0.5) (0,0.5,0)
1 Rock Scissors (0,0,1.5) (1,0.5,0)
2 Rock Paper (0,1,1.5) (2,0.5,0)
3 Rock Paper (0,2,1.5) (3,0.5,0)
4 Scissors Paper (0,3,1.5) (3,0.5,1)
5 Scissors Paper (0,1.5,0) (1,0,0.5)
...

...
...

...
...

Table 7.3: Fictitious play of a repeated game of the Almost-Rock-Paper-Scissors
game.

Theorem 7.2.5Each of the following is a sufficient condition for the empirical
frequencies of play to converge in fictitious play:

• The game is zero sum;

• The game is solvable by iterated elimination of strictly dominated strategies;

• The game is a potential game;5

• The game is2× n and has generic payoffs.6

Overall, fictitious play is an interesting model of learning in multiagent systems
not because it is realistic or because it provides strong guarantees, but because it

5. Actually an even more more general condition applies here, that the players have “identical interests," but
we will not discuss this further here.
6. Full discussion of genericity in games lies outside the scope of this book, but here is the essential idea, at
least for games in normal form. Roughly speaking, a game in normal form is generic if it does not have any
interesting property that does not also hold with probability 1 when the payoffs are selected independently
from a sufficiently rich distribution (e.g., the uniform distribution over a fixed interval). Of course, to make
this precise we would need to define “interesting” and “sufficiently.” Intuitively, though, this means that the
payoffs do not have accidental properties. A game whose payoffs are all distinct is necessarily generic.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.3 Rational learning 211

is very simple to state and gives rise to nontrivial properties. But it is very limited;
its model of beliefs and belief update is mathematically constraining, and is clearly
implausible as a model of human learning. There exist various variants of fictitious
play that score somewhat better on both fronts. We will mention one of them—
calledsmooth fictitious play—when we discuss no-regret learning methods.

7.3 Rational learning

Rational learning(also sometimes calledBayesian learning) adopts the same gen-rational learning

Bayesian
learning

eral model-based scheme as fictitious play. Unlike fictitious play, however, it al-
lows players to have a much richer set of beliefs about opponents’ strategies. First,
the set of strategies of the opponent can include repeated-game strategies such as
TfT in the Prisoner’s Dilemma game, not only repeated stage-game strategies. Sec-
ond, the beliefs of each player about his opponent’s strategies may be expressed by
any probability distribution over the set of all possible strategies.

As in fictitious play, each player begins the game with some prior beliefs. After
each round, the player usesBayesian updatingto update these beliefs. LetSi

−i beBayesian
updating the set of the opponent’s strategies considered possible by playeri, andH be the

set of possible histories of the game. Then we can use Bayes’ rule to express the
probability assigned by playeri to the event in which the opponent is playing a
particular strategys−i ∈ Si

−i given the observation of historyh ∈ H , as

Pi(s−i|h) =
Pi(h|s−i)Pi(s−i)∑

s′
−i∈Si

−i
Pi(h|s′−i)Pi(s′−i)

.

For example, consider two players playing the infinitely repeated Prisoner’s
Dilemma game, reproduced in Figure 7.7.

C D

C 3, 3 0, 4

D 4, 0 1, 1

Figure 7.7: Prisoner’s Dilemma game

Suppose that the support of the prior belief of each player (i.e., the strategies of
the opponent to which the player ascribes nonzero probability; see Definition 3.2.6)
consists of the strategiesg1, g2, . . . g∞, defined as follows.g∞ is thetrigger strat-
egythat was presented in Section 6.1.2. A player using the trigger strategy beginstrigger strategy
the repeated game by cooperating, and if his opponent defects in any round, he
defects in every subsequent round. ForT < ∞, gT coincides withg∞ at all his-

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

212 7 Learning and Teaching

tories shorter thanT but prescribes unprovoked defection starting from timeT on.
Following this convention, strategyg0 is the strategy of constant defection.

Suppose furthermore that each player happens indeed to select a best response
from amongg0, g1, . . . , g∞. (There are of course infinitely many additional best
responses outside this set.) Thus each round of the game will be played according
to some strategy profile(gT1

, gT2
).

After playing each round of the repeated game, each player performs Bayesian
updating. For example, if playeri has observed that playerj has always cooperated,
the Bayesian updating after historyht ∈ H of lengtht reduces to

Pi(gT |ht) =

{
0 if T ≤ t;

Pi(gT)∑∞
k=t+1 Pi(gk)

if T > t.

Rational learning is a very intuitive model of learning, but its analysis is quite
involved. The formal analysis focuses on self-play, that is, on properties of the
repeated game in which all agents employ rational learning (though they may start
with different priors). Broadly, the highlights of this model are as follows.

• Under some conditions, in self-play rational learning results in agents having
close to correct beliefs about the observable portion of their opponent’s strategy.

• Under some conditions, in self-play rational learning causes the agents to con-
verge toward a Nash equilibrium with high probability.

• Chief among these “conditions” isabsolute continuity, a strong assumption.

In the remainder of this section we discuss these points in more detail, starting
with the notion of absolute continuity.

Definition 7.3.1 (Absolute continuity) LetX be a set and letµ, µ′ ∈ Π(X) be
probability distributions overX. Then the distributionµ is said to beabsolutely
continuouswith respect to the distributionµ′ iff for x ⊂ X that is measurable7 itabsolute

continuity is the case that ifµ(x) > 0 thenµ′(x) > 0.

Note that the players’ beliefs and the actual strategies each induce probability
distributions over the set of historiesH . Lets = (s1, . . . , sn) be a strategy profile.
If we assume that these strategies are used by the players, we can calculate the prob-
ability of each history of the game occurring, thus inducing a distribution overH .
We can also induce such a distribution with a player’s beliefs about players’ strate-
gies. LetSi

j be a set of strategies thati believes possible forj, andP i
j ∈ Π(Si

j)

be the distribution overSi
j believed by playeri. Let Pi = (P i

1 , . . . , P
i
n) be the

tuple of beliefs about the possible strategies of every player. Now, if playeri as-
sumes that all players (including himself) will play according to his beliefs, he can

7. Recall that a probability distribution over a domainX does not necessarily give a value for all subsets of
X, but only over someσ-algebra ofX, the collection of measurable sets.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.3 Rational learning 213

also calculate the probability of each history of the game occurring, thus inducing a
distribution overH . The results that follow all require that the distribution over his-
tories induced by the actual strategies is absolutely continuous with respect to the
distribution induced by a player’s beliefs; in other words, if there is a positive prob-
ability of some history given the actual strategies, then the player’s beliefs should
also assign the history positive probability. (Colloquially, it is sometimes said that
the beliefs of the players must contain agrain of truth.) Although the results thatgrain of truth
follow are very elegant, it must be said that the absolute continuity assumption is a
significant limitation of the theoretical results associated with rational learning.

In the Prisoner’s Dilemma example discussed earlier, it is easy to see that the
distribution of histories induced by the actual strategies is absolutely continuous
with respect to the distribution predicted by the prior beliefs of the players. All
positive probability histories in the game are assigned positive probability by the
original beliefs of both players: if the true strategies aregT1

, gT2
, players assign

positive probability to the history with cooperation up to timet < min(T1, T2)
and defection in all times exceeding themin(T1, T2).

The rational learning model is interesting because it has some very desirable
properties. Roughly speaking, players satisfying the assumptions of the rational
learning model will have beliefs about the play of the other players that converge
to the truth, and furthermore, players will in finite time converge to play that is
arbitrarily close to the Nash equilibrium. Before we can state these results we need
to define a measure of the similarity of two probability measures.

Definition 7.3.2 (ǫ-closeness)Given anǫ > 0 and two probability measuresµ
andµ′ on the same space, we say thatµ is ǫ-close toµ′ if there is a measurable set
Q satisfying:

• µ(Q) andµ′(Q) are each greater than1− ǫ; and

• For every measurable setA ⊆ Q, we have that

(1 + ǫ)µ′(A) ≥ µ(A) ≥ (1− ǫ)µ′(A).

Now we can state a result about the accuracy of the beliefs of a player using
rational learning.

Theorem 7.3.3 (Rational learning and belief accuracy)Lets be a repeated-game
strategy profile for a givenn-player game8, and letP = P1, . . . , Pn be a tuple of
probability distributions over such strategy profiles (Pi is interpreted as playeri’s
beliefs). Letµs andµP be the distributions over infinite game histories induced by
the strategy profiles and the belief tupleP , respectively. If we have that

• at each round, each playeri plays a best response strategy given his beliefsPi;

• after each round each playeri updatesPi using Bayesian updating; and

8. That is, a tuple of repeated-game strategies, one for each player.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

214 7 Learning and Teaching

• µs is absolutely continuous with respect toµPi
,

then for everyǫ > 0 and for almost every history in the support ofµs (i.e., every
possible history given the actual strategy profiles), there is a timeT such that
for all t ≥ T , the playµPi

predicted by the playeri’s beliefs isǫ-close to the
distribution of playµs predicted by the actual strategies.

Thus a player’s beliefs will eventually converge to the truth if he is using Bayesian
updating, is playing a best response strategy, and the play predicted by the other
players’ real strategies is absolutely continuous with respect to that predicted by
his beliefs. In other words, he will correctly predict the on-path portions of the
other players’ strategies.

Note that this result doesnot state that players will learn the true strategy being
played by their opponents. As stated earlier, there are an infinite number of possible
strategies that their opponent could be playing, and each player begins with a prior
distribution that assigns positive probability to only some subset of the possible
strategies. Instead, players’ beliefs will accurately predict the play of the game,
and no claim is made about their accuracy in predicting the off-path portions of the
opponents’ strategies.

Consider again the two players playing the infinitely repeated Prisoner’s Dilemma
game, as described in the previous example. Let us verify that, as Theorem 7.3.3
dictates, the future play of this game will be correctly predicted by the players. If
T1 < T2 then from timeT1 + 1 on, player 2’s posterior beliefs will assign prob-
ability 1 to player 1’s strategy,gT1

. On the other hand, player 1 will never fully
know player 2’s strategy, but will know thatT2 > T1. However, this is sufficient
information to predict that player 2 will always choose to defect in the future.

A player’s beliefs must converge to the truth even when his strategy space is
incorrect (does not include the opponent’s actual strategy), as long as they satisfy
the absolute continuity assumption. Suppose, for instance, that player 1 is playing
the trigger strategyg∞, and player 2 is playing tit-for-tat, but that player 1 believes
that player 2 is also playing the trigger strategy. Thus player 1’s beliefs about
player 2’s strategy are incorrect. Nevertheless, his beliefs will correctly predict the
future play of the game.

We have so far spoken about the accuracy of beliefs in rational learning. The
following theorem addresses convergence to equilibrium. Note that the conditions
of this theorem are identical to those of Theorem 7.3.3, and that the definition
refers to the concept of anǫ-Nash equilibrium from Section 3.4.7, as well as to
ǫ-closeness as defined earlier.

Theorem 7.3.4 (Rational Learning and Nash)Let s be a repeated-game strat-
egy profile for a givenn-player game, and letP = P1, . . . , Pn be a a tuple of
probability distributions over such strategy profiles. Letµs and µP be the distri-
butions over infinite game histories induced by the strategy profiles and the belief
tupleP , respectively. If we have that

• at each round, each playeri plays a best response strategy given his beliefsPi;

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.4 Reinforcement learning 215

• after each round each playeri updatesPi using Bayesian updating; and

• µs is absolutely continuous with respect toµPi
,

then for everyǫ > 0 and for almost every history in the support ofµs there is a
timeT such that for everyt ≥ T there exists anǫ-equilibriums∗ of the repeated
game in which the playµPi

predicted by playeri’s beliefs isǫ-close to the playµs∗

of the equilibrium.

In other words, if utility-maximizing players start with individual subjective be-
liefs with respect to which the true strategies are absolutely continuous, then in the
long run, their behavior must be essentially the same as a behavior described by an
ǫ-Nash equilibrium.

Of course, the space of repeated-game equilibria is huge, which leaves open the
question of which equilibrium will be reached. Here notice a certain self-fulfilling
property: players’ optimism can lead to high rewards, and likewise pessimism can
lead to low rewards. For example, in a repeated Prisoner’s Dilemma game, if both
players begin believing that their opponent will likely play the TfT strategy, they
each will tend to cooperate, leading to mutual cooperation. If, on the other hand,
they each assign high prior probability to constant defection, or to the grim-trigger
strategy, they will each tend to defect.

7.4 Reinforcement learning

In this section we look at multiagent extensions of learning in MDPs, that is, in
single-agent stochastic games (see Appendix C for a review of MDP essentials).
Unlike the first two learning techniques discussed, and with one exception dis-
cussed in section 7.4.4,reinforcement learningdoes not explicitly model the oppo-reinforcement

learning nent’s strategy. The specific family of techniques we look at are derived from the
Q-learning algorithm for learning in unknown (single-agent)MDPs. Q-learning
is described in the next section, after which we present its extension to zero-sum
stochastic games. We then briefly discuss the difficulty in extending the methods
to general-sum stochastic games.

7.4.1 Learning in unknown MDPs

First, consider (single-agent) MDPs. Value iteration, as described in Appendix C,
assumes that the MDP is known. What if we do not know the rewards or transition
probabilities of the MDP? It turns out that, if we always know what state9 we are
in and the reward received in each iteration, we can still converge to the correct
Q-values.

9. For consistency with the literature on reinforcement learning, in this section we use the notations and
S for a state and set of states respectively, rather than for a strategy profile and set of strategy profiles as
elsewhere in the book.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

216 7 Learning and Teaching

Definition 7.4.1 (Q-learning) Q-learning is the following procedure:

Initialize theQ-function andV values (arbitrarily, for example)
repeatuntil convergence

Observe the current statest.
Select actionat and and take it.
Observe the rewardr(st, at)
Perform the following updates (and do not update any otherQ-values):
Qt+1(st, at)← (1− α)Qt(st, at) + αt(r(st, at) + βVt(st+1))
Vt+1(s)← maxaQt(s, a)

Theorem 7.4.2Q-learning guarantees that theQ andV values converge to those
of the optimal policy, provided that each state-action pair is sampled an infinite
number of times, and that the time-dependent learning rateαt obeys0 ≤ αt < 1,∑∞

0 αt =∞ and
∑∞

0 α2
t <∞.

The intuition behind this approach is that we approximate the unknown transition
probability by using the actual distribution of states reached in the game itself.
Notice that this still leaves us a lot of room in designing the order in which the
algorithm selects actions.

Note that this theorem says nothing about the rate of convergence. Furthermore,
it gives no assurance regarding the accumulation of optimal future discounted re-
wards by the agent; it could well be, depending on the discount factor, that by the
time the agent converges to the optimal policy it has paid too high a cost, which
cannot be recouped by exploiting the policy going forward. This is not a concern if
the learning takes place during training sessions, and only when learning has con-
verged sufficiently is the agent unleashed on the world (e.g., think of a fighter pilot
being trained on a simulator before going into combat). But in generalQ-learning
should be thought of as guaranteeing good learning, but neither quick learning nor
high future discounted rewards.

7.4.2 Reinforcement learning in zero-sum stochastic games

In order to adapt the method presented from the setting of MDPsto stochastic
games, we must make a few modifications. The simplest possible modification is
to have each agent ignore the existence of the other agent (recall that zero-sum
games involve only two agents). We then defineQπ

i : S × Ai 7→ R to be the
value for playeri if the two players follow strategy profileπ after starting in state
s and playeri chooses the actiona. We can now apply theQ-learning algorithm.
As mentioned earlier in the chapter, the multiagent setting forces us to forego our
search for an “optimal” policy, and instead to focus on one that performs well
against its opponent. For example, we might require than it satisfy Hannan con-
sistency (Property 7.1.5). Indeed, theQ-learning procedure can be shown to be

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.4 Reinforcement learning 217

Hannan-consistent for an agent in a stochastic game against opponents playing sta-
tionary policies. However, against opponents using more complex strategies, such
asQ-learning itself, we do not obtain such a guarantee.

The above approach, assuming away the opponent, seems unmotivated. Instead,
if the agent is aware of what actions its opponent selected at each point in its history,
we can use a modifiedQ-function,Qπ

i : S×A 7→ R, defined over states and action
profiles, whereA = A1 × A2. The formula to update Q is simple to modify and
would be the following for a two-player game.

Qi,t+1(st, at, ot) = (1− αt)Qi,t(st, at, ot) + αt(ri(st, at, ot) + βVt(st+1))

Now that the actions range over both our agent’s actions and that of its competitor,
how can we calculate the value of a state? Recall that for (two-player) zero-sum
games, the policy profile where each agent plays its maxmin strategy forms a Nash
equilibrium. The payoff to the first agent (and thus the negative of the payoff to the
second agent) is called thevalueof the game, and it forms the basis for our revisedvalue of a

zero-sum game value function forQ-learning,

Vt(s) = max
Πi

min
o
Qi,t(s,Πi(s), o).

Like the basicQ-learning algorithm, the aboveminimax-Q learning algorithm isminimax-Q
guaranteed to converge in the limit of infinite samples of each state and action
profile pair. While this will guarantee the agent a payoff at least equal to that of
its maxmin strategy, it no longer satisfies Hannan consistency. If the opponent
is playing a suboptimal strategy, minimax-Qwill be unable to exploit it in most
games.

The minimax-Qalgorithm is described in Figure 7.8. Note that this algorithm
specifies not only how to update theQ andV values, but also how to update the
strategyΠ. There are still some free parameters, such as how to update the learning
parameter,α. One way of doing so is to simply use a decay rate, so thatα is set
to α ∗ decay after eachQ-value update, for some value ofdecay < 1. Another
possibility from theQ-learning literature is to keep separateα’s for each state and
action profile pair. In this case, a common method is to useα = 1/k, wherek
equals the number of times that particularQ-value has been updated including the
current one. So, when first encountering a reward for a states where an action
profile a was played, theQ-value is set entirely to the observed reward plus the
discounted value of the successor state (α= 1). On the next time that state–action
profile pair is encountered, it will be set to be half of the oldQ-value plus half of
the new reward and discounted successor state value.

We now look at an example demonstrating the operation of minimax-Qlearning
in a simple repeated game: repeated Matching Pennies (see Figure 7.4) against
an unknown opponent. Note that the convergence results forQ-learning impose
only weak constraints on how to select actions and visit states. In this example, we
follow the given algorithm and assume that the agent chooses an action randomly
some fraction of the time (denotedexplor), and plays according to his current

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

218 7 Learning and Teaching

// Initialize:
forall s ∈ S, a ∈ A, ando ∈ O do

Q(s, a, o)← 1

forall s in Sdo
V (s)← 1

forall s ∈ S anda ∈ A do
Π(s, a)← 1/|A|

α← 1.0
// Take an action:
when in states, with probabilityexplor choose an action uniformly at random,
and with probability(1− explor) choose actiona with probabilityΠ(s, a)
// Learn:
after receiving rewardrew for moving from states to s′ via actiona and
opponent’s actiono
Q(s, a, o)← (1− α) ∗Q(s, a, o) + α ∗ (rew + γ ∗ V (s′))
Π(s, ·)← arg maxΠ′(s,·)(mino′

∑
a′(Π(s, a′) ∗Q(s, a′, o′)))

// The above can be done, for example, by linear programming
V (s)← mino′(

∑
a′(Π(s, a′) ∗Q(s, a′, o′)))

Updateα

Figure 7.8: The minimax-Qalgorithm.

best strategy otherwise. For updating the learning rate, we have chosen the second
method discussed earlier, withα = 1/k, wherek is the number of times the state
and action profile pair has been observed. Assume that theQ-values are initialized
to 1 and that the discount factor of the game is 0.9.

Table 7.4 shows the values of player 1’sQ-function in the first few iterations of
this game as well as his best strategy at each step. We see that the value of the
game, 0, is being approached, albeit slowly. This is not an accident.

Theorem 7.4.3Under the same conditions that assure convergence ofQ-learning
to the optimal policy in MDPs, in zero-sum games Minimax-Qconverges to the
value of the game in self play.

Here again, no guarantee is made about the rate of convergence or about the
accumulation of optimal rewards. We can achieve more rapid convergence if we
are willing to sacrifice the guarantee of finding a perfectly optimal maxmin strategy.
In particular, we can consider the framework ofprobably approximately correct
(PAC) learning. In this setting, choose someǫ > 0 and1 > δ > 0, and seekprobably

approximately
correct (PAC)
learning

an algorithm that can guarantee—regardless of the opponent—a payoff of at least
that of the maxmin strategy minusǫ, with probability(1− δ). If we are willing to
settle for this weaker guarantee, we gain the property that it will always hold after
a polynomially-bounded number of time steps.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.4 Reinforcement learning 219

t Actions Reward1 Qt(H, H) Qt(H, T) Qt(T,H) Qt(T,T) V(s) π1(H)

0 1 1 1 1 1 0.5
1 (H*,H) 1 1.9 1 1 1 1 0.5
2 (T,H) -1 1.9 1 -0.1 1 1 0.55
3 (T,T) 1 1.9 1 -0.1 1.9 1.279 0.690
4 (H*,T) -1 1.9 0.151 -0.1 1.9 0.967 0.534
5 (T,H) -1 1.9 0.151 -0.115 1.9 0.964 0.535
6 (T,T) 1 1.9 0.151 -0.115 1.884 0.960 0.533
7 (T,H) -1 1.9 0.151 -0.122 1.884 0.958 0.534
8 (H,T) -1 1.9 0.007 -0.122 1.884 0.918 0.514
...

...
...

...
...

...
...

...
...

100 (H,H) 1 1.716 -0.269 -0.277 1.730 0.725 0.503
...

...
...

...
...

...
...

...
...

1000 (T,T) 1 1.564 -0.426 -0.415 1.564 0.574 0.500
...

...
...

...
...

...
...

...
...

Table 7.4: Minimax-Qlearning in a repeated Matching Pennies game.

One example of such an algorithm is the model-based learning algorithmR-max.R-max
algorithm It first initializes its estimate of the value of each state to be the highest reward

that can be returned in the game (hence the name). This philosophy has been
referred to asoptimism in the face of uncertaintyand helps guarantee that the agent
will explore its environment to the best of its ability. The agent then uses these
optimistic values to calculate a maxmin strategy for the game. Unlike normalQ-
learning, the algorithm does not update its values for any state and action profile
pair until it has visited them “enough” times to have a good estimate of the reward
and transition probabilities. Using a theoretical method calledChernoff bounds, itChernoff bounds
is possible to polynomially bound the number of samples necessary to guarantee
that the accuracy of the average over the samples deviates from the true average
by at mostǫ with probability (1 − δ) for any selected value ofǫ and δ. The
polynomial is inΣ, k, T, 1/ǫ, and1/δ, whereΣ is the number of states (or games)
in the stochastic game,k is the number of actions available to each agent in a game
(without loss of generally we can assume that this is the same for all agents and all
games), andT is theǫ-returnmixing timeof the optimal policy, that is, the smallestmixing time
length of time after which the optimal policy is guaranteed to yield an expected
payoff at mostǫ away from optimal. The notes at the end of the chapter point to
further reading on R-max, and a predecessor algorithm calledE3 (pronounced “EE3 algorithm
cubed”).

7.4.3 Beyond zero-sum stochastic games

So far we have shown results for the class of zero-sum stochastic games. Although
the algorithms discussed, in particular minimax-Q, are still well defined in the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

220 7 Learning and Teaching

general-sum case, the guarantee of achieving the maxmin strategy payoff is less
compelling. Another subclass of stochastic games that has been addressed is that
of common-payoff (pure coordination) games, in which all agents receive the same
reward for an outcome. This class has the advantage of reducing the problem
to identifying an optimal action profile and coordinating with the other agents to
play it. In many ways this problem can really be seen as a single-agent problem
of distributed control. This is a relatively well-understood problem, and various
algorithms exist for it, depending on precisely how the problem is defined.

Expanding reinforcement learning algorithms to the general-sum case is quite
problematic, on the other hand. There have been attempts to generalizeQ-learning
to general-sum games, but they have not yet been truly successful. As was dis-
cussed at the beginning of this chapter, the question of what it means to learn in
general-sum games is subtle. One yardstick we have discussed is convergence
to Nash equilibrium of the stage game during self play. No generalization ofQ-
learning has been put forward that has this property.

7.4.4 Belief-based reinforcement learning

There is also a version of reinforcement learning that includes explicit modeling of
the other agent(s), given by the following equations.

Qt+1(st, at)← (1− α)Qt(st, at) + αt(r(st, at) + βVt(st+1))

Vt(s)← max
ai

∑

a−i⊂A−i

Qt(s, (ai, a−i))Pri(a−i)

In this version, the agent updates the value of the game using the probability
he assigns to the opponent(s) playing each action profile. Of course, the belief
function must be updated after each play. How it is updated depends on what the
function is. Indeed, belief-based reinforcement learning is not a single procedure
but a family, each member characterized by how beliefs are formed and updated.
For example, in one version the beliefs are of the kind considered in fictitious play,
and in another they are Bayesian in the style of rational learning. There are some
experimental results that show convergence to equilibrium in self-play for some
versions of belief-based reinforcement learning and some classes of games, but no
theoretical results.

7.5 No-regret learning and universal consistency

As discussed above, a learning rule is universally consistent or (equivalently) ex-
hibits no regret if, loosely speaking, against any set of opponents it yields a payoff
that is no less than the payoff the agent could have obtained by playing any one of
his pure strategies throughout.

More precisely, letαt be the average per-period reward the agent received up
until time t, and letαt(si) be the average per-period reward the agentwould have

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.5 No-regret learning and universal consistency 221

received up until timet had he played pure strategys instead, assuming all other
agents continue to play as they did.

Definition 7.5.1 (Regret) Theregretan agent experiences at timet for not havingregret
playeds isRt(s) = αt − αt(s).

Observe that this is conceptually the same as the definition ofregret we offered
in Section 3.4 (Definition 3.4.5).

A learning rule is said to exhibitno regret10 if it guarantees that with high prob-
ability the agent will experience no positive regret.

Definition 7.5.2 (No-regret learning rule) A learning rule exhibitsno regretif forno-regret
any pure strategy of the agents it holds thatPr([lim inf Rt(s)] ≤ 0) = 1.

The quantification is over all of the agent’s pure strategies of the stage game,
but note that it would make no difference if instead one quantified over all mixed
strategies of the stage game. (Do you see why?) Note also that this guarantee is
only in expectation, since the agent’s strategy will in general be mixed, and thus
the payoff obtained at any given time—ut

i—is uncertain.
It is important to realize that this “in hindsight" requirement ignores the possi-

bility that the opponents’ play might change as a result of the agent’s own play.
This is true for stationary opponents, and might be a reasonable approximation in
the context of a large number of opponents (such as in a public securities market),
but less in the context of a small number of agents, of the sort game theory tends
to focus on. For example, in the finitely-repeated Prisoner’s Dilemma game, the
only strategy exhibiting no regret is to always defect. This precludes strategies
that capitalize on cooperative behavior by the opponent, such as Tit-for-Tat. In this
connection see our earlier discussion of the inseparability of learning and teaching.

Over the years, a variety of no-regret learning techniques have been developed.
Here are two,regret matchingandsmooth fictitious play.regret matching

smooth fictitious
play

• Regret matching. At each time step each action is chosen with probability pro-
portional to its regret. That is,

σt+1
i (s) =

Rt(s)∑
s′∈Si

Rt(s′)
,

whereσt+1
i (s) is the probability that agenti plays pure strategys at timet+ 1.

• Smooth fictitious play. Instead of playing the best response to the empirical
frequency of the opponent’s play, as fictitious play prescribes, one introduces a
perturbation that gradually diminishes over time. That is, rather than adopt at
timet+1 a pure strategysi that maximizesui(si, P

t) whereP t is the empirical

10. There are actually several versions of regret. The one described here is calledexternal regretin computer
science, andunconditional regretin game theory.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

222 7 Learning and Teaching

distribution of opponent’s play until time t, agenti adopts a mixed strategyσi

that maximizesui(si, P
t)+λvi(σi). Hereλ is any constant, andvi is a smooth,

concave function with boundaries at the unit simplex. For example,vi can be
the entropy function,vi(σi) = −∑Si

σi(si) log σi(si).

Regret matching can be shown to exhibit no regret, and smooth fictitious play
approaches no regret asλ tends to zero. The proofs are based on Blackwell’s
Approachability Theorem; the notes at the end of the chapter provide pointers for
further reading on it, as well as on other no-regret techniques.

7.6 Targeted learning

No-regret learning was one approach to ensuring good rewards, but as we discussed
this sense of “good” has some drawbacks. Here we discuss an alternative sense of
“good,” which retains the requirement of best response, but limits it to a particular
class of opponents. The intuition guiding this approach is that in any strategic
setting, in particular a multiagent learning setting, one hassomesense of the agents
in the environment. A chess player has studied previous plays of his opponent, a
skipper in a sailing competition knows a lot about his competitors, and so on. And
so it makes sense to try to optimize against this set of opponents, rather than against
completely unknown opponents.

Technically speaking, the model oftargeted learningtakes as a parameter atargeted learning
class—the “target class"—of likely opponents and is required to perform partic-
ularly well against these likely opponents. At the same time one wants to ensure
at least the maxmin payoff against opponents outside the target class. Finally, an
additional desirable property is for the algorithm to perform well in self-play; the
algorithm should be designed to “cooperate” with itself.

For games with only two agents, these intuitions can be stated formally as fol-
lows.

Property 7.6.1 (Targeted optimality) Against any opponent in the target class,targeted
optimality the expected payoff is the best-response payoff.11

Property 7.6.2 (Safety)Against any opponent, the expected payoff is at least thesafety
individual security (or maxmin) value for the game.

Property 7.6.3 (Autocompatibility) Self-play—in which both agents adopt the learn-
autocompatibility ing procedure in question—is strictly Pareto efficient.12

11. Note: the expectation is over the mixed-strategy profiles, but not over opponents; this requirement is for
any fixed opponent.
12. Recall that strict Pareto efficiency means that one agent’s expected payoff cannot increase without the
other’s decreasing; see Definition 3.3.2. Also note that we do not restrict the discussion to symmetric games,
and so self play does not in general mean identical play by the agents, nor identical payoffs. We abbreviate
“strictly Pareto efficient” as “Pareto efficient.”

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.6 Targeted learning 223

We introduce one additional twist. Since we are interested in quick learning, not
only learning in the limit, we need to allow some departure from the ideal. And so
we amend the requirements as follows.

Definition 7.6.4 (Efficient targeted learning) A learning rule exhibitsefficient tar-
geted learningif for everyǫ > 0 and1 > δ > 0, there exists anM polynomial inefficient targeted

learning 1/ǫ and1/δ such that afterM time steps, with probability greater than1− δ, all
three payoff requirements listed previously are achieved withinǫ.

Note the difference from no-regret learning. For example, consider learning in
a repeated Prisoner’s Dilemma game. Suppose that the target class consists of all
opponents whose strategies rely on the past iteration; note this includes the Tit-
for-Tat strategy. In this case successful targeted learning will result in constant
cooperation, while no-regret learning prescribes constant defection.

How hard is it to achieve efficient targeted learning? The answer depends of
course on the target class. Provably correct (with respect to this criterion) learning
procedures exist for the class of stationary opponents, and the class of opponents
whose memory is limited to a finite window into the past. The basic approach is
to construct a number of building blocks and then specialize and combine them
differently depending on the precise setting. The details of the algorithms can
get involved, especially in the interesting case of nonstationary opponents, but the
essential flow is as follows.

1. Start by assuming that the opponent is in the target set and learn a best response
to the particular agent under this assumption. If the payoffs you obtain stray too
much from your expectation, move on.

2. Signal to the opponent to find out whether he is employing the same learning
strategy. If he is, coordinate to a Pareto-efficient outcome. If your payoffs stray
too far off, move on.

3. Play your security-level strategy.

Note that so far we have restricted the discussion to two-player games. Can
we generalize the criteria—and the algorithms—to games with more players? The
answer is yes, but various new subtleties creep in. For example, in the two-agent
case we needed to worry about three cases, corresponding to whether the opponent
is in the target set, is a self-play agent, or is neither. We must now consider three
sets of agents—self play agents (i.e., agents using the algorithm in question), agents
in the target set, and unconstrained agents, and ask how agents in the first set can
jointly achieve a Pareto-efficient outcome against the second set and yet protect
themselves from exploitation by agents in the third set. This raises questions about
possible coordination among the agents:

• Can self-play agents coordinate other than implicitly through their actions?

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

224 7 Learning and Teaching

• Can opponents—whether in the target set or outside—coordinate other than
through the actions?

The section at the end of the chapter points to further reading on this topic.

7.7 Evolutionary learning and other large-population models

In this section we shift our focus from models of the learning of individual agents
to models of the learning of populations of agents (although, as we shall see, we
will not abandon the single-agent perspective altogether). When we speak about
learning in a population of agents, we mean the change in the constitution and
behavior of that population over time. These models were originally developed
by population biologists to model the process of biological evolution, and later
adopted and adapted by other fields.

In the first subsection we present the model of thereplicator dynamic, a simple
model inspired by evolutionary biology. In the second subsection we present the
concept ofevolutionarily stable strategies, a stability concept that is related to the
replicator dynamic. We conclude with a somewhat different model ofagent-based
simulationand the concept ofemergent conventions.

7.7.1 The replicator dynamic

Thereplicator dynamicmodels a population undergoing frequent interactions. Wereplicator
dynamic will concentrate on the symmetric, two-player case, in which the agents repeatedly

play a two-player symmetric normal-form stage game13 against each other.

Definition 7.7.1 (Symmetric2× 2 game) Let a two-player two-action normal-form
game be called asymmetric gameif it has the following form:symmetric game

A B

A x, x u, v

B v, u y, y

Intuitively, this requirement says that the agents do not have distinct roles in
the game, and the payoff for agents does not depend on their identities. We have
already seen several instances of such games, including the Prisoner’s Dilemma.14

13. There exist much more general notions of symmetric normal-form games with multiple actions and
players, but the following is sufficient for our purposes.
14. This restriction to symmetric games is very convenient, simplifying both the substance and notation of
what follows. However, there exist more complicated evolutionary models, including ones allowing both
different strategy spaces for different agents and nonsymmetric payoffs. At the end of the chapter we point
the reader to further reading on these models.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.7 Evolutionary learning and other large-population models 225

The replicator dynamic describes a population of agents playing such a game
in an ongoing fashion. At each point in time, each agent only plays a pure strat-
egy. Informally speaking, the model then pairs all agents and has them play each
other, each obtaining some payoff. This payoff is called the agent’sfitness. At thisfitness
point the biological inspiration kicks in—each agent now “reproduces" in a man-
ner proportional to this fitness, and the process repeats. The question is whether
the process converges to a fixed proportion of the various pure strategies within the
population, and if so to which fixed proportions.

The verbal description above is only meant to be suggestive. The actual math-
ematical model is a little different. First, we never explicitly model the play of
the game between particular sets of players; we only model the proportions of the
populations associated with a given strategy. Second, the model is not one of dis-
crete repetitions of play, but rather one of continuous evolution. Third, beyond the
fitness-based reproduction, there is also a random element that impacts the propor-
tions in the population. (Again, because of the biological inspiration, this random
element is calledmutation.)mutation

The formal model is as follows. Given a normal-form gameG = ({1, 2}, A, u),
letϕt(a) denote the number of players playing actiona at timet. Also, let

θt(a) =
ϕt(a)∑

a′∈A ϕt(a′)

be the proportion of players playing actiona at timet. We denote withϕt the vector
of measures of players playing each action, and withθt the vector of population
shares for each action.

The expected payoff to any individual player for playing actiona at timet is

ut(a) =
∑

a′

θt(a
′)u(a, a′).

The change in the number of agents playing actiona at time t is defined to be
proportional to his fitness, that is, his average payoff at the current time,

ϕ̇t(a) = ϕt(a)ut(a).

The absolute numbers of agents of each type are not important;only the relative
ratios are. Defining the average expected payoff of the whole population as

u∗
t =

∑

a

θt(a)ut(a),

we have that the change in the fraction of agents playing action a at timet is

θ̇t(a) =

[
ϕ̇t(a)

∑
a′∈A ϕt(a

′)
]
−
[
ϕt(a)

∑
a′∈A ϕ̇t(a

′)
]

[∑
a′∈A ϕt(a′)

]2 = θt(a)[ut(a)− u∗
t].

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

226 7 Learning and Teaching

The system we have defined has a very intuitive quality. If an action does better
than the population average then the proportion of the population playing this ac-
tion increases, and vice versa. Note that even an action that is not a best response
to the current population state can grow as a proportion of the population when its
expected payoff is better than the population average.

How should we interpret this evolutionary model? A straightforward interpreta-
tion is that it describes agents repeatedly interacting and replicating within a large
population. However, we can also interpret the fraction of agents playing a cer-
tain strategy as the mixed strategy of a single agent, and the process as that of two
identical agents repeatedly updating their identical mixed strategies based on their
previous interaction. Seen in this light, except for its continuous-time nature, the
evolutionary model is not as different from the repeated-game model as it seems at
first glance.

We would like to examine the equilibrium points in this system. Before we do,
we need a definition of stability.

Definition 7.7.2 (Steady state)A steady stateof a population using the replicatorsteady state
dynamic is a population stateθ such that for alla ∈ A, θ̇(a) = 0.

In other words, a steady state is a state in which the population shares of each
action are constant. This stability concept has a major flaw. Any state in which all
players play the same action is a steady state. The population shares of the actions
will remain constant because the replicator dynamic does not allow the “entry” of
strategies that are not already being played. To disallow these states, we will often
require that our steady states arestable.

Definition 7.7.3 (Stable steady state)A steady stateθ of a replicator dynamic is
stable if there exists anǫ > 0 such that for everyǫ-neighborhoodU of θ therestable steady

state exists another neighborhoodU ′ of θ such that ifθ0 ∈ U ′ thenθt ∈ U for all
t > 0.

That is, if the system starts close enough to the steady state, it remains nearby.
Finally, we might like to define an equilibrium state which, if perturbed, will

eventually return back to the state. We call thisasymptotic stability.

Definition 7.7.4 (Asymptotically stable state)A steady stateθ of a replicator dy-
namic isasymptotically stableif it is stable, and in addition there exists anǫ > 0asymptotically

stable state such that for everyǫ-neighborhoodU of θ it is the case that ifθ0 ∈ U then
limt→∞ θt = θ.

The following example illustrates some of these concepts. Consider a homoge-
neous population playing the Anti-Coordination game, repeated in Figure 7.9.

The game has two pure-strategy Nash equilibria,(A,B) and(B,A), and one
mixed-strategy equilibrium in which both players select actions from the distribu-
tion (0.5, 0.5). Because of the symmetric nature of the setting, there is no way for
the replicator dynamic to converge to the pure-strategy equilibria. However, note

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.7 Evolutionary learning and other large-population models 227

A B

A 0, 0 1, 1

B 1, 1 0, 0

Figure 7.9: The Anti-Coordination game.

that the state corresponding to the mixed-strategy equilibrium is a steady state,
because when half of the players are playingA and half are playingB, both strate-
gies have equal expected payoff (0.5) and the population shares of each are con-
stant. Moreover, notice that this state is also asymptotically stable. The replicator
dynamic, when started in any other state of the population (where the share of play-
ers playingA is more or less than 0.5) will converge back to the state(0.5, 0.5).
More formally we can express this as

θ̇(A) = θ(A)(1− θ(A)− 2θ(A)(1− θ(A)))

= θ(A)(1− 3θ(A) + 2θ(A)2).

This expression is positive forθ(A) < 0.5, exactly 0 at0.5, and negative for
θ(A) > 0.5, implying that the state(0.5, 0.5) is asymptotically stable.

This example suggests that there may be a special relationship between Nash
equilibria and states in the replicator dynamic. Indeed, this is the case, as the
following results indicate.

Theorem 7.7.5Given a normal-form gameG = ({1, 2}, A = {a1, . . . , ak}, u),
if the strategy profile(s, s) is a (symmetric) mixed strategy Nash equilibrium ofG
then the population share vectorθ = (s(a1), . . . , s(ak)) is a steady state of the
replicator dynamic ofG.

In other words, every symmetric Nash equilibrium is a steady state. The reason
for this is quite simple. In a state corresponding to a mixed Nash equilibrium,
all strategies being played have the same average payoff, so the population shares
remain constant.

As mentioned above, however, it is not the case that every steady state of the
replicator dynamic is a Nash equilibrium. In particular, states in which not all
actions are played may be steady states because the replicator dynamic cannot
introduce new actions, even when the corresponding mixed-strategy profile is not
a Nash equilibrium. On the other hand, the relationship between Nash equilibria
andstablesteady states is much tighter.

Theorem 7.7.6Given a normal-form gameG = ({1, 2}, A{a1 , . . . , ak}, u) and
a mixed strategys, if the population share vectorθ = (s(a1), . . . , s(ak)) is a

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

228 7 Learning and Teaching

stable steady state of the replicator dynamic ofG, then the strategy profile(s, s) is
a mixed strategy Nash equilibrium ofG.

In other words, every stable steady state is a Nash equilibrium. It is easier to
understand the contrapositive of this statement. If a mixed-strategy profile is not
a Nash equilibrium, then some action must have a higher payoff than some of the
actions in its support. Then in the replicator dynamic the share of the population
using this better action will increase, once it exists. Then it is not possible that
the population state corresponding to this mixed-strategy profile is a stable steady
state.

Finally, we show that asymptotic stability corresponds to a notion that is stronger
than Nash equilibrium. Recall the definition of trembling-hand perfection (Defini-
tion 3.4.14), reproduced here for convenience.

Definition 7.7.7 (Trembling-hand perfect equilibrium) A mixed-strategy profile
s is a (trembling-hand) perfect equilibriumof a normal-form gameG if there exists
a sequences0, s1, . . . of fully mixed-strategy profiles such thatlimn→∞ sn = s,
and such that for eachsk in the sequence and each playeri, the strategysi is a
best response to the strategiessk

−i.

Furthermore, we say informally that an equilibrium strategy profile isisolatedif
there does not exist another equilibrium strategy profile in the neighborhood (i.e.,
reachable via small perturbations of the strategies) of the original profile. Then we
can relate trembling-hand perfection to the replicator dynamic as follows.

Theorem 7.7.8Given a normal-form gameG = ({1, 2}, A, u) and a mixed strat-
egys, if the population share vectorθ = (s(a1), . . . , s(ak)) is an asymptotically
stable steady state of the replicator dynamic ofG, then the strategy profile(s, s) is
a Nash equilibrium ofG that is trembling-hand perfect and isolated.

7.7.2 Evolutionarily stable strategies

An evolutionarily stable strategy (ESS)is a stability concept that was inspired byevolutionarily
stable strategy
(ESS)

the replicator dynamic. However, unlike the steady states discussed earlier, it does
not require the replicator dynamic, or any dynamic process, explicitly; rather it is
a static solution concept. Thus in principle it is not inherently linked to learning.

Roughly speaking, an evolutionarily stable strategy is a mixed strategy that is
“resistant to invasion” by new strategies. Suppose that a population of players
is playing a particular mixed strategy in the replicator dynamic. Then suppose
that a small population of “invaders” playing a different strategy is added to the
population. The original strategy is considered to be an ESS if it gets a higher
payoff against the resulting mixture of the new and old strategies than the invaders
do, thereby “chasing out” the invaders.

More formally, we have the following.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.7 Evolutionary learning and other large-population models 229

Definition 7.7.9 (Evolutionarily stable strategy (ESS))Given a symmetric two-
player normal-form gameG = ({1, 2}, A, u) and a mixed strategys, we say that
s is an evolutionarily stable strategy if and only if for someǫ > 0 and for all other
strategiess′ it is the case that

u(s, (1− ǫ)s+ ǫs′) > u(s′, (1− ǫ)s+ ǫs′).

We can use properties of expectation to state this condition equivalently as

(1− ǫ)u(s, s) + ǫu(s, s′) > (1− ǫ)u(s′, s) + ǫu(s′, s′).

Note that, since this only needs to hold for smallǫ, this is equivalent to requiring
that eitheru(s, s) > u(s′, s) holds, or else bothu(s, s) = u(s′, s) andu(s, s′) >
u(s′, s′) hold. Note that this is a strict definition. We can also state a weaker
definition of ESS.

Definition 7.7.10 (Weak ESS)s is a weak evolutionarily stable strategyif andweak
evolutionarily
stable strategy

only if for someǫ > 0 and for all s′ it is the case that eitheru(s, s) > u(s′, s)
holds, or else bothu(s, s) = u(s′, s) andu(s, s′) ≥ u(s′, s′) hold.

This weaker definition includes strategies in which the invader does just as well
against the original population as it does against itself. In these cases the population
using the invading strategy will not grow, but it will also not shrink.

We illustrate the concept of ESS with the instance of theHawk–Dovegame
shown in Figure 7.10. The story behind this game might be as follows. Two

H D

H −2,−2 6, 0

D 0, 6 3, 3

Figure 7.10: Hawk–Dove game.

animals are fighting over a prize such as a piece of food. Each animal can choose
between two behaviors: an aggressive hawkish behaviorH , or an accommodating
dovish behaviorD. The prize is worth6 to each of them. Fighting costs each
player5. When a hawk meets a dove he gets the prize without a fight, and hence
the payoffs are6 and0, respectively. When two doves meet they split the prize
without a fight, hence a payoff of3 to each one. When two hawks meet a fight
breaks out, costing each player5 (or, equivalently, yielding−5). In addition, each
player has a 50% chance of ending up with the prize, adding an expected benefit
of 3, for an overall payoff of−2.

It is not hard to verify that the game has a unique symmetric Nash equilibrium
(s, s), wheres = (3

5
, 2

5
), and thats is also the unique ESS of the game. To

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

230 7 Learning and Teaching

confirm thats is an ESS, we need that for alls′ 6= s, u(s, s) = u(s′, s) and
u(s, s′) > u(s′, s′). The equality condition is true of any mixed strategy equi-
librium with full support, so follows directly. To demonstrate that the inequality
holds, it is sufficient to find thes′—or equivalently, the probability of playingH—
that minimizesf(s′) = u(s, s′) − u(s′, s′). Expandingf(s′) we see that it is a
quadratic equation with the (unique) maximums′ = s, proving our result.

This connection between an ESS and a Nash equilibrium is not accidental. The
following two theorems capture this connection.

Theorem 7.7.11Given a symmetric two-player normal-form gameG = ({1, 2}, A, u)
and a mixed strategys, if s is an evolutionarily stable strategy then(s, s) is a Nash
equilibrium ofG.

This is easy to show. Note that by definition an ESSs must satisfy

u(s, s) ≥ u(s′, s).
In other words, it is a best response to itself and thus must be aNash equilibrium.
However, not every Nash equilibrium is an ESS; this property is guaranteed only
for strict equilibria.

Theorem 7.7.12Given a symmetric two-player normal-form gameG = ({1, 2}, A, u)
and a mixed strategys, if (s, s) is a strict (symmetric) Nash equilibrium ofG, then
s is an evolutionarily stable strategy.

This is also easy to show. Note that for any strict Nash equilibriums it must be
the case that

u(s, s) > u(s′, s).

But this satisfies the first criterion of an ESS.
The ESS also is related to the idea of stability in the replicator dynamic.

Theorem 7.7.13Given a symmetric two-player normal-form gameG = ({1, 2}, A, u)
and a mixed strategys, if s is an evolutionarily stable strategy then it is an asymp-
totically stable steady state of the replicator dynamic ofG.

Intuitively, if a state is an ESS then we know that it will be resistant to invasions
by other strategies. Thus, when this strategy is represented by a population in the
replicator dynamic, it will be resistant to small perturbations. What is interesting,
however, is that the converse isnot true. The reason for this is that in the replicator
dynamic, only pure strategies can be inherited. Thus some states that are asymp-
totically stable would actually not be resistant to invasion by a mixed strategy, and
thus not an ESS.

7.7.3 Agent-based simulation and emergent conventions

It was mentioned in Section 7.7.1 that, while motivated by a notion of dynamic
process within a population, in fact the replicator dynamic only models the gross

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.7 Evolutionary learning and other large-population models 231

statistics of the process, not its details. There are other large-population models that
provide a more fine-grained model of the process, with many parameters that can
impact the dynamics. We call such models, which explicitly model the individual
agents,agent-based simulationmodels.agent-based

simulation In this we look at one such model, geared toward the investigation of how con-
ventions emerge in a society. In Section 2.4 we saw how in any realistic multiagent
system it is crucial that the agents agree on certainsocial laws, in order to decreasesocial law
conflicts among them and promote cooperative behavior. Without such laws even
the simplest goals might become unattainable by any of the agents, or at least not
efficiently attainable (just imagine driving in the absence of traffic rules). A social
law restricts the options available to each agent. A special case of social laws are
social conventions, which limit the agents to exactly one option from the manysocial

convention available ones (e.g., always driving on the right side of the road). A good social
law or convention strikes a balance between on the one hand allowing agents suffi-
cient freedom to achieve their goals, and on the other hand restricting them so that
they do not interfere too much with one another.

In Section 2.4 we asked how social laws and conventions can be designed by
a social designer, but here we ask how such conventions can emerge organically.
Roughly speaking, the process we aim to study is one in which individual agents
occasionally interact with one another, and as a result gain some new information.
Based on his personal accumulated information, each agent updates his behavior
over time. This process is reminiscent of the replicator dynamic, but there are cru-
cial differences. We start in the same way, and restrict the discussion to symmetric,
two-player-two-choices games. Here too one can look at much more general set-
tings, but we will restrict ourselves to the game schema in Figure 7.11.

A B

A x, x u, v

B v, u y, y

Figure 7.11: A game for agent-based simulation models.

However, unlike the replicator dynamic, here we assume a discrete process, and
furthermore assume that at each stage exactly one pair of agents—selected at ran-
dom from the population—play. This contrasts sharply with the replicator dynamic,
which can be interpreted as implicitly assuming that almost all pairs of agents play
before updating their choices of action. In this discrete model each agent is tracked
individually, and indeed different agents end up possessing very different informa-
tion.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

232 7 Learning and Teaching

Most importantly, in contrast with the replicator dynamic, the evolution of the
system is not defined by some global statistics of the system. Instead, each agent
decides how to play the next game based on his individual accumulated experience
thus far. There are two constraints we impose on such rules.

Property 7.7.14 (Anonymity) The selection function cannot be based on the iden-anonymous
learning rule tities of agents or the names of actions.

Property 7.7.15 (Locality) The selection function is purely a function of the agent’slocal learning
rule personal history; in particular, it is not a function of global system properties.

The requirement of anonymity deserves some discussion. We are interested in
how social conventions emerge when we cannot anticipate in advance the games
that will be played. For example, if we know that the coordination problem will
be that of deciding whether to drive on the left of the road or on the right, we can
very well use the names “left” and “right” in the action-selection rule; in particular,
we can admit the trivial update rule that has all agents drive on the right immedi-
ately. Instead, the type of coordination problem we are concerned with is better
typified by the following example. Consider a collection of manufacturing robots
that have been operating at a plant for five years, at which time a new collection of
parts arrive that must be assembled. The assembly requires using one of two avail-
able attachment widgets, which were introduced three years ago (and hence were
unknown to the designer of the robots five years ago). Either of the widgets will
do, but if two robots use different ones then they incur the high cost of conversion
when it is time for them to mate their respective parts. Our goal is that the robots
learn to use the same kind of widget. The point to emphasize about this example
is that five years ago the designer could have stated rules of the general form “if in
the future you have several choices, each of which has been tried this many times
and has yielded this much payoff, then next time make the following choice”; the
designer could not, however, have referred to the specific choices of widget, since
those were only invented two years later.

The prohibition on using agent identities in the rules (e.g., “if you see Robot
17 use a widget of a certain type then do the same, but if you see Robot 5 do it
then never mind”) is similarly motivated. In a dynamic society agents appear and
disappear, denying the designer the ability to anticipate membership in advance.
One can sometimes refer to theroles of agents (such as Head Robot), and have
them treated in a special manner, but we will not discuss this interesting aspect
here.

Finally, the notion of “personal history” can be further honed. We will assume
that the agent has access to the action he has taken and the reward he received
at each instance. One could assume further that the agent observes the choices
of others in the games in which he participated, and perhaps also their payoffs.
But we will look specifically at an action-selection rule that does not make this
assumption. This rule, called thehighest cumulative reward (HCR)rule, is thehighest

cumulative
reward (HCR)

following learning procedure:

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

7.8 History and references 233

1. Initialize the cumulative reward for each action (e.g., to zero).

2. Pick an initial action.

3. Play according to the current action and update its cumulative reward.

4. Switch to a new action iff the total payoff obtained from that action in the latest
m iterations is greater than the payoff obtained from the currently chosen action
in the same time period.

5. Go to step 3.

The parameterm in the procedure denotes a finite bound, but the bound may
vary. HCR is a simple and natural procedure, but it admits many variants. One
can consider rules that use a weighted accumulation of feedback rather than simple
accumulation, or ones that normalize the reward somehow rather than looking at
absolute numbers. However even this basic rule gives rise to interesting proper-
ties. In particular, under certain conditions it guarantees convergence to a “good"
convention.

Theorem 7.7.16Let g be a symmetric game as defined earlier, withx > 0 or
y > 0 or x = y > 0, and eitheru < 0 or v < 0 or x < 0 or y < 0. Then
if all agents employ the HCR rule, it is the case that for everyǫ > 0 there exists
an integerδ such that afterδ iterations of the process the probability that a social
convention is reached is greater than1 − ǫ. Once a convention is reached, it is
never left. Furthermore, this convention guarantees to the agent a payoff which is
no less than the maxmin value ofg.

There are many more questions to ask about the evolution of conventions: How
quickly does a convention evolve? How does this time depend on the various
parameters, for examplem, the history remembered? How does it depend on the
initial choices of action? How does the particular convention reached—since there
are many—depend on these variables? The discussion below points the reader to
further reading on this topic.

7.8 History and references

There are quite a few broad introductions to, and textbooks on, single-agent learn-
ing. In contrast, there are few general introductions to the area ofmultiagentlearn-
ing. Fudenberg and Levine [1998] provide a comprehensive survey of the area
from a game-theoretic perspective, as does Young [2004]. A special issue of the
Journal of Artificial Intelligence [Vohra and Wellman, 2007] looked at the founda-
tions of the area. Parts of this chapter are based on Shoham et al. [2007] from that
special issue. Some of the specific references are as follows.

Fictitious play was introduced by Brown [1951] and Robinson [1951]. The con-
vergence results for fictitious play in Theorem 7.2.5 are taken respectively from

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

234 7 Learning and Teaching

Robinson [1951], Nachbar [1990], Monderer and Shapley [1996b] and Berger
[2005]. Thenon-convergence example appeared in Shapley [1964].

Rational learning was introduced and analyzed by Kalai and Lehrer [1993]. A
rich literature followed, but this remains the seminal paper on the topic.

Single-agent reinforcement learning is surveyed in Kaelbling et al. [1996]. Some
key publications in the literature include Bellman [1957] on value iteration in
known MDPs, and Watkins [1989] and Watkins and Dayan [1992] onQ-learning
in unknown MDPs. The literature on multiagent reinforcement learning begins
with Littman [1994]. Some other milestones in this line of research are as follows.
Littman and Szepesvari [1996] completed the story regarding zero-sum games,
Claus and Boutilier [1998] defined belief-based reinforcement learning and showed
experimental results in the case of pure coordination (or team) games, and Hu and
Wellman [1998], Bowling and Veloso [2001], and Littman [2001] attempted to
generalize the approach to general-sum games. The R-max algorithm was intro-
duced by Brafman and Tennenholtz [2002], and its predecessor, the E3 algorithm,
by Kearns and Singh [1998].

The notion of no-regret learning can be traced to Blackwell’s approachability the-
orem [Blackwell, 1956] and Hannan’s notion of Universal Consistency [Hannan,
1957]. A good review of the history of this line of thought is provided in Foster and
Vohra [1999]. The regret-matching algorithm and the analysis of its convergence
to correlated equilibria appears in Hart and Mas-Colell [2000]. Modifications of
fictitious play that exhibit no regret are discussed in Fudenberg and Levine [1995]
and Fudenberg and Levine [1999].

Targeted learning was introduced in Powers and Shoham [2005b], and further re-
fined and extended in Powers and Shoham [2005a] and Vu et al. [2006]. (However,
the termtargeted learningwas invented later to apply to this approach to learning.)

The replicator dynamic is borrowed from biology. While the concept can be
traced back at least to Darwin, work that had the most influence on game theory
is perhaps Taylor and Jonker [1978]. The specific model of replicator dynamics
discussed here appears in Schuster and Sigmund [1982]. The concept of evolu-
tionarily stable strategies (ESSs) again has a long history, but was most explicitly
put forward in Maynard Smith and Price [1973]—which also introduced the Hawk–
Dove game—and figured prominently a decade later in the seminal Maynard Smith
[1982]. Experimental work on learning and the evolution of cooperation appears
in Axelrod [1984]. It includes discussion of a celebrated tournament among com-
puter programs that played a finitely repeated Prisoner’s Dilemma game and in
which the simple Tit-for-Tat strategy emerged victorious. Emergent conventions
and the HCR rule were introduced in Shoham and Tennenholtz [1997].

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8 Communication

Agents communicate; this is one of the defining characteristics of a multiagent sys-
tem. In traditional linguistic analysis, the communication is taken to have a certain
form (syntax), to carry a certain meaning (semantics), and to be influenced by var-
ious circumstances of the communication (pragmatics). As we shall see, a closer
look at communication adds to the complexity of the story. We can distinguish be-
tween purelyinformationaltheories of communication andmotivationalones. In
informational communication, agents simply inform each other of different facts.
The theories of belief change, introduced in Chapter 14, look at ways in which
beliefs change in the face of new information—depending on whether the beliefs
are logical or probabilistic, consistent with prior beliefs or not. In this chapter
we broaden the discussion and consider motivational theories of communication,
involving agents with individual motivations and possible courses of actions.

We divide the discussion into three parts. The first concernscheap talkand
describes a situation in which self-motivated agents can engage in costless com-
munication before taking action. As we see, in some situations this talk influences
future behavior, and in some it does not. Cheap talk can be viewed as “doing by
talking”; in contrast,signaling gamescan be viewed as “talking by doing.” In sig-
naling games an agent can take actions that, by virtue of the underlying incentives,
communicate to the other agent something new. Since these theories draw on game
theory, cheap talk and signaling both apply in cooperative as well as in competitive
situations. In contrast,speech-act theory, which draws on philosophy and linguis-
tics, applies in purely cooperative situations. It describes pragmatic ways in which
language is used not only to convey information but to effect change; as such, it
too has the flavor of “doing by talking.”

8.1 “Doing by talking” I: cheap talk

Consider the Prisoner’s Dilemma game, reproduced here in Figure 8.1. Recall
that the game has a unique equilibrium in dominant strategies, the strategy profile
(D,D), which is ironically also the only outcome that is not Pareto optimal; both
players would do better if they both chooseC instead. Suppose now that the pris-
oners are allowed to communicate before they play; will this change the outcome

236 8 Communication

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 8.1: The Prisoner’s Dilemma game.

of the game? Intuitively, the answer is no. Regardless of the other agent’s action,
the given agent’s best action is stillD; the other agent’s talk is indeed cheap. Fur-
thermore, regardless of his true intention, it is the interest of a given agent to get
the other agent to playC; his talk is not only cheap, but also not credible (or, as
the saying goes, the talk is free—and worth every penny).

Contrast this with cheap talk prior to the Coordination game given in Figure 8.2.

L R

U 1, 1 0, 0

D 0, 0 1, 1

Figure 8.2: Coordination game.

Here, if the row player declares “I will playU ” prior to playing the game, the
column player should take this seriously. Indeed, this utterance by the row player
is bothself-committingandself-revealing. These two notions are related but subtlyself-committing

utterance

self-revealing
utterance

different. A declaration of intent is self-committing if, once uttered, and assuming
it is believed, the optimal course of action for the player is indeed to act as declared.
In this example, if the column player believes the utterance “I will playU ,” then his
best response is to playL. But then the row player’s best response is indeed to play
U . In contrast, an utterance is self-revealing if, assuming that it is uttered with the
expectation that it will be believed, it is uttered only when indeed the intention was
to act that way. In our case, a row player intending to playD will never announce
the intention to playU , and so the utterance is self-revealing.

It must be mentioned that the precise analysis of this example, as well as the
later examples, is subtle in a number of ways. In particular, the equilibrium anal-
ysis reveals other, less desirable equilibria than the ones in which a meaningful
message is transmitted and received. For example, this example has another, less
obvious equilibrium. The column player could ignore anything the row player says,
allowing its beliefs to be unaffected by signals. In this case, the row player has no

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.1 “Doing by talking” I: cheap talk 237

incentive to say anything in particular, and he might as well “babble,” that is, send
signals that are uncorrelated with his type. For this reason, we call this ababbling
equilibrium. In theory, every cheap talk game has a babbling equilibrium; therebabbling

equilibrium is always an equilibrium in which one party sends a meaningless signal and the
other party ignores it. An equilibrium that is not a babbling equilibrium is called
a revealing equilibrium. In a similar fashion one can have odd equilibria in whichrevealing

equilibrium messages are not ignored but are used in a nonstandard way. For example, the row
player might send the signalU when she meansD and vice versa, so long as the
column player adopts the same convention. However, going forward we will ignore
these complications, and assume a meaningful and straightforward communication
among the parties.

It might seem that self-commitment and self-revelation are inseparable, but this
is an artifact of the pure coordination nature of the game. In such games the utter-
ance creates a so-calledfocal point, a signal on which the agents can coordinatefocal point
their actions. But now consider the well-knownStag Hunt game, whose payoff

Stag Hunt game matrix is shown in Figure 8.3. In the story behind this game, Artemis and Calliope
are about to go hunting, and are trying to decide whether they want to hunt stag
or hare. If both hunt stag, they do very well; if one tries to hunt stag alone, she
fails completely. On the other hand, if one hunts rabbits alone, she will do well,
for there is no competition; if both hunt rabbits together, they only do OK, for they
each have competition.

Stag Hare

Stag 9, 9 0, 8

Hare 8, 0 7, 7

Figure 8.3: Payoff matrix for the Stag Hunt game.

In each cell of the matrix, Artemis’ payoff is listed first and Calliope’s payoff
is listed second. This game has a symmetric mixed-strategy equilibrium, in which
each player hunts stag with probability7

8
, yielding an expected utility of77

8
. But

now suppose Artemis can speak to Calliope before the game; can he do any better?
The answer is arguably yes. Consider the message “I plan to hunt stag.” It is not
self-revealing; Artemis would like Calliope to believe this, even if she does not
actually plan to hunt stag. However, itis self-committing; if Artemis were to think
that Calliope believes her, then Artemis would actually prefer to hunt stag. There
is however the question of whether Calliope would believe the utterance, knowing
that it is not self-revealing on the part of Artemis.

For this reason, some view self-commitment without self-revelation as a notion
lacking force. To gain further insight into this issue, let us define the Stag Hunt
game more generally. Consider the game in Figure 8.4. Here, ifx is less than 7,

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

238 8 Communication

Stag Hare

Stag 9, 9 0, x

Hare x, 0 7, 7

Figure 8.4: More general payoff matrix for the Stag Hunt game.

then the message “I plan to hunt stag” is possibly credible. However, ifx is greater
than 7, then that message is not at all credible, because it is in Artemis’ best interest
to get Calliope to hunt stag, no matter what Artemis actually intends to play.

We have so far spoken about communication in the context of games of perfect
information. In such games all that can possibly be revealed in the intention to act a
certain way. In games of incomplete information, however, there is an opportunity
to reveal one’s own private information prior to acting.

Consider the following example. The Acme Corporation wants to hire Sally into
one of two positions: a demanding and an undemanding position. Sally may have
high or low ability. Sally prefers the demanding position if she has high ability
(because of salary and intellectual challenge) and she prefers the undemanding
positions if she instead has low ability (because it will be more manageable). Acme
too prefers that Sally be in the demanding position if she has high ability, and that
she be in the undemanding position if she is of low ability. The actual game being
played is determined by Nature; for concreteness, let us assume that selection is
done with uniform probability. Importantly, however, only Sally knows what her
true ability level is. However, before they play the game, Sally can send Acme a
signal about her ability level. Suppose for the sake of simplicity that Sally can only
choose from two signals: “My ability is low,” and “My ability is high.” Note that
Sally may choose to be either sincere or insincere. The situation is modeled by the
two games in Figure 8.5; in each cell of the matrix, Sally’s payoff is listed first, and
Acme’s payoff is listed second.

What signal should Sally send? It seems obvious that she should tell the truth.
She has no incentive to lie about her ability. If she were to lie, and Acme were to
believe her, then she would receive a lower payoff than if she had told the truth.
Acme knows that she has no reason to lie and so will believe her. Thus there in an
equilibrium in which when Sally has low ability she says so, and Acme gives her
an undemanding job, and when Sally has high ability she also says so, and Acme
gives her a demanding job. The message is therefore self-signaling; assuming she
will be believed, Sally will send the message only if it is true.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.2 “Talking by doing”: signaling games 239

Signal high ability 3, 1

Signal low ability 0, 0

High-ability game

Signal high ability 0, 0

Signal low ability 2, 1

Low-ability Game

Figure 8.5: Payoff matrix for the Job Hunt game.

8.2 “Talking by doing”: signaling games

We have so far discussed the situation in which talk preceded action. But some-
times actions speak louder than words. In this section we consider a class of
imperfect-information games calledsignaling games.

Definition 8.2.1 (Signaling game)Asignaling gameis a two-player game in whichsignaling game
Nature selects a game to be played according to a commonly known distribution,
player 1 is informed of that choice and chooses an action, and player 2 then
chooses an action without knowing Nature’s choice, but knowing player 1’s choice.

In other words, a signaling game is an extensive-form game in which player 2
has incomplete information.

It is tempting to model player 2’s decision problem as follows. Since each of
the possible games has a different set of payoffs, player 2 must first calculate the
posterior probability distribution over possible games, given the message that she
received from player 1. She can calculate this using Bayes rule with the prior
distribution over games and the conditional probabilities of player 1’s message
given the game. More precisely, the expected payoff for each action is as follows.

u2(a,m) = E(u2(g,m, a)|m,a)
=
∑

g∈G

u2(g,m, a)P (g|m,a)

=
∑

g∈G

u2(g,m, a)P (g|m)

=
∑

g∈G

u2(g,m, a)
P (m|g)P (g)

P (m)

=
∑

g∈G

u2(g,m, a)
P (m|g)P (g)∑

g∈G P (m|g)P (g)

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

240 8 Communication

One problem with this formulation is that the use of Bayes’ rule requires that the
probabilities involved be nonzero. But more acutely, how does player 2 calculate
the probability of player 1’s message given a certain game? This is not at all
obvious in light of the fact that player 2 knows that player 1 knows that player 2
will go through such reasoning, et cetera. Indeed, even if player 1 has a dominant
strategy in the game being played the situation is not straightforward. Consider the
following signaling game. Nature chooses with equal probability one of the two
zero-sum normal-form games given in Figure 8.6.

L R

U 4,−4 1,−1

D 3,−3 0, 0

L R

U 1,−1 3,−3

D 2,−2 5,−5

Figure 8.6: A signaling setting: Nature chooses randomly between the two games.

Recall that player 1 knows which game is being played, and will choose his
message first (Uor D), and then player 2, who does not know which game is
being played, will choose his action (LorR). What should player 1 do?

Note that in the leftmost game(U,R) is an equilibrium in dominant strategies,
and in rightmost game(D,L) is an equilibrium in dominant strategies. Since
player 2’s preferred action depends entirely on the game being played, and he is
confident that player 1 will play his dominant strategy, his best response isR if
player 1 choosesU , andL if player 1 choosesD. If player 2 plays in this fashion,
we can calculate the expected payoff to player 1 as

E(u1) = (0.5)1 + (0.5)2 = 1.5.

This seems like an optimal strategy. However, consider a different strategy for
player 1. If player 1 always choosesD, regardless of what game he is playing,
then his payoff is independent of player 2’s action. We calculate the expected
payoff to player 1 as follows, assuming that player 2 playsL with probabilityp
andR with probability(1− p):

E(u1) = (0.5)(3p + 0(1 − p)) + (0.5)(2p + 5(1− p)) = 2.5.

Thus, player 1 has a higher expected payoff if he always chooses the messageD.
The example highlights an interesting property of signaling games. Although

player 1 has privileged information, it may not always be to his advantage to exploit
it. This is because by exploiting the advantage, he is effectively telling player 2
what game is being played and thereby losing his advantage. Thus, in some cases
player 1 can receive a higher payoff by ignoring his information.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.3 “Doing by talking” II: speech-act theory 241

Signaling games fall under the umbrella term ofgames of asymmetric informa-
tion. One of the best-known examples is the so-calledSpence signaling game,games of

asymmetric
information

Spence
signaling game

which offers a rationale for enrolling in a difficult academic program. Consider
the situation in which an employer is trying to decide how much to pay a new
worker. The worker may or may not be talented, and can signal this to the em-
ployer by choosing to get either a high or low level of education. Specifically, we
can model the setting as a Bayesian game between an employer and a worker in
whichNature first chooses the level of the worker’s talent,θ, to be eitherθL or
θH , such thatθL < θH . This value ofθ defines two different possible games. In
each possible game, the worker’s strategy space is the level of educatione to get for
both possible types, or level of talent. We useeL to refer to the level of education
chosen by the worker if his talent level isθL andeH for the education chosen if his
talent level isθH . We assume that the worker knows his talent.

Finally, the employer’s strategy specifies two wages,wH and wL, to offer a
worker based on whether his signal iseH or eL. We assume that the employer
does not know the level of talent of the worker, but does get to observe his level
of education. The employer is assumed to have two choices. One is to ignore the
signal and setwH = wL = pHθH+pLθL, wherepL+pH = 1 are the probabilities
with whichNature chooses a high and low talent for the worker. The other is to
pay a worker with a high educationwH and a worker with a low educationwL.

The payoff to the employer isθ − w, the difference between the talent of the
worker and the payment to him. The payoff to the worker isw − e/θ, reflecting
the assumption that education is easier when talent is higher.

This game has two equilibria. The first is apooling equilibrium, in which thepooling
equilibrium worker will choose the same level of education regardless of his type (eL = eH =

e∗), and the employer pays all workers the same amount. The other is aseparating
equilibrium, in which the worker will choose a different level of education depend-separating

equilibrium ing on his type. In this case a low-talent worker will choose to get no education,
eL = 0, because the wage paid to this worker iswL, independent ofeL. The educa-
tion chosen by a high-talent worker is set in such a way as to make it unprofitable
for either type of worker to mimic the other. This is the case only if the following
two inequalities are satisfied.

θL ≥ θH − eH/θL

θL ≤ θH − eH/θH

These inequalities can be rewritten in terms ofeH as

θL(θH − θL) ≤ eH ≤ θH(θH − θL).

Note that sinceθH > θL, a separating equilibrium always exists.

8.3 “Doing by talking” II: speech-act theory

Human communication is as rich and imprecise as natural language, tone, affect,
and body language permit, and human motivations are similarly complex. It is not

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

242 8 Communication

surprising that philosophers and linguists have attempted to model such commu-
nication. As mentioned at the very start of the chapter, human communication is
analyzed on many different levels of abstraction, among them thesyntactic, seman-
tic, andpragmaticlevels. The discussion of speech acts lies squarely within the
pragmatic level, although it should be noted that there are legitimate arguments
against a crisp separation among these layers.

8.3.1 Speech acts

The traditional view of communication is that it is the sharing of information.
Speech-act theory, due to the philosopher J. L. Austin, embodies the insight that
some communications can instead be viewed as actions, intended to achieve some
goal.

Speech-act theory distinguishes between three different kinds of speech acts, or,
if you wish, three levels at which an utterance can be analyzed. Thelocutionary actlocutionary act
is merely the emission of a signal carrying a certain meaning. When I say “there’s
a car coming your way,” the locution refers to the content transmitted. Locutions
establish a proposition, which may be true or false. However, the utterance can
also be viewed as anillocutionary act, which in this case is awarning. In general,illocutionary act
an illocution is the invocation of a conventional force on the receiver through the
utterances. Other illocutions can be making a request, telling a joke, or, indeed,
simply informing.

Finally, if the illocution captures the intention of the speaker, theperlocution-
ary act is bringing about an effect on the hearer as a result of an utterance. Al-perlocutionary

act though the illocutionary and perlocutionary acts may seem similar, it is important
to distinguish between an illocutionary act and its perlocutionary consequences. Il-
locutionary acts do somethingin saying something, while perlocutionary acts do
somethingby saying something. Perlocutionary acts include scaring, convincing,
and saddening. In our car example, the perlocution would be an understanding by
the hearer of the imminent danger causing him to jump from in front of the car.

Illocutions thus may or may not be successful.Performativesconstitute a typeperformative
of act that is inherently successful. Merely saying something achieves the desired
effect. For example, the utterance “please get off my foot" (or, somewhat more
stiffly, “I hereby request you to get off my foot”) is a performative. The speaker
asserts that the utterance is a request, and is thereby successful in communicating
the request to the listener, because the listener assumes that the speaker is an expert
on his own mental state. Some utterances are performatives only under some cir-
cumstances. For example, the statement “I hereby pronounce you man and wife" is
a performative only if the speaker is empowered to conduct marriage ceremonies
in that time and place, if the rest of the ceremony follows protocol, if the bride and
groom are eligible for marriage, and so on.1

1. It is however interesting to contemplate a world in which any such utterance results in a marriage.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.3 “Doing by talking” II: speech-act theory 243

8.3.2 Rules of conversation

Building on the notion of speech acts as a foundation, anotherimportant contribu-
tion to language pragmatics takes the form ofrules of conversation, as developedrules of

conversation by P. Grice, another philosopher. The simple observation is that humans seem to
undertake the act of conversation cooperatively. Humans generally seek to under-
stand and be understood when engaging in conversation, even when other motiva-
tions may be at odds. It is in both parties’ best interest to communicate clearly and
efficiently. This is called thecooperative principle.cooperative

principle It is also the case that humans generally follow some basic rules when convers-
ing, which presumably help them to achieve the larger shared goal of the Cooper-
ative Principle. These rules have come to be known as theGricean maxims. TheGricean maxims
four Gricean maxims arequantity, quality, relation, andmanner. We discuss each
one in turn.

The rule ofquantitystates that humans tend to provide listeners with exactly the
amount of information required in the current conversation, even when they have
access to more information. As an example, imagine that a waitress asks you, “how
do you like your coffee?” You would probably answer, “Cream, no sugar, please,”
or something similar. You would probably not answer, “I likearabicabeans, grown
in the mountains of Guatemala. I prefer the medium roast from Peet’s Coffee. I
like to buy whole beans, which I keep in the freezer, and grind them just before
brewing. I like the coffee strong, and served with a dash of cream.” The latter
response clearly provides the waitress with much more information than she needs.
You also probably would not respond, “no sugar,” because this does not give the
waitress enough information to do her job.

The rule ofquality states that humans usually only say things that they actually
believe. More specifically, humans do not say things they know to be false, and
do not say things for which they lack adequate evidence. For example, if someone
asks you about the weather outside, you respond that it is raining only if in fact you
believe that it is raining, and if you have evidence to support that belief.

The rule ofrelationstates that humans tend to say things that are relevant to the
current conversation. If a stranger approaches you on the street to ask for directions
to the nearest gas station, they would be quite surprised if you began to tell them a
story about your grandmother’s cooking.

Finally, the rule ofmannerstates that humans generally say things in a manner
that is brief and clear. When you are asked at the airport whether anyone unknown
to you has asked you to carry something in your luggage, the appropriate answer
is either “yes” or “no,” not “many people assume that they know their family mem-
bers, but what does that really mean?” In general, humans tend to avoid obscurity,
ambiguity, prolixity, and disorganization.

These maxims help explain a surprising phenomenon about human speech, namely
that we often succeed in communicating much more meaning than is contained di-
rectly in the words they say. This phenomenon is calledimplicature. For example,implicature
suppose thatA andB are talking about a mutual friend,C, who is now working

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

244 8 Communication

in a bank.A asksB howC is getting on in his job, andB replies, “Oh quite well,
I think; he likes his colleagues, and he has not been to prison yet.” Clearly, by
stating the simple fact thatC hasn’t been to prison yet, which is a truism for most
people,B is implying, suggesting, or meaning something else. He may mean that
C is the kind of person who is likely to yield to temptation or that C ’s colleagues
are really very treacherous people, for example. In this case the implicature may
be clear from the context of their conversation, orA may have to askB what he
means.

Grice distinguished betweenconventionalandnonconventionalimplicature. The
former refers to the case in which the conventional meaning of the words used
determines what is implicated. In the latter, the implication does not follow directly
from the conventional meaning of the words, but instead follows from context, or
from the structure of the conversation, as is the case inconversational implicatures.conversational

implicature In conversational implicatures, the implied meaning relies on the fact that the
hearer assumes that the speaker is following the Gricean maxims. Let us begin
with an example.A is standing by an immobilized car, and is approached byB. A
says, “I am out of gas.”B says, “There is a garage around the corner.” AlthoughB
does not explicitly say it, she implicates effectively that she thinks that the garage
is open and sells gasoline. This follows immediately from the assumption thatB
is following the Gricean maxims of relation and quality. If she were not following
the maxim of relation, her utterance about the garage could be anon sequitur; if
she were not following the maxim of quality, she could be lying. In order for a
conversational implicature to occur, (1) the hearer must assume that the speaker
is following the maxims, (2) this assumption is necessary for the hearer to get the
implied meaning, and (3) it is common knowledge that the hearer can work out the
implication.

Grice offers three types of conversational implicature. In the first, no maxim is
violated, as in the aforementioned example. In the second, a maxim is violated,
but the hearer assumes that the violation is because of a clash with another maxim.
For example, ifA asks, “Where doesC live?” andB responds, “Somewhere in
the South of France,”A can presume thatB does not know more and thus violates
the maxim of quantity in order to obey the maxim of quality. Finally, in the third
type of conversational implicature, a maxim is flouted, and the hearer assumes that
there must be another reason for it. For example, when a recommendation letter
says very little about the candidate in question, the maxim of quantity is flouted,
and the reader can safely assume that there is very little positive to say.

We give some examples of commonly-occurring conversational implicatures.
Humans often use anif statement to implicate anif and only if statement. Sup-
poseA says toB, “If you teach me speech act theory I’ll kiss you.” In this case,
if A did not meanif and only if, thenA might kissB whether or notB teaches
A speech act theory. ThenA would have been violating the maxim of quantity,
telling theB something that did not contain any useful information.

In another common case, people often make a direct statement as a way to impli-
cate that they believe the statement. WhenA says toB, “Austin was right,”B is

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.3 “Doing by talking” II: speech-act theory 245

meant to implicate, “A believes Austin was right.” Otherwise,A would have been
violating the maxim of quality.

Finally, humans use a presupposition to implicate that the presupposition is true.
WhenA says toB, “Grice’s maxims are incomplete,”A intendsB to assume that
Grice has axioms. Otherwise,A would have been violating the maxim of quality.

Note that conversational implicatures enableindirect speech acts. Consider theindirect speech
act classic Eddie Murphy skit in which his mother says to him, “It’s cold in here,

Eddie.” Although her utterance is on the surface merely an informational locution,
it is in fact implicating a request for Eddie to do something to warm up the room.

8.3.3 A game-theoretic view of speech acts

The discussion of speech acts so far has clearly been relatively discursive and in-
formal as compared to the discussion in the other sections, and indeed to most of
the book. This reflects the nature of the work in the field. There are advantages
to the relative laxness; it enables a very broad and multifaceted theory. Indeed,
quite a number of researchers and practitioners in several disciplines have drawn
inspiration from speech act theory. But it also comes at a price, as the theory can
be pushed only so far before the missing details halt progress.

One could look in a number of directions for such formal foundations. Since the
definition of speech acts appeals to the mental state of the speaker and hearer, one
could plausibly try to apply the formal theories of mental state discussed later in
the book, and in particular theories of attitudes such as belief, desire and intention.
Section 14.4 outlines one such theory, but also makes it clear that so-called BDI
theories are not yet fully developed. Here we will explore a different direction. Our
starting point is the fact that there are at least two agents involved in communica-
tion, the speaker and the hearer. So why not model this as a game between them,
in the sense of game theory, and analyze that game?

Although this direction too is not yet well developed, we shall see that some
insights can be gleaned from the game-theoretic perspective. We illustrate this via
the phenomenon ofdisambiguationin language. One of the factors that renderdisambiguation
natural language understanding so hard is that speech is rife with ambiguities at all
levels, from the phonemic through the lexical to the sentence and whole text level.
We will analyze the following sentence-level ambiguity:

Every ten minutes a person gets mugged in New York City.

The intended interpretation is of course that every ten minutes some different
person gets mugged. The unintended, but still permissible, alternative interpreta-
tion that the same person gets mugged over and over again. (Indeed, if one adds
the sentence “I feel very bad for him,” the implausible interpretation becomes the
only permissible one.) How do the hearer and speaker implicitly understand which
interpretation is intended?

One way is to set this up as a common-payoff game of incomplete information
between the speaker and hearer (indeed, as we shall see, in this example we end up

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

246 8 Communication

with a signaling game as defined in Section 8.2, albeit a purely cooperative one).
The game proceeds as follows.

1. There exist two situations:

s: Muggings of different people take place at ten-minute intervals in NYC.

t: The same person is repeatedly mugged every ten minutes in NYC.

2. Nature selects betweens andt according to a distribution known commonly to
A andB.

3. Nature’s choice is revealed toA but not toB.

4. A decides between uttering one of three possible sentences:

p: “Every ten minutes a person gets mugged in New York City."

q: “Every ten minutes some person or another gets mugged in New York City."

r: “There is a person who gets mugged every ten minutes in New York City."

5. B hearsA, and must decide whethers or t obtain.

This is a simplified view of the world (more on this shortly), but let us simplify it
even further. Let us assume thatA cannot utterr whent obtains, and cannot utter
q whens obtains (i.e., he can be ambiguous, but not deceptive). Let usfurthermore
assume that whenB hears eitherr or q he has no interpretation decision, and
knows exactly which situation obtains (sor t, respectively).

In order to analyze the game, we must supply some numbers. Let us assume that
the probability ofs is much higher that that oft. Say,P (s) = .99 andP (t) = .01.
Finally, we need to decide on the payoffs. We assume that this is a game of pure
coordination, that is a common-payoff game.A andB jointly have the goal that
B correctly have the right interpretation. In addition, though, bothA andB have a
preference for simple sentences, since long sentences place a cognitive burden on
them and waste time. And so the payoffs are as follows: If the sentence used isp
and a correct interpretation is reached, the payoff is10. If eitherq or r are uttered
(after which by assumption a correct interpretation is reached), the payoff is7; and
if an incorrect interpretation is reached the payoff is−10.

The resulting game is depicted in Figure 8.7.
What are the equilibria of this game? Here are two.

1. A’s strategy: sayq in s andr in t. B’s strategy: When hearingp, select between
thes andt interpretations with equal probability.

2. A’s strategy: sayp in s andr in t. B’s strategy: When hearingp, select thes
interpretation.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.3 “Doing by talking” II: speech-act theory 247

•N
P (selectt)=0.01 P (selects)=0.99

•A
sayr sayp

•A
sayp sayq

•B
infer t

•B
infer t infer s

•B
infer t infer s

•B
infer s

•
(7)

•
(10)

•
(−10)

•
(−10)

•
(10)

•
(7)

Figure 8.7: Communication as a signaling game.

First, you should persuade yourself that these are in fact Nash equilibria (and
even subgame-perfect ones, or, to be more precise since this is a game of imperfect
information, sequential equilibria). But then we might ask, is there a reason to
prefer one over the other? Well, one way to select is based on the expected payoff
to the players. After all, this is a cooperative game, and it makes sense to expect
the players to coordinate on the equilibrium with the highest payoff. Indeed, this
would be one way to implement Grice’s cooperative principle. Note that in the first
equilibrium the (common) payoff is7, while in the second equilibrium the expected
payoff is0.99·10+0.01·7 = 9.97. And so it would seem that we have a winner on
our hands, and a particularly pleasing one since this use of language accords well
with real-life usage. Intuitively, to economize we use shorthand for commonly-
occurring situations. This allows the hearer to make some default assumptions, but
use more verbose language in the relatively rare situations in which those defaults
are misleading.

This example can be extended in various ways.A can be given the freedom to
say other sentences, andB can be given greater freedom to interpret them. Not
only couldA sayq in s, butA could even say “I like cucumbers" ins. This is no
less useful a sentence thanp, so long asB conditions its interpretation correctly on
it. The problem is of course that we end up with infinitely many good equilibria,
and payoff maximization cannot distinguish between them. And so language can
be seen to have evolved so as to providefocal pointsamong these equilibria; thefocal point
“straightforward interpretation" of the sentence is a device to coordinate on one of
the optimal equilibria.

Although we are still far from being able to account for the entire pragmatics of
language in this fashion, one can apply similar analysis to more complex linguistic
phenomena, and it remains an interesting area of investigation.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

248 8 Communication

8.3.4 Applications

The framework of speech-act theory has been put to practical use in a number of
computer science and artificial intelligence applications. We give a brief descrip-
tion of some of these applications below.

Intelligent dialog systems

One obvious application of speech act theory is adialog system, which commu-dialog system
nicates with human users through a natural language dialog interface. In order to
communicate efficiently and naturally with the user, dialog systems must obey the
principles of human conversation, including those from Austin and Grice presented
in this chapter.

TRAINS/TRIPS is a well-known dialog system, and is to assist the user in ac-
complishing tasks in a transportation domain. The system has access to informa-
tion about the state of the transportation network, and the user makes decisions
about what actions to take. The system maintains an ongoing conversation with
the user about possible actions and the state of the network.

Discourse level Act type Sample acts

Multidiscourse Argumentation acts elaborate, summarize, clarify, convince
Discourse Speech acts inform, accept, request, suggest, offer,

promise
Utterance Grounding acts initiate, continue, acknowledge, repair
Subutterance Turn-taking acts take-turn, keep-turn, release-turn, assign-turn

Table 8.1: Conversation acts used by the TRAINS/TRIPS system.

The TRAINS/TRIPS dialog system both uses and extends the principles of speech
act theory. It incorporates aSpeech Act Interpreter, which hypothesizes what
speech acts the user is making, and aDialog Manager, which uses knowledge
of those acts to maintain the dialog. It extends speech act theory by creating a
hierarchy ofconversation acts, as shown in Table 8.1. As you can see, speech acts
appear in this framework as the conversation acts that occur at the discourse level.

Workflow systems

Another useful application of speech act theory is in workflow software, software
used to track and manage complex interactions within and between human organi-
zations. These interactions range from simple business transactions to long-term
collaborative projects, and each requires the involvement of many different human
participants. To track and manage the interactions effectively, workflow software
provides a medium for structured communications between all of the participants.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.3 “Doing by talking” II: speech-act theory 249

Many workflow applications are designed around an information processing
framework, in which, for example, interactions may be modeled as assertions and
queries to a database. This perspective is useful, but lacks an explicit understand-
ing and representation of the pragmatic structure of human communications. An
alternative is to view each communication as an illocutionary speech act, which
states an intention on the part of the sender and places constraints on the possible
responses of the recipient. Instead of generic messages, as in the case of email
communications, users must choose from a set of communication types when com-
posing messages to other participants. Within this framework, they can write freely.
For example, when responding to a request, users might be given the following op-
tions.

• Acknowledge

• Promise

• Free form

• Counter offer

• Commit-to-commit

• Decline

• Interim report

• Report completion

The speech act framework confers a number of advantages to developers and
users of workflow software. Because the basic unit of communication is a con-
versation, rather than a message, the organization of communications is straight-
forward, and retrieval simple. Furthermore, the status and urgency of messages
is clear. Users can ask “In which conversations is someone waiting for me to do
something?” or “In which conversations have I promised to do things?”. Finally,
access to messages can be organized and controlled easily, depending on project
involvement and authorization levels. The downside is that it involves additional
overhead in the communication, which may not be justified by the benefits, espe-
cially if the conversational structures implemented in the system do not capture
well the rich set of communications that takes place in the workplace.

Agent communication languages

Perhaps the most widespread use of speech act theory within the field of computer
science is for communication between software applications. Increasingly, com-
puter systems are structured in such a way that individual applications can act as
agents (e.g., with the popularization of the Internet and electronic commerce), each
with its own goals and planning mechanisms. In such a system, software applica-
tions must communicate with each other and with their human users to enlist the
support of other agents to achieve goals, to commit to helping another agent, to
report their own status, to request a status report from another, and so on.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

250 8 Communication

Not surprisingly, several proposals have been made for artificial languages to
serve as the medium for this interapplication communication. A relatively simple
example is presented byKnowledge Query and Manipulation Language (KQML),KQML
which was developed in the early 1990s. KQML incorporates some ideas from
speech-act theory, especially the idea of performatives. It has a built-in set of per-
formatives, such as ACHIEVE, ADVERTISE, BROKER, REGISTER, and TELL.

The following is an example of a KQML message, taken from a communication
between two applications operating in the blocks world domain.

(tell
:sender Agent1
:receiver Agent2
:language KIF
:ontology Blocks-World
:content (AND (Block A) (Block B) (On A B)))

Note that the message is a performative. The content of the message uses blocks
world semantics, which are completely independent of the semantics of the perfor-
mative itself.

KQML is no longer an influential standard, but the ideas of structured interac-
tions among software agents that are based in part on speech acts live on in more
modern protocols defined on top of abstract markup languages such asXML andXML
the so-calledSemantic Web.

Semantic Web

Rational programming

We have described how speech act theory can be used in communication between
software applications. Some authors have also proposed to use it directly in the
development of software applications, that is, as part of a programming language
itself. This proposal is part of a more general effort to introduce elements of ra-
tionality into programming languages. This new programming paradigm has been
termedrational programming. Just as object-oriented programming shifted therational

programming paradigm from writing procedures to creating objects, rational programming shifts
the paradigm from creating informational objects to creating motivational agents.

So where does communication come in? The motivational agents created by ra-
tional programming must act in the world, and because the agents are not likely
to have a physical embodiment, their actions consist of sending and receiving sig-
nals; in other words, their actions will be speech acts. Of course, as shown in
the previous section, it is possible to construct communicating agents within exist-
ing programming paradigms. However, by incorporating speech acts as primitives,
rational programming constructs make such programs more powerful, easier to
create, and more readable.

We give a few examples for clarity.Elephant2000is a programming language
described by McCarthy which explicitly incorporates speech acts. Thus, for exam-
ple, an Elephant2000 program can make a promise to another and cannot renege

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

8.4 History and references 251

on a promise. The following is an example statement from Elephant2000, taken
from a hypothetical travel agency program:

if ¬ full (flight)
then accept.request(

make (commitment (admit (psgr, flight))))

The intuitive reading of this statement is “if a passenger has requested to reserve a
seat on a given flight, and that flight is not full, then make the reservation.”

Agent-Oriented Programming (AOP)is a separate proposal that is similar in sev-Agent-Oriented
Programming
(AOP)

eral respects. It too embraces speech acts as the form and meaning of the commu-
nication among agents. The most significant difference from Elephant2000 is that
AOP also embraces the notion of mental state, consisting of beliefs and commit-
ments. Thus the result of an inform speech act is a new belief. AOP is not actually
a single language, but a general design that allows multiple languages; one partic-
ular simple language,Agent0was defined and implemented. The following is an
example statement in Agent0, taken from a print server application.

IF
MSG COND: (?msgId ?someone REQUEST

((FREE-PRINTER 5min) ?time))
MENTAL COND:

((NOT (CMT ?other (PRINT ?doc (?time+10min))))
(B (FRIENDLY ?someone)))

THEN COMMIT
((?someone (FREE-PRINTER 5min) ?time)
(myself (INFORM ?someone (ACCEPT ?msgId)) now))

The approximate reading of this statement is “if you get a request to free the printer
for five minutes at a future time, if you are not committed to finishing a print job
within ten minutes of that time, and if you believe the requester to be friendly, then
accept the request and tell them that you did.”

8.4 History and references

The literature on language and natural language understanding is of course vast and
we cannot do it justice here. We will focus on the part of the literature that bears
most directly on the material presented in the chapter.

Two early seminal discussions on cheap talk are due to Crawford and Sobel
[1982] and Farrell [1987]. Later references include Rabin [1990] and Farrell [1993].
Good overviews are given by Farrell [1995] and Farrell and Rabin [1996].

The literature on signaling games dates considerably farther back. The Stack-
elberg leadership model, later couched in game-theoretic terminology (as we do
in the book), was introduced by Heinrich von Stackelberg, a German economist,
as a model of duopoly in economics [von Stackelberg, 1934]. The literature on
information economics, and in particular on asymmetric information, continued to

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

252 8 Communication

flourish, culminating in the 2001 Nobel Prize awarded to three pioneers in the area
(Akerlof, Spence, and Stiglitz). The Spence signaling game, which we cover in the
chapter, appeared in Spence [1973].

Austin’s seminal book,How to Do Things with Words, was published in 1962
[Austin, 1962], but is also available in a more recent second edition [Austin, 2006].
Grice’s ideas were developed in several publications starting in the late 1960s, for
example, Grice [1969]. This and many other of his relevant publications were
collected in Grice [1989]. Another important reference is Searl [1979]. The game-
theoretic perspective on speech acts is more recent. The discussion here for the
most part follows Parikh [2001]. Another recent reference covering a number of
issues at the interface of language and economics is Rubinstein [2000].

The TRAINS dialog system is described by Allen et al. [1995], and the TRIPS
system is described by Ferguson and Allen [1998]. The speech-act-based approach
to workflow systems follows the ideas of Winograd and Flores [1986] and Flores
et al. [1988]. The KQML language is described by Finin et al. [1997]. The termra-
tional programmingwas coined by Shoham [1997]. Elements of the Elephant2000
programming language are described by McCarthy [1994]. The AOP framework
was described by Shoham [1993].

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9 Aggregating Preferences: Social
Choice

In the preceding chapters we adopted what might be called the “agent perspective”:
we asked what an agent believes or wants, and how an agent should or would act in
a given situation. We now adopt a complementary, “designer perspective”: we ask
what rules should be put in place by the authority (the “designer”) orchestrating a
set of agents. In this chapter this will take us away from game theory, but before
too long (in the next two chapters) it will bring us right back to it.

9.1 Introduction

A simple example of the designer perspective is voting. How should a central
authority pool the preferences of different agents so as to best reflect the wishes
of the population as a whole? It turns out that voting, the kind familiar from our
political and other institutions, is only a special case of the general class ofsocial
choice problems. Social choice is a motivational but nonstrategic theory—agentssocial choice

problem have preferences, but do not try to camouflage them in order to manipulate the
outcome (of voting, for example) to their personal advantage.1 This problem is
thus analogous to the problem of belief fusion that we present in Section 14.2.1,
which is also nonstrategic; here, however, we examine the problem of aggregating
preferences rather than beliefs.

We start with a brief and informal discussion of the most familiar voting scheme,
plurality. We then give the formal model of social choice theory, consider other
voting schemes, and present two seminal results about the sorts of preference ag-
gregation rules that it is possible to construct. Finally, we consider the problem of
building ranking systems, where agents rate each other.

9.1.1 Example: plurality voting

To get a feel for social choice theory, consider an example in which you are babysit-
ting three children—Will, Liam, Vic—and need to decide on an activity for them.

1. Some sources use the term “social choice” to refer to both strategic and nonstrategic theories; we do not
follow that usage here.

254 9 Aggregating Preferences: Social Choice

You can choose among going to the video arcade (a), playing basketball (b), and
driving around in a car (c). Each kid has a different preference over these activ-
ities, which is represented as a strict total ordering over the activities and which
he reveals to you truthfully. Bya ≻ b denote the proposition that outcomea is
preferred to outcomeb.

Will: a ≻ b ≻ c
Liam: b ≻ c ≻ a

Vic: c ≻ b ≻ a

What should you do? One straightforward approach would be to ask each kid to
vote for his favorite activity and then to pick the activity that received the largest
number of votes. This amounts to what is called theplurality method. While quiteplurality voting
standard, this method is not without problems. For one thing, we need to select a
tie-breaking rule (e.g., we could select the candidate ranked first alphabetically). A
more disciplined way is to hold a runoff election among the candidates tied at the
top.

Even absent a tie, however, the method is vulnerable to the criticism that it does
not meet theCondorcet condition. This condition states that if there exists a can-Condorcet

condition didatex such that for all other candidatesy at least half the voters preferx to y,
thenx must be chosen. If each child votes for his top choice, the plurality method
would declare a tie between all three candidates and, in our example, would choose
a. However, the Condorcet condition would chooseb, since two of the three chil-
dren preferb to a, and likewise preferb to c.

Based on this example the Condorcet rule might seem unproblematic (and ac-
tually useful since it breaks the tie without resorting to an arbitrary choice such
as alphabetical ordering), but now consider a similar example in which the prefer-
ences are as follows.

Will: a ≻ b ≻ c
Liam: b ≻ c ≻ a

Vic: c ≻ a ≻ b

In this case the Condorcet condition does not tell us what to do, illustrating the
fact that it does not tell us how to aggregate arbitrary sets of preferences. We will
return to the question of what properties can be guaranteed in social choice settings;
for the moment, we aim simply to illustrate that social choice is not a straightfor-
ward matter. In order to study it precisely, we must establish a formal model. Our
definition will cover voting, but will also handle more general situations in which
agents’ preferences must be aggregated.

9.2 A formal model

Let N = {1, 2, . . . , n} denote a set of agents, and letO denote a finite set of
outcomes (or alternatives, or candidates). Making a multiagent extension to the

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.2 A formal model 255

preference notation introduced in Section 3.1.2, denote the proposition that agent
i weakly prefers outcomeo1 to outcomeo2 by o1 �i o2. We use the notation
o1 ≻i o2 to capture strict preference (shorthand foro1 �i o2 and noto2 �i o1)
ando1 ∼i o2 to capture indifference (shorthand foro1 �i o2 ando2 �i o1).

Because preferences are transitive, an agent’s preference relation induces apref-
erence ordering, a (nonstrict) total ordering onO. Let L- be the set of nonstrictpreference

ordering total orders; we will understand each agent’s preference ordering as an element of
L-. Overloading notation, we denote an element ofL- using the same symbol we
used for the relational operator:�i∈ L-. Likewise, we define apreference profilepreference

profile [�] ∈ L-
n as a tuple giving a preference ordering for each agent.

Note that the arguments in Section 3.1.2 show that preference orderings and
utility functions are tightly related. We can define an ordering�i ∈ L- in terms of
a given utility functionui : O 7→ R for an agenti by requiring thato1 is weakly
preferred too2 if and only ifui(o1) ≥ ui(o2).

In what follows, we define two kinds of social functions. In both cases, the input
is a preference profile. Both classes of functions aggregate these preferences, but
in a different way.

Social choice functionssimply select one of the alternatives (or, in a more gen-
eral version, some subset).

Definition 9.2.1 (Social choice function)A social choice function(overN andsocial choice
function O) is a functionC : L-

n 7→ O.

A social choice correspondencediffers from a social choice function only in thatsocial choice
correspondence it can return a set of candidates, instead of just a single one.

Definition 9.2.2 (Social choice correspondence)A social choice correspondencesocial choice
correspondence (overN andO) is a functionC : L-

n 7→ 2O.

In our babysitting example there were three agents (Will, Liam, and Vic) and
three possible outcomes (a, b, c). The social choice correspondence defined by
plurality voting of course picks the subset of candidates with the most votes; in
this example either the subset must be the singleton consisting of one of the candi-
dates or else it must include all candidates. Plurality is turned into a social choice
function by any deterministic tie-breaking rule (e.g., alphabetical).2

Let #(oi ≻ oj) denote the number of agents who prefer outcomeoi to outcome
oj under preference profile[�] ∈ L-

n. We can now give a formal statement of the
Condorcet condition.

Definition 9.2.3 (Condorcet winner) An outcomeo ∈ O is a Condorcet winnerCondorcet
winner if ∀o′ ∈ O, #(o ≻ o′) ≥ #(o′ ≻ o).

A social choice function satisfies theCondorcet conditionif it always picks a
Condorcet winner when one exists. We saw earlier that for some sets of preferences

2. One can also define probabilistic versions of social choice functions; however, we will focus on the
deterministic variety.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

256 9 Aggregating Preferences: Social Choice

there doesnot exist a Condorcet winner. (Indeed, under reasonable conditions the
probability that there will exist a Condorcet winner approaches zero as the number
of candidates approaches infinity.) Thus, the Condorcet condition does not always
tell us anything about which outcome to choose.

An alternative is to find a rule that identifies aset of outcomes among which
we can choose. Extending on the idea of the Condorcet condition, a variety of
other conditions have been proposed that are guaranteed to identify a nonempty
set of outcomes. We will not describe such rules in detail; however, we give one
prominent example here.

Definition 9.2.4 (Smith set) TheSmith setis the smallest setS ⊆ O having theSmith set
property that∀o ∈ S, ∀o′ 6∈ S, #(o ≻ o′) ≥ #(o′ ≻ o).

That is, every outcomein the Smith set is preferred by at least half of the agents
to every outcomeoutsidethe set. This set always exists. When there is a Condorcet
winner then that candidate is also the only member of the Smith set; otherwise, the
Smith set is the set of candidates who participate in a “stalemate” (or “top cycle”).

The other important flavor of social function is thesocial welfare function.These
are similar to social choice functions, but produce richer objects, total orderings on
the set of alternatives.

Definition 9.2.5 (Social welfare function)A social welfare function(overN andsocial welfare
function O) is a functionW : L-

n 7→ L-.

Although the usefulness of these functions is somewhat less intuitive, they are
very important to social choice theory. We will discuss them further in Section 9.4.1,
in which we present Arrow’s famous impossibility theorem.

9.3 Voting

We now survey some important voting methods and discuss their properties. Then
we demonstrate that the problem of voting is not as easy as it might appear, showing
some counterintuitive ways in which these methods can behave.

9.3.1 Voting methods

The most standard class of voting methods is callednonranking voting, in whichnonranking
voting each agent votes for one of the candidates. We have already discussed plurality

voting.

Definition 9.3.1 (Plurality voting) Each voter casts a single vote. The candidate
with the most votes is selected.

As discussed earlier, ties must be broken according to a tie-breaking rule (e.g.,
based on a lexicographic ordering of the candidates; through a runoff election be-
tween the first-place candidates, etc.). Since the issue arises in the same way for
all the voting methods we discuss, we will not belabor it in what follows.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.3 Voting 257

Plurality voting gives each voter a very limited way of expressing his preferences.
Various other rules are more generous in this regard. Considercumulative voting.cumulative

voting
Definition 9.3.2 (Cumulative voting) Each voter is givenk votes, which can be
cast arbitrarily (e.g., several votes could be cast for one candidate, with the remain-
der of the votes being distributed across other candidates). The candidate with the
most votes is selected.

Approval votingis similar.approval voting

Definition 9.3.3 (Approval voting) Each voter can cast a single vote for as many
of the candidates as he wishes; the candidate with the most votes is selected.

We have presented cumulative voting and approval voting to give a sense of the
range of voting methods. We will defer discussion of such rules to Section 9.5,
however, since in the (nonstrategic) voting setting as we have defined it so far, it
is not clear how agents should choose when to vote for more than one candidate.
Furthermore, although it is more expressive than plurality, approval voting still fails
to allow voters to express their full preference orderings. Voting methods that do so
are calledranking votingmethods. Among them, one of the best known ispluralityranking voting

plurality voting
with elimination

with elimination; for example, this method is used for some political elections.
When preference orderings are elicited from agents before any elimination has
occurred, the method is also known asinstant runoff.

Definition 9.3.4 (Plurality with elimination) Each voter casts a single vote for
their most-preferred candidate. The candidate with the fewest votes is eliminated.
Each voter who cast a vote for the eliminated candidate casts a new vote for the
candidate he most prefers among the candidates that have not been eliminated.
This process is repeated until only one candidate remains.

Another method which has been widely studied isBorda voting.Borda voting

Definition 9.3.5 (Borda voting) Each voter submits a full ordering on the candi-
dates. This ordering contributes points to each candidate; if there aren candidates,
it contributesn− 1 points to the highest ranked candidate,n− 2 points to the sec-
ond highest, and so on; it contributes no points to the lowest ranked candidate. The
winners are those whose total sum of points from all the voters is maximal.

Nanson’s methodis a variant of Borda that eliminates the candidate with the low-Nanson’s
method est Borda score, recomputes the remaining candidates’ scores, and repeats. This

method has the property that it always chooses a member of the Condorcet set if it
is nonempty, and otherwise chooses a member of the Smith set.

Finally, there ispairwise elimination.pairwise
elimination

Definition 9.3.6 (Pairwise elimination) In advance, voters are given a schedule
for the order in which pairs of candidates will be compared. Given two candidates

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

258 9 Aggregating Preferences: Social Choice

(and based on each voter’s preference ordering) determine the candidate that each
voter prefers. The candidate who is preferred by a minority of voters is eliminated,
and the next pair of noneliminated candidates in the schedule is considered. Con-
tinue until only one candidate remains.

9.3.2 Voting paradoxes

At this point it is reasonable to wonder why so many voting schemes have been
invented. What are their strengths and weaknesses? For that matter, is there one
voting method that is appropriate for all circumstances? We will give a more formal
(and more general) answer to the latter question in Section 9.4. First, however, we
will consider the first question by considering some sets of preferences for which
our voting methods exhibit undesirable behavior. Our aim is not to point out every
problem that exists with every voting method defined above; rather, it is to illustrate
the fact that voting schemes that seem reasonable can often fail in surprising ways.

Condorcet condition

Let us start by revisiting the Condorcet condition. Earlier, we saw two examples:
one in which plurality voting chose the Condorcet winner, and another in which a
Condorcet winner did not exist. Now consider a situation in which there are 1,000
agents with three different sorts of preferences.

499 agents: a ≻ b ≻ c
3 agents: b ≻ c ≻ a

498 agents: c ≻ b ≻ a

Observe that 501 people out of 1,000 preferb toa, and 502 preferb to c; this makes
b the Condorcet winner. However, many of our voting methods would fail to select
b as the winner. Plurality would picka, asa has the largest number of first-place
votes. Plurality with elimination would first eliminateb and would subsequently
pick c as the winner. In this example Borda does selectb, but there are other cases
where it fails to select the Condorcet winner—can you construct one?

Sensitivity to a losing candidate

Consider the following preferences by 100 agents.

35 agents: a ≻ c ≻ b
33 agents: b ≻ a ≻ c
32 agents: c ≻ b ≻ a

Plurality would pick candidatea as the winner, as would Borda. (To confirm the
latter claim, observe that Borda assignsa, b, and c the scores 103, 98, and 99
respectively.) However, if the candidatec did not exist, then plurality would pick

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.3 Voting 259

b, as would Borda. (With only two candidates, Borda is equivalent to plurality.) A
third candidate who stands no chance of being selected can thus act as a “spoiler,”
changing the selected outcome.

Another example demonstrates that the inclusion of a least-preferred candidate
can even cause the Borda method toreverseits ordering on the other candidates.

3 agents: a ≻ b ≻ c ≻ d
2 agents: b ≻ c ≻ d ≻ a
2 agents: c ≻ d ≻ a ≻ b

Given these preferences, the Borda method ranks the candidatesc ≻ b ≻ a ≻ d,
with scores of 13, 12, 11, and 6 respectively. If the lowest-ranked candidated is
dropped, however, the Borda ranking isa ≻ b ≻ c with scores of 8, 7, and 6.

Sensitivity to the agenda setter

Finally, we examine the pairwise elimination method, and consider the influence
that the agenda setter can have on the selected outcome. Consider the following
preferences, which we discussed previously.

35 agents: a ≻ c ≻ b
33 agents: b ≻ a ≻ c
32 agents: c ≻ b ≻ a

First, consider the ordera, b, c. a is eliminated in the pairing betweena andb;
thenc is chosen in the pairing betweenb andc. Second, consider the ordera, c, b.
a is chosen in the pairing betweena andc; thenb is chosen in the pairing between
a andb. Finally, under the orderb, c, a, we first eliminateb and ultimately choose
a. Thus, given these preferences, the agenda setter can selectwhichever outcome
he wants by selecting the appropriate elimination order!

Next, consider the following preferences.

1 agent: b ≻ d ≻ c ≻ a
1 agent: a ≻ b ≻ d ≻ c
1 agent: c ≻ a ≻ b ≻ d

Consider the elimination orderinga, b, c, d. In the pairing betweena andb, a is
preferred;c is preferred toa and thend is preferred toc, leavingd as the winner.
However,all of the agents preferb to d—the selected candidate is Pareto domi-
nated!

Last, we give an example showing that Borda is fundamentally different from
pairwise elimination,regardlessof the elimination ordering. Consider the follow-
ing preferences.

3 agents: a ≻ b ≻ c
2 agents: b ≻ c ≻ a
1 agent: b ≻ a ≻ c
1 agent: c ≻ a ≻ b

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

260 9 Aggregating Preferences: Social Choice

Regardlessof the elimination ordering, pairwise elimination will select the candi-
datea. The Borda method, on the other hand, selects candidateb.

9.4 Existence of social functions

The previous section has illustrated several senses in which some popular voting
methods exhibit undesirable or unfair behavior. In this section, we consider this
state of affairs from a more formal perspective, examining both social welfare func-
tions and social choice functions.

In this section only, we introduce an additional assumption to simplify the ex-
position. Specifically, we will assume that all agents’ preferences arestrict total
orderings on the outcomes, rather than nonstrict total orders; denote the set of such
orders asL, and denote an agenti’s preference ordering as≻i∈ L. Denote a pref-
erence profile (a tuple giving a preference ordering for each agent) as[≻′] ∈ Ln,
and denote agenti’s preferences from preference profile[≻′] as≻′

i. We also re-
define social welfare functions to return a strict total ordering over the outcomes,
W : Ln 7→ L. In other words, we assume that no agent is ever indifferent between
outcomes and that the social welfare function is similarly decisive. We stress that
this assumption isnot requiredfor the results that follow; analysis of the general
case can be found in the works cited at the end of the chapter.3

Finally, let us introduce some new notation. Social welfare functions take prefer-
ence profiles as input; denote the preference ordering selected by the social welfare
functionW , given preference profile[≻′] ∈ Ln, as≻W ([≻′]). When the input or-
dering[≻′] is understood from context, we abbreviate our notation for the social
ordering as≻W .

9.4.1 Social welfare functions

In this section we examineArrow’s impossibility theorem, without a doubt the mostArrow’s
impossibility
theorem

influential result in social choice theory. Its surprising conclusion is that fairness
is multifaceted and that it isimpossibleto achieve all of these kinds of fairness
simultaneously.

Now, let us review these multifaceted notions of fairness.

Definition 9.4.1 (Pareto efficiency (PE))W is Pareto efficientif for anyo1, o2 ∈Pareto efficiency
(PE) O, ∀i o1 ≻i o2 implies thato1 ≻W o2.

In words, PE means that when all agents agree on the ordering of two outcomes,
the social welfare function must select that ordering. Observe that this definition is
effectively the same asstrict Pareto efficiencyas defined in Definition 3.3.2.4

3. Intuitively, because we will be looking for social functions that work givenany preferences the agents
might have, when we show that desirable social welfare and social choice functions cannot exist even when
agents are assumed to have strict preferences, we will also have shown that the claim holds when we relax
this restriction.
4. One subtle difference does arise from our assumption in this section that all preferences are strict.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.4 Existence of social functions 261

Definition 9.4.2 (Independence of irrelevant alternatives (IIA))W is indepen-
dent of irrelevant alternativesif, for any o1, o2 ∈ O and any two preferenceindependence of

irrelevant
alternatives
(IIA)

profiles [≻′], [≻′′] ∈ Ln, ∀i (o1 ≻′
i o2 if and only if o1 ≻′′

i o2) implies that
(o1 ≻W ([≻′]) o2 if and only ifo1 ≻W ([≻′′]) o2).

That is, the selected ordering between two outcomes should depend only on the
relative orderings they are given by the agents.

Definition 9.4.3 (Nondictatorship) W does not have adictatorif ¬∃i∀o1, o2(o1 ≻inondictatorship
o2 ⇒ o1 ≻W o2).

Nondictatorship means that there does not exist a single agent whose preferences
always determine the social ordering. We say thatW is dictatorial if it fails to
satisfy this property.

Surprisingly, it turns out that there exists no social welfare functionW that sat-
isfies these three properties for all of its possible inputs. This result relies on our
previous assumption thatN is finite.

Theorem 9.4.4 (Arrow, 1951)If |O| ≥ 3, any social welfare functionW that is
Pareto efficient and independent of irrelevant alternatives is dictatorial.

Proof. We will assume thatW is both PE and IIA and show thatW must be
dictatorial. The argument proceeds in four steps.

Step 1: If every voter puts an outcomeb at either the very top or the very
bottom of his preference list,b must be at either the very top or very bottom of
≻W as well.

Consider an arbitrary preference profile[≻] in which every voter ranks some
b ∈ O at either the very bottom or very top, and assume for contradiction that
the preceding claim is not true. Then, there must exist some pair of distinct
outcomesa, c ∈ O for whicha ≻W b andb ≻W c.

Now let us modify[≻] so that every voter movesc just abovea in his pref-
erence ranking, and otherwise leaves the ranking unchanged; let us call this
new preference profile[≻′]. We know from IIA that fora ≻W b or b ≻W c
to change, the pairwise relationship betweena andb and/or the pairwise rela-
tionship betweenb andc would have to change. However, sinceb occupies
an extremal position for all voters,c can be moved abovea without changing
either of these pairwise relationships. Thus in profile[≻′] it is also the case
thata ≻W b andb ≻W c. From this fact and from transitivity, we have that
a ≻W c. However, in[≻′], every voter ranksc abovea and so PE requires that
c ≻W a. We have a contradiction.

Step 2: There is some votern∗ who is extremely pivotalin the sense that
by changing his vote at some profile, he can move a given outcomeb from the
bottom of the social ranking to the top.

Consider a preference profile[≻] in which every voter ranksb last, and in
which preferences are otherwise arbitrary. By PE,W must also rankb last.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

262 9 Aggregating Preferences: Social Choice

� �� ���� �� ���� �
� �

� � ��	 �	 	� � �		
(a) Preference profile[≻1]

� �
�� �
 �
�� �
� � �

� ��� �� �� � ���
(b) Preference profile[≻2]� �� ���� �� ���� �

� � � � ��� �� �� � ���
(c) Preference profile[≻3]

� � !"# !" !"$ %& & & & &'('()(('('� � !"# !" !"$ %& & & & &'('()(('('
(d) Preference profile[≻4]

Figure 9.1: The four preference profiles used in the proof of Arrow’s theorem.
A higher position along the dotted line indicates a higher position in an agent’s
preference ordering. The outcomes indicated in bold (i.e.,b in profiles[≻1], [≻2],
and [≻3] anda for votern∗ in profiles[≻3] and[≻4]) must be in the exact positions
shown. (In profile[≻4], a must simply be ranked abovec.) The outcomes not
indicated in bold are simply examples and can occur in any relative ordering that
is consistent with the placement of the bold outcomes.

Now let voters from 1 ton successively modify[≻] by movingb from the bot-
tom of their rankings to the top, preserving all other relative rankings. Denote
asn∗ the first voter whose change causes the social ranking ofb to change.
There must clearly be some such voter: when the votern movesb to the top of
his ranking, PE will require thatb be ranked at the top of the social ranking.

Denote by[≻1] the preference profile just beforen∗ movesb, and denote by
[≻2] the preference profile just aftern∗ has movedb to the top of his ranking.
(These preference profiles are illustrated in Figures 9.1a and 9.1b, with the
indicated positions of outcomesa andc in each agent’s ranking serving only
as examples.) In[≻1], b is at the bottom in≻W . In [≻2], b has changed its
position in≻W , and every voter ranksb at either the top or the bottom. By the
argument from Step 1, in[≻2] b must be ranked at the top of≻W .

Step 3: n∗ (the agent who is extremely pivotal on outcomeb) is a dictator
over any pairac not involvingb.

We begin by choosing one element from the pairac; without loss of general-

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.4 Existence of social functions 263

ity, let us choosea. We will construct a new preference profile[≻3] from [≻2]
by making two changes. (Profile[≻3] is illustrated in Figure 9.1c.) First, we
movea to the top ofn∗’s preference ordering, leaving it otherwise unchanged;
thusa ≻n∗ b ≻n∗ c. Second, we arbitrarily rearrange the relative rankings of
a andc for all voters other thann∗, while leavingb in its extremal position.

In [≻1] we hada ≻W b, asb was at the very bottom of≻W . When we
compare[≻1] to [≻3], relative rankings betweena andb are the same for all
voters. Thus, by IIA, we must havea ≻W b in [≻3] as well. In [≻2] we
had b ≻W c, asb was at the very top of≻W . Relative rankings betweenb
andc are the same in[≻2] and[≻3]. Thus in[≻3], b ≻W c. Using the two
aforementioned facts about[≻3] and transitivity, we can conclude thata ≻W c
in [≻3].

Now construct one more preference profile,[≻4], by changing[≻3] in two
ways. First, arbitrarily change the position ofb in each voter’s ordering while
keeping all other relative preferences the same. Second, movea to an arbitrary
position inn∗’s preference ordering, with the constraint thata remains ranked
higher thanc. (Profile [≻4] is illustrated in Figure 9.1d.) Observe that all
voters other thann∗ have entirely arbitrary preferences in[≻4], while n∗’s
preferences are arbitrary except thata ≻n∗ c. In [≻3] and[≻4], all agents have
the same relative preferences betweena andc; thus, sincea ≻W c in [≻3]
and by IIA,a ≻W c in [≻4]. Thus we have determined the social preference
betweena andc without assuming anything except thata ≻n∗ c.

Step 4: n∗ is a dictator over all pairsab.
Consider some third outcomec. By the argument in Step 2, there is a voter

n∗∗ who is extremely pivotal forc. By the argument in Step 3,n∗∗ is a dictator
over any pairαβ not involvingc. Of course,ab is such a pairαβ. We have
already observed thatn∗ is able to affectW ’s ab ranking—for example, when
n∗ was able to changea ≻W b in profile [≻1] into b ≻W a in profile [≻2].
Hence,n∗∗ andn∗ must be the same agent.

We have now shown thatn∗ is a dictator over all pairs of outcomes.

9.4.2 Social choice functions

Arrow’s theorem tells us that we cannot hope to find a voting scheme that satisfies
all of the notions of fairness that we find desirable. However, maybe the problem is
that Arrow’s theorem considers too hard a problem—the identification of a social
ordering overall outcomes. We now consider the setting of social choice functions,
which are required only to identify a single top-ranked outcome. First, we define
concepts analogous to Pareto efficiency, independence of irrelevant alternatives and
nondictatorship for social choice functions.

Definition 9.4.5 (Weak Pareto efficiency)A social choice functionC is weakly
Pareto efficientif, for any preference profile[≻] ∈ Ln, if there exist a pair ofweak Pareto

efficiency outcomeso1 ando2 such that∀i ∈ N , o1 ≻i o2, thenC([≻]) 6= o2.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

264 9 Aggregating Preferences: Social Choice

This definition prohibits the social choice function from selecting any outcome
that is dominated by another alternative for all agents. (That is, if all agents prefer
o1 to o2, the social choice rule does not have to chooseo1, but it cannot chooseo2.)
The definition implies that the social choice rule must respect agents’ unanimous
choices: if outcomeo is the top choice according to each≻i, then we must have
C([≻]) = o. Thus, the definition is less demanding thanstrict Pareto efficiency
as defined in Definition 3.3.2—a strictly Pareto efficient choice rule would also
always satisfy weak Pareto efficiency, but the reverse is not true.

Definition 9.4.6 (Monotonicity) C is monotonicif, for anyo ∈ O and any pref-monotonicity
erence profile[≻] ∈ Ln with C([≻]) = o, then for any other preference profile
[≻′] with the property that∀i ∈ N,∀o′ ∈ O, o ≻′

i o
′ if o ≻i o

′, it must be that
C([≻′]) = o.

Monotonicity says that when a social choice ruleC selects the outcomeo for
a preference profile[≻], then for any second preference profile[≻′] in which, for
every agenti, the set of outcomes to whicho is preferred under≻′

i is a weak
superset of the set of outcomes to whicho is preferred under≻i, the social choice
rule must also choose outcomeo. Intuitively, monotonicity means that an outcome
o must remain the winner whenever the support for it is increased relative to a
preference profile under whicho was already winning. Observe that the definition
imposes no constraint on the relative orderings of outcomeso1, o2 6= o under the
two preference profiles; for example, some or all of these relative orderings could
be different.

Definition 9.4.7 (Nondictatorship) C is nondictatorialif there does not exist annondictatorship
agentj such thatC always selects the top choice inj’s preference ordering.

Following the pattern we followed for social welfare functions, we can show that
no social choice function can satisfy all three of these properties.

Theorem 9.4.8 (Muller–Satterthwaite, 1977)If |O| ≥ 3, any social choice func-
tionC that is weakly Pareto efficient and monotonic is dictatorial.

Before giving the proof, we must provide a key definition.

Definition 9.4.9 (TakingO′ to the top from [≻]) LetO′ ⊂ O be a finite subset
of the outcomesO, and let[≻] be a preference profile. Denote the setO \ O′ as
O′. A second preference profile[≻′] takesO′ to the top from[≻] if, for all i ∈ N ,
o′ ≻′

i o for all o′ ∈ O′ ando ∈ O′ ando′1 ≻′
i o

′
2 if and only ifo′1 ≻i o

′
2.

That is,[≻′] takesO′ to the top from[≻] when, under[≻′]:

• each outcome fromO′ is preferred by every agent to each outcome fromO′;
and

• the relative preferences between pairs of outcomes inO′ for every agent are the
same as the corresponding relative preferences under[≻].

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.4 Existence of social functions 265

Observe that the relative preferences between pairs of outcomes inO′ are arbitrary:
they are not required to bear any relation to the corresponding relative preferences
under[≻].

We can now state the proof. Intuitively, it works by constructing a social welfare
functionW from the given social choice functionC. We show that the facts that
C is weakly Pareto efficient and monotonic imply thatW must satisfy PE and IIA,
allowing us to apply Arrow’s theorem.

Proof. We will assume thatC satisfies weak Pareto efficiency and monotonic-
ity, and show that it must be dictatorial. The proof proceeds in six steps.

Step 1: If both [≻′] and [≻′′] takeO′ ⊂ O to the top from[≻], then
C([≻′]) = C([≻′′]) andC([≻′]) ∈ O′.

Under[≻′], for all i ∈ N , o′ ≻′
i o for all o′ ∈ O′ and all o ∈ O′. Thus,

by weak Pareto efficiencyC([≻′]) ∈ O′. For everyi ∈ N , everyo′ ∈ O′

and everyo 6= o′ ∈ O, o′ ≻′
i o if and only if o′ ≻′′

i o. Thus by monotonicity,
C([≻′]) = C([≻′′]).

Step 2: We define a social welfare functionW fromC.
For every pair of outcomeso1, o2 ∈ O, construct a preference profile

[≻{o1,o2}] by taking{o1, o2} to the top from[≻]. By Step 1,C([≻{o1,o2}])
will be either o1 or o2, and will always be the same regardless of how we
choose[≻{o1,o2}]. Now we will construct a social welfare functionW from
C. For each pair of outcomeso1, o2 ∈ O, let o1 ≻W o2 if and only if
C([≻{o1,o2}]) = o1.

In order to show thatW is a social welfare function, we must demonstrate
that it establishes a total ordering over the outcomes. SinceW is complete,
it only remains to show thatW is transitive. Suppose thato1 ≻W o2 and
o2 ≻W o3; we must thus show thato1 ≻W o3. Let [≻′] be a preference profile
that takes{o1, o2, o3} to the top from[≻]. By Step 1,C([≻′]) ∈ {o1, o2, o3}.
We consider each possibility.

Assume for contradiction thatC([≻′]) = o2. Let [≻′′] be a profile that takes
{o1, o2} to the top from[≻′]. By monotonicity,C([≻′′]) = o2 (o2 has weakly
improved its ranking from[≻′] to [≻′′]). Observe that[≻′′] also takes{o1, o2}
to the top from[≻]. Thus by our definition ofW , o2 ≻W o1. But we already
hado1 ≻W o2. Thus,C([≻′]) 6= o2. By an analogous argument, we can show
thatC([≻′]) 6= o3.

Thus,C([≻′]) = o1. Let [≻′′] be a preference profile that takes{o1, o3} to
the top from[≻′]. By monotonicity,C([≻′′]) = o1. Observe that[≻′′] also
takes{o1, o3} to the top from[≻]. Thus by our definition ofW , o1 ≻W o3,
and hence we have shown thatW is transitive.

Step 3: The highest-ranked outcome inW ([≻]) is alwaysC([≻]).
We have seen thatC can be used to construct a social welfare functionW .

It turns out thatC can also be recovered fromW , in the sense that the outcome
given the highest ranking byW ([≻]) will always beC([≻]). LetC([≻]) = o1,

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

266 9 Aggregating Preferences: Social Choice

let o2 ∈ O be any other outcome, and let[≻′] be a profile that takes{o1, o2}
to the top from[≻]. By monotonicity,C([≻′]) = o1. By the definition ofW ,
o1 ≻W o2. Thus,o1 is the outcome ranked highest byW .

Step 4: W is Pareto efficient.
Imagine that∀i ∈ N , o1 ≻ o2. Let [≻′] take{o1, o2} to the top from[≻].

SinceC is weakly Pareto efficient,C([≻′]) = o1. Thus by the definition of
W from Step 2,o1 ≻W o2, and soW is Pareto efficient.

Step 5: W is independent of irrelevant alternatives.
Let [≻1] and [≻2] be two preference profiles with the property that for all

i ∈ N and for some pair of outcomeso1 ando2 ∈ O, o1 ≻1
i o2 if and only if

o1 ≻2
i o2. We must show thato1 ≻W ([≻1]) o2 if and only ifo1 ≻W ([≻2]) o2.

Let [≻1′

] take{o1, o2} to the top from[≻1], and let[≻2′

] take{o1, o2} to
the top from[≻2]. From the definition ofW in Step 2,o1 ≻W ([≻1]) o2 if and
only if C([≻1′

]) = o1; likewise,o1 ≻W ([≻2]) o2 if and only ifC([≻2′

]) = o1.
Now observe that[≻1′

] also takes{o1, o2} to the top from[≻2], because for
all i ∈ N the relative ranking betweeno1 and o2 is the same under[≻1] and
[≻2]. Thus by Part 1,C([≻1′

]) = C([≻2′

]), and henceo1 ≻W ([≻1]) o2 if and
only if o1 ≻W ([≻2]) o2.

Step 6: C is dictatorial.
From Steps 4 and 5 and Theorem 9.4.4,W is dictatorial. That is, there must

be some agenti ∈ N such that, regardless of the preference profile[≻′], we
always haveo1 ≻W ([≻′]) o2 if and only if o1 ≻′

i o2. Therefore, the highest-
ranked outcome inW ([≻′]) must also be the outcome ranked highest byi. By
Step 3,C([≻′]) is always the outcome ranked highest inW ([≻′]). Thus,C is
dictatorial.

In effect, this theorem tells us that, perhaps contrary to intuition, social choice
functions are no simpler than social welfare functions. Intuitively, the proof shows
that we can repeatedly “probe” a social choice function to determine the relative
social ordering between given pairs of outcomes. Because the function must be
defined for all inputs, we can use this technique to construct a full social welfare
ordering.

To get a feel for the theorem, consider the social choice function defined by the
plurality rule.5 Clearly, it satisfies weak Pareto efficiency and is not dictatorial.
This means it must be nonmonotonic. To see why, consider the following scenario
with seven voters.

3 agents: a ≻ b ≻ c
2 agents: b ≻ c ≻ a
2 agents: c ≻ b ≻ a

5. Formally, we should also specify the tie-breaking rule used by plurality. However, in our example mono-
tonicity fails even when ties never occur, so the tie-breaking rule does not matter here.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.5 Ranking systems 267

Denote these preferences as[≻1]. Under[≻1] plurality choosesa. Now consider
the situation where the final two agents increase their support fora by movingc to
the bottom of their rankings as shown below; denote the new preferences as[≻2].

3 agents: a ≻ b ≻ c
2 agents: b ≻ c ≻ a
2 agents: b ≻ a ≻ c

If plurality were monotonic, it would have to make the same choice under[≻2]
as under[≻1], because for alli ∈ N , a ≻2

i b if a ≻1
i b anda ≻2

i c if a ≻1
i c.

However, under[≻2] plurality choosesb. Therefore plurality is not monotonic.

9.5 Ranking systems

We now turn to a specialization of the social choice problem that has a computa-
tional flavor, and in which some interesting progress can be made. Specifically,
consider a setting in which the set of agents isthe sameas the set of outcomes—
agents are asked to vote to express their opinions about each other, with the goal
of determining a social ranking. Such settings have great practical importance. For
example, search engines rank Web pages by considering hyperlinks from one page
to another to be votes about the importance of the destination pages. Similarly,
online auction sites employreputation systemsto provide assessments of agents’
trustworthiness based on ratings from past transactions.

Let us formalize this setting, returning to our earlier assumption that agents can
be indifferent between outcomes. Our setting is characterized by two assumptions.
First,N = O: the set of agents is the same as the set of outcomes. Second, agents’
preferences are such that each agent divides the other agents into a set that he likes
equally, and a set that he dislikes equally (or, equivalently, has no opinion about).
Formally, for eachi ∈ N the outcome setO (equivalent toN) is partitioned
into two setsOi,1 andOi,2, with ∀o1 ∈ Oi,1,∀o2 ∈ Oi,2, o1 ≻i o2, and with
∀o, o′ ∈ Oi,k fork ∈ {1, 2}, o ∼i o

′. We call this theranking systems setting, andranking systems
setting call a social welfare function in this setting aranking rule. Observe that a ranking

ranking rule
rule is not required to partition the agents into two sets; it must simply return some
total preordering on the agents.

Interestingly, Arrow’s impossibility system does not hold in the ranking systems
setting. The easiest way to see this is to identify a ranking rule that satisfies all of
Arrow’s axioms.6

Proposition 9.5.1 In the ranking systems setting, approval voting satisfies IIA, PE,
and nondictatorship.

The proof is straightforward and is left as an easy exercise. Intuitively, the fact
that agents partition the outcomes into only two sets is crucially important. We

6. Note that we defined these axioms in terms of strict total orderings; nevertheless, they generalize easily
to total preorderings.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

268 9 Aggregating Preferences: Social Choice

Alice Bob

Will Liam Vic

Figure 9.2: Sample preferences in a ranking system, where arrows indicate votes.

would be able to apply Arrow’s argument if agents were able to partition the out-
comes into as few as three sets. (Recall that the proof of Theorem 9.4.4 requires
arbitrary preferences and|O| ≥ 3.)

Although the possibility of circumventing Arrow’s theorem is encouraging, the
discussion does not end here. Due to the special nature of the ranking systems
setting, there are other properties that we would like a ranking rule to satisfy.

First, consider an example in which Alice votes only for Bob, Will votes only for
Liam, and Liam votes only for Vic. These votes are illustrated in Figure 9.2. Who
should be ranked highest? Three of the five kids have received votes (Bob, Liam,
and Vic); these three should presumably rank higher than the remaining two. But
of the three, Vic is special: he is the only one whose voter (Liam) himself received
a vote. Thus, intuitively, Vic should receive the highest rank. This intuition is
captured by the idea of transitivity.

First we definestrong transitivity. We will subsequently relax this definition;
however, it is useful for what follows.

Definition 9.5.2 (Strong transitivity) Consider a preference profile in which out-
comeo2 receives at least as many votes aso1, and it is possible to pair up all the
voters foro1 with voters fromo2 so that each voter foro2 is weakly preferred by the
ranking rule to the corresponding voter foro1.7 Further assume thato2 receives
more votes thano1 and/or that there is at least one pair of voters where the rank-
ing rule strictly prefers the voter foro2 to the voter foro1. Then the ranking rule
satisfiesstrong transitivityif it always strictly preferso2 to o1.strong

transitivity
Because our transitivity definition will serve as the basis for an impossibility

result, we want it to be as weak as possible. One way in which this definition is
quite strong is that it does not take into account thenumberof votes that a voting
agent places. Consider an example in which Vic votes for almost all the kids,
whereas Ray votes only for one. If Vic and Ray are ranked the same by the ranking
rule, strong transitivity requires that their votes must count equally. However, we
might feel that Ray has been more decisive, and therefore feel that his vote should
be counted more strongly than Vic’s. We can allow for such rules by weakening

7. The pairing must use each voter fromo2 at most once; if there are more votes foro2 than foro1, there
will be agents who voted foro2 who are not paired. If an agent voted for botho1 ando2, it is acceptable for
him to be paired with himself.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.5 Ranking systems 269

the notion of transitivity. The new definition is exactly the same as the old one,
except that it is restricted to apply only to settings in which the voters vouch for
exactly the same number of candidates.

Definition 9.5.3 (Weak transitivity) Consider a preference profile in which out-
comeo2 receives at least as many votes aso1, and it is possible to pair up all the
voters foro1 with voters foro2 who have both voted for exactly the same number
of outcomesso that each voter foro2 is weakly preferred by the ranking rule to
the corresponding voter foro1. Further assume thato2 receives more votes than
o1 and/or that there is at least one pair of voters where the ranking rule strictly
prefers the voter foro2 to the voter foro1. Then the ranking rule satisfiesweak
transitivity if it always strictly preferso2 to o1.weak transitivity

Recall the independence of irrelevant alternatives (IIA) property defined earlier
in Definition 9.4.2, which said that the ordering of two outcomes should depend
only on agents’ relative preferences between these outcomes. Such an assump-
tion is inconsistent with even our weak transitivity definitions. However, we can
broaden the scope of IIA to allow for transitive effects, and thereby still express
the idea that the ranking rule should rank pairs of outcomes based only on local
information.

Definition 9.5.4 (RIIA, informal) A ranking rule satisfiesranked independence
of irrelevant alternatives(RIIA) if the relative rank between pairs of outcomes isranked

independence of
irrelevant
alternatives
(RIIA)

always determined according to the same rule, and this rule depends only on

1. the number of votes each outcome received; and

2. the relative ranks of these voters.8

Note that this definition prohibits the ranking rule from caring about theidenti-
tiesof the voters, which is allowed by IIA.

Despite the fact that Arrow’s theorem does not apply in this setting, it turns out
that another, very different impossibility result does hold.

Theorem 9.5.5There is no ranking system that always satisfies both weak transi-
tivity and RIIA.

What hope is there then for ranking systems? The obvious way forward is to
consider relaxing one axiom and keeping the other. Indeed, progress can be made
both by relaxing weak transitivity and by relaxing RIIA. For example, the famous
PageRank algorithm (used originally as the basis of the Google search engine) can
be understood as a ranking system that satisfies weak transitivity but not RIIA.
Unfortunately, an axiomatic treatment of this algorithm is quite involved, so we do
not provide it here.

8. The formal definition of RIIA is more complicated than Definition 9.5.4 because it must explain precisely
what is meant by depending on the relative ranks of the voters. The interested reader is invited to consult the
reference cited at the end of the chapter.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

270 9 Aggregating Preferences: Social Choice

Instead, we will consider relaxations of transitivity. First, what happens if we
simply drop the weak transitivity requirement altogether? Let us add the require-
ments that an agent’s rank can improve only when he receives more votes (“posi-
tive response”) and that the agents’ identities are ignored by the ranking function
(“anonymity”). Then it can be shown that approval voting, which we have already
considered in this setting, is theonlypossible ranking function.

Theorem 9.5.6Approval voting is the only ranking rule that satisfies RIIA, posi-
tive response, and anonymity.

Finally, what if we try to modify the transitivity requirement rather than drop-
ping it entirely? It turns out that we can also obtain a positive result here, although
this comes at the expense of guaranteeing anonymity. Note that this new transitiv-
ity requirement is a different weakening of strong transitivity which does not care
about the number of outcomes that agents vote for, but instead requires strict pref-
erence only when the ranking rule strictly preferseverypaired voter foro2 over the
corresponding voter foro1.

Definition 9.5.7 (Strong quasi-transitivity) Consider a preference profile in which
outcomeo2 receives at least as many votes aso1, and it is possible to pair up all
the voters foro1 with voters fromo2 so that each voter foro2 is weakly preferred by
the ranking rule to the corresponding voter foro1. Then the ranking rule satisfies
strong quasi-transitivityif it weakly preferso2 to o1, and strictly preferso2 to o1 ifstrong

quasi-transitivity eithero1 received no votes or each paired voter foro2 is strictly preferred by the
ranking rule to the corresponding voter foro1.

forall i ∈ N do rank(i)← 0
repeat

forall i ∈ N do
if |voters_for(i)| > 0 then

rank(i)← 1
n+1

[|voters_for(i)|+ maxj∈voters_for(i) rank(j)]

else
rank(i)← 0

until rank converges

Figure 9.3: A ranking algorithm that satisfies strong quasi-transitivity and RIIA.

There exists a family of ranking algorithms that satisfy strong quasi-transitivity
and RIIA. These algorithms work by assigning agents numerical ranks that depend
on the number of votes they have received, and breaking ties in favor of the agent
who received a vote from the highest-ranked voter. If this rule still yields a tie, it
is applied recursively; when the recursion follows a cycle, the rank is a periodic
rational number with period equal to the length of the cycle. One such algorithm

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

9.6 History and references 271

is given in Figure 9.3. This algorithm can be proved to converge inn iterations;
as each step takesO(n2) time (considering all votes for all agents), the worst-case
complexity9 of the algorithm isO(n3).

9.6 History and references

Social choice theory is covered in many textbooks on microeconomics and game
theory, as well as in some specialized texts such as Feldman and Serrano [2006]
and Gaertner [2006]. An excellent survey is provided in Moulin [1994].

The seminal individual publication in this area is Arrow [1970], which still re-
mains among the best introductions to the field. The book includes Arrow’s famous
impossibility result (partly for which he received a 1972 Nobel Prize), though our
treatment follows the elegant first proof in Geanakoplos [2005]. Plurality voting is
too common and natural (it is used in 43 of the 191 countries in the United Nations
for either local or national elections) to have clear origins. Borda invented his sys-
tem as a fair way to elect members to the French Academy of Sciences in 1770,
and first published his method in 1781 as de Borda [1781]. In 1784, Marie Jean
Antoine Nicolas Caritat, aka the Marquis de Condorcet, first published his ideas
regarding voting [de Condorcet, 1784]. Somewhat later, Nanson, a Briton-turned-
Australian mathematician and election reformer, published his modification of the
Borda count in Nanson [1882]. The Smith set was introduced in Smith [1973].
The Muller–Satterthwaite impossibility result appears in Muller and Satterthwaite
[1977]; our proof follows Mas-Colell et al. [1995]. Our section on ranking systems
follows Altman and Tennenholtz [2008]. Other interesting directions in ranking
systems include developing practical ranking rules and/or axiomatizing such rules
(e.g., Page et al. [1998], Kleinberg [1999], Borodin et al. [2005], and Altman
and Tennenholtz [2005]), and exploring personalized rankings, in which the rank-
ing function gives a potentially different answer to each agent (e.g., Altman and
Tennenholtz [2007]).

9. In fact, the complexity bound on this algorithm can be somewhat improved by more careful analysis;
however, the argument here suffices to show that the algorithm runs in polynomial time.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

10 Protocols for Strategic Agents:
Mechanism Design

As we discussed in the previous chapter, social choice theory is nonstrategic; it
takes the preferences of the agents as given, and investigates ways in which they
can be aggregated. But of course those preferences are usually not known. What
you have, instead, is that the various agentsdeclaretheir preferences, which they
may do truthfully or not. Assuming the agents are self interested, in general they
will not reveal their true preferences. Since as a designer you wish to find an
optimal outcome with respect to the agents’ true preferences (e.g., electing a leader
that truly reflects the agents’ preferences), optimizing with respect to the declared
preferences will not in general achieve the objective.

10.1 Introduction

Mechanism designis a strategic version of social choice theory, which adds the
assumption that agents will behave so as to maximize their individual payoffs. For
example, in an election agents may not vote their true preference.

10.1.1 Example: strategic voting

Consider again our babysitting example. This time, in addition to Will, Liam,
and Vic you must also babysit their devious new friend, Ray. Again, you invite
each child to select their favorite among the three activities—going to the video
arcade (a), playing basketball (b), and going for a leisurely car ride (c). As before,
you announce that you will select the activity with the highest number of votes,
breaking ties alphabetically. Consider the case in which the true preferences of the
kids are as follows:

Will: b ≻ a ≻ c
Liam: b ≻ a ≻ c

Vic: a ≻ c ≻ b
Ray: c ≻ a ≻ b

Will, Liam, and Vic are sweet souls who always tell you their true preferences.
But little Ray, he is always figuring things out and so he goes through the follow-

274 10 Protocols for Strategic Agents: Mechanism Design

ing reasoning process. He prefers the most sedentary activity possible (hence his
preference ordering). But he knows his friends well, an in particular he knows
which activity each of them will vote for. He thus knows that if he votes for his
true passion—slumping in the car for a few hours (c)—he will end up playing bas-
ketball (b). So he votes for going to the arcade (a), ensuring that this indeed is the
outcome. Is there anything you can do to prevent such manipulation by little Ray?

This is wheremechanism design, or implementation theory, comes in. Mecha-mechanism
design

implementation
theory

nism design is sometimes colloquially called “inverse game theory.” Our discus-
sion of game theory in Chapter 3 was framed as follows: Given an interaction
among a set of agents, how do we predict or prescribe the course of action of the
various agents participating in the interaction? In mechanism design, rather than
investigate a given strategic interaction, we start with certain desired behaviors on
the part of agents and ask what strategic interaction among these agents might give
rise to these behaviors. Roughly speaking, from the technical point of view this
will translate to the following. We will assume unknown individual preferences,
and ask whether we can design a game such that, no matter what the secret pref-
erences of the agents actually are, the equilibrium of the game is guaranteed to
have a certain desired property or set of properties.1 Mechanism design is perhaps
the most “computer scientific” part of game theory, since it concerns itself with
designing effective protocols for distributed systems. The key difference from the
traditional work in distributed systems is that in the current setting the distributed
elements are not necessarily cooperative, and must be motivated to play their part.
For this reason one can think of mechanism design as an exercise in “incentive
engineering.”

10.1.2 Example: buying a shortest path

Like social choice theory, the scope of mechanism design is broader than voting.
The most famous application of mechanism design isauction theory, to whichauction theory
we devote Chapter 11. However, mechanism design has many other applications.
Consider the transportation network depicted in Figure 10.1.

In Section 6.4.5 we considered a selfish routing problem where agents selfishly
decide where to send their traffic in a network that responded to congestion in a
predictable way. Here we consider a different problem. In Figure 10.1 the number
next to a given edge is the cost of transporting along that edge, but these costs
are the private information of the various shippers that own each edge. The task
here is to find the shortest (least-cost) path fromS to T ; this is hard because the
shippers may lie about their costs. Your one advantage is that you know that they
are interested in maximizing their revenue. How can you use that knowledge to
extract from them the information needed to compute the desired path?

1. Actually, as we shall see, technically speaking what we design is not a game but a mechanism that together
with the secret utility functions defines a Bayesian game.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.2 Mechanism design with unrestricted preferences 275

2

1

2

s

3

2

t

5

3

1

Figure 10.1: Transportation network with selfish agents.

10.2 Mechanism design with unrestricted preferences

We begin by introducing some of the broad principles of mechanism design, plac-
ing no restriction on the preferences agents can have. (We will consider such re-
strictions in later sections.) Because mechanism design is most often studied in
settings where agents’ preferences are unknown, we start by defining a Bayesian
game setting, basing it on the epistemic types definition of Bayesian games that
we gave in Section 6.3.1. The key difference is that the setting does not include ac-
tions for the agents, and instead defines the utility functions over the set of possible
outcomes.2

Definition 10.2.1 (Bayesian game setting)A Bayesian game settingis a tupleBayesian game
setting (N,O,Θ, p, u), where

• N is a finite set ofn agents;

• O is a set of outcomes;

• Θ = Θ1 × · · · ×Θn is a set of possible joint type vectors;

• p is a (common-prior) probability distribution onΘ; and

• u = (u1, . . . , un), whereui : O × Θ 7→ R is the utility function for each
playeri.

Given a Bayesian game setting, we can define a mechanism.

Definition 10.2.2 (Mechanism)A mechanism(for a Bayesian game settingmechanism
(N,O,Θ, p, u)) is a pair (A,M), where

2. Recall from our original discussion of utility theory in Section 3.1.2 that utility functions always map
from outcomes to real values; we had previously assumed thatO = A. We now relax this assumption, and
so make explicit the utility functions’ dependence on the chosen outcome.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

276 10 Protocols for Strategic Agents: Mechanism Design

• A = A1 × · · · × An, whereAi is the set of actions available to agenti ∈ N ;
and

• M : A 7→ Π(O) maps each action profile to a distribution over outcomes.

A mechanism isdeterministicif for everya ∈ A, there existso ∈ O such that
M(a)(o) = 1; in this case we write simplyM(a) = o.

10.2.1 Implementation

Together, a Bayesian game setting and a mechanism define a Bayesian game. The
aim of mechanism design is to select a mechanism, given a particular Bayesian
game setting, whose equilibria have desirable properties. We now define the most
fundamental such property: that the outcomes that arise when the game is played
are consistent with a given social choice function.

Definition 10.2.3 (Implementation in dominant strategies)Given a Bayesian game
setting(N,O,Θ, p, u), a mechanism(A,M) is an implementation in dominant
strategiesof a social choice functionC (overN andO) if for any vector of utilityimplementation

in dominant
strategies

functionsu, the game has an equilibrium in dominant strategies, and in any such
equilibriuma∗ we haveM(a∗) = C(u).3

A mechanism that gives rise to dominant strategies is sometimes calledstrategy-
proof, because there is no need for agents to reason about each others’ actions instrategy-proof
order to maximize their utility.

In the aforementioned babysitter example, the pair consisting of “each child
votes for one choice” and “the activity selected is one with the most votes, breaking
ties alphabetically” is a well-formed mechanism, since it specifies the actions avail-
able to each child and the outcome depending on the choices made. Now consider
the social choice function “the selected activity is that which is the top choice of the
maximal number of children, breaking ties alphabetically.” Clearly the mechanism
defined by the babysitter does not implement this function in dominant strategies.
For example, the preceding instance of it has no dominant strategy for Ray.

This suggests that the above definition can be relaxed, and can appeal to solution
concepts that are weaker than dominant-strategy equilibrium. For example, one
can appeal to the Bayes–Nash equilibrium.4

Definition 10.2.4 (Implementation in Bayes–Nash equilibrium)Given a Bayesian
game setting(N,O,Θ, p, u), a mechanism(A,M) is animplementation in Bayes–
Nash equilibriumof a social choice functionC (overN andO) if there exists aimplementation

in Bayes–Nash
equilibrium 3. The careful reader will notice that because we have previously defined social choice functions as deter-

ministic, we here end up with a mechanism that selects outcomes deterministically as well. Of course, this
definition can be extended to describe randomized social choice functions and mechanisms.
4. It is possible to study mechanism design in complete-information settings as well. This leads to the idea
of Nash implementation, which is a sensible concept when the agents know each other’s utility functions but
the designer does not. This last point is crucial: if the designer did know, he could simply select the social
choice directly, and we would return to the social choice setting studied in Chapter 9. We do not discuss
Nash implementation further because it plays little role in the material that follows.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.2 Mechanism design with unrestricted preferences 277

Bayes–Nash equilibrium of the game of incomplete information(N,A,Θ, p, u)
such that for everyθ ∈ Θ and every action profilea ∈ A that can arise given type
profile θ in this equilibrium, we have thatM(a) = C(u(·, θ)).

A classical example of Bayesian mechanism design is auction design. While we
defer a lengthier discussion of auctions to Chapter 11, the basic idea is as follows.
The designer wishes, for example, to ensure that the bidder with the highest val-
uation for a given item will win the auction, but the valuations of the agents are
all private. The outcomes consist of allocating the item (in the case of a simple,
single-item auction) to one of the agents, and having the agents make or receive
some payments. The auction rules define the actions available to the agents (the
“bidding rules”), and the mapping from action vectors to outcomes (“allocation
rules” and “payment rules”: who wins and who pays what as a function of the bid-
ding). If we assume that the valuations are drawn from some known distribution,
each particular auction design and particular set of agents define a Bayesian game,
in which the signal of each agent is his own valuation.

Finally, there exist implementation concepts that are satisfied by a larger set
of strategy profiles than implementation in dominant strategies, but that are not
guaranteed to be achievable for any given social choice function and set of prefer-
ences, unlike Bayes–Nash implementation. For example, we could consider only
symmetric Bayes–Nash equilibria, on the principle that strategies that depend on
agent identities would be less likely to arise in practice. It turns out that symmet-
ric Bayes–Nash equilibria always exist in symmetric Bayesian games. A second
implementation notion that deserves mention isex postimplementation. Recall
from Section 6.3.4 that anex postequilibrium has the property that no agent can
ever gain by changing his strategy even if he observes the other agents’ types, as
long as all the other agents follow the equilibrium strategies. Thus, unlike a Bayes–
Nash equilibrium, anex postequilibrium does not depend on the type distribution.
Regardless of the implementation concept, we can require that the desired social
choice function is implemented in the only equilibrium, in every equilibrium or in
at least one equilibrium of the underlying game.

10.2.2 The revelation principle

One property that is often desired of mechanisms is calledtruthfulness. This prop-truthfulness
erty holds when agents truthfully disclose their preferences to the mechanism in
equilibrium. It turns out that this property can always be achieved regardless of
the social choice function implemented and of the agents’ preferences. More for-
mally, adirect mechanismis one in which the only action available to each agent isdirect

mechanism to announce his private information. Since in a Bayesian game an agent’s private
information is his type, direct mechanisms haveAi = Θi. When an agent’s set
of actions is the set of all his possible types, he may lie and announce a typeθ̂i

that is different from his true typeθi. A direct mechanism is said to betruthful (or
incentive compatible)if, for any type vectorθ, in equilibrium of the game definedtruthful

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

278 10 Protocols for Strategic Agents: Mechanism Design

Original

Mechanism

outcome

strategy ()
type

strategy ()
type

(a) Revelation principle: original mechanism

(

New Mechanism

Original

Mechanism

outcome

strategy
type

strategy
type

()

()

(b) Revelation principle: new mechanism

Figure 10.2: The revelation principle: how to construct a new mechanism with a
truthful equilibrium, given an original mechanism with equilibrium(s1, . . . , sn).

by the mechanism every agenti’s strategy is to announce his true type, so that
θ̂i = θi. We can thus speak aboutincentive compatibility in dominant strategiesincentive

compatibility in
dominant
strategies

andBayes–Nash incentive compatibility. Our claim that truthfulness can always

Bayes–Nash
incentive
compatibility

be achieved implies, for example, that the social choice functions implementable
by dominant-strategy truthful mechanisms are precisely those implementable by
strategy-proof direct mechanisms. This means that we can, without loss of cover-
age, limit ourselves to a small sliver of the space of all mechanisms.

Theorem 10.2.5 (Revelation principle)If there exists any mechanism that imple-
revelation
principle

ments a social choice functionC in dominant strategies then there exists a direct
mechanism that implementsC in dominant strategies and is truthful.

Proof. Consider an arbitrary mechanism forn agents that implements a social
choice functionC in dominant strategies. This mechanism is illustrated in Fig-
ure 10.2a. Lets1, . . . , sn denote the dominant strategies for agents1, . . . , n.
We will construct a new mechanism whichtruthfully implementsC. Our new
mechanism will ask the agents for their utility functions, use them to determine
s1, . . . , sn, the agents’ dominant strategies under the original mechanism, and
then choose the outcome that would have been chosen by the original mech-
anism for agents following the strategiess1, . . . , sn. This new mechanism is
illustrated in Figure 10.2b.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.2 Mechanism design with unrestricted preferences 279

Assume that some agenti would be better off declaring a utility function
u∗

i to the new mechanism rather than his true utility functionui. This implies
thati would have preferred to follow some different strategys∗i in the original
mechanism rather thansi, contradicting our assumption thatsi is a dominant
strategy fori. (Intuitively, if i could gain by lying to the new mechanism, he
could likewise gain by “lying to himself” in the original mechanism.) Thus the
new mechanism is dominant-strategy truthful.

In other words, any solution to a mechanism design problem can be converted
into one in which agents always reveal their true preferences, if the new mechanism
“lies for the agents” in just the way they would have chosen to lie to the original
mechanism. The revelation principle is arguably the most basic result in mecha-
nism design. It means that, while one might have thoughta priori that a particular
mechanism design problem calls for an arbitrarily complex strategy space, in fact
one can restrict one’s attention to truthful, direct mechanisms.

As we asserted earlier, the revelation principle does not apply only to imple-
mentation in dominant strategies; we have stated the theorem in this way only to
keep things simple. Following exactly the same argument we can argue that, for
example, a mechanism that implements a social choice function in a Bayes–Nash
equilibrium can be converted into a direct, Bayes–Nash incentive compatible mech-
anism.

The argument we used to justify the revelation principle also applies to original
mechanisms that are indirect (e.g., ascending auctions). The new, direct mecha-
nism can take the agents’ utility functions, construct their strategies for the indirect
mechanism, and then simulate the indirect mechanism to determine which outcome
to select. One caveat is that, even if the original indirect mechanism had a unique
equilibrium, there is no guarantee that the new revelation mechanism will not have
additional equilibria.

Before moving on, we finally offer some computational caveats to the revelation
principle. Observe that the general effect of constructing a revelation mechanism
is to push an additional computational burden onto the mechanism, as is implicit
in Figure 10.2b. There are many settings in which agents’ equilibrium strategies
are computationally difficult to determine. When this is the case, the additional
burden absorbed by the mechanism may be considerable. Furthermore, the revela-
tion mechanism forces the agents to reveal their types completely. There may be
settings in which agents are not willing to compromise their privacy to this degree.
(Observe that the original mechanism may require them to reveal much less infor-
mation.) Finally, even if not objectionable on privacy grounds, this full revelation
can sometimes place an unreasonable burden on the communication channel. For
all these reasons, in practical settings one must apply the revelation principle with
caution.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

280 10 Protocols for Strategic Agents: Mechanism Design

10.2.3 Impossibility of general, dominant-strategy implementation

We now ask what social choice functions can be implemented in dominant strate-
gies. Given the revelation principle, we can restrict our attention to truthful mech-
anisms. The first answer is disappointing.

Theorem 10.2.6 (Gibbard–Satterthwaite)Consider any social choice function
C ofN andO. If:

1. |O| ≥ 3 (there are at least three outcomes);

2. C is onto; that is, for everyo ∈ O there is a preference profile[≻] such that
C([≻]) = o (this property is sometimes also calledcitizen sovereignty); and

3. C is dominant-strategy truthful,

thenC is dictatorial.

If Theorem 10.2.6 is reminiscent of the Muller–Satterthwaite theorem (Theo-
rem 9.4.8) this is no accident, since Theorem 10.2.6 is implied by that theorem
as a corollary. Note that this negative result is specific to dominant-strategy im-
plementation. It does not hold for the weaker concepts of Nash or Bayes–Nash
equilibrium implementation.

10.3 Quasilinear preferences

If we are to design a dominant-strategy truthful mechanism that is not dictatorial,
we are going to have to relax some of the conditions of the Gibbard–Satterthwaite
theorem. First, we relax the requirement that agents be able to express any prefer-
ences and replace it with the requirement that agents be able to express any prefer-
ences in a limited set. Second, we relax the condition that the mechanism be onto.
We now introduce our limited set of preferences.

Definition 10.3.1 (Quasilinear utility function) Agents havequasilinear utility func-
tions (or quasilinear preferences) in an n-player Bayesian game when the set ofquasilinear

utility functions

quasilinear
preferences

outcomes isO = X×R
n for a finite setX, and the utility of an agenti given joint

typeθ is given byui(o, θ) = ui(x, θ) − fi(pi), whereo = (x, p) is an element
of O, ui : X × Θ 7→ R is an arbitrary function andfi : R 7→ R is a strictly
monotonically increasing function.

Intuitively, we split outcomes into two pieces that are linearly related. First,X
represents a finite set of nonmonetary outcomes, such as the allocation of an object
to one of the bidders in an auction or the selection of a candidate in an election.
Second,pi is the (possibly negative) payment made by agenti to the mechanism,
such as a payment to the auctioneer.

What does it mean to assume that agents’ preferences are quasilinear? First, it
means that we are in a setting in which the mechanism can choose to charge or

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.3 Quasilinear preferences 281

reward the agents by an arbitrary monetary amount. Second, and more restrictive,
it means that an agent’s degree of preference for the selection of any choicex ∈ X
is independent from his degree of preference for having to paythe mechanism
some amountpi ∈ R. Thus an agent’s utility for a choice cannot depend on the
total amount of money that he has (e.g., an agent cannot value having a yacht more
if he is rich than if he is poor). Finally, it means that agents care only about the
choice selected and about their own payments: in particular, they do not care about
the monetary payments made or received by other agents.

Strictly speaking, we have defined quasilinear preferences in a way that fixes the
set of agents. However, we generally consider families of quasilinear problems,
for any set of agents. For example, consider a voting game of the sort discussed
earlier. You would want to be able to speak about a voting problem and a voting
solution in a way that is not dependent on the number of agents. So in the following
we assume that a quasilinear utility function is still defined when any one agent is
taken away. In this case the set of nonmonetary outcomes must be updated (e.g.,
in an auction setting the missing agent cannot be the winner), and is denoted by
O−i. Similarly, the utility functionsui and the choice functionC must be updated
accordingly.

10.3.1 Risk attitudes

There is still one part of the definition of quasilinear preferences that we have not
discussed—the functionsfi. Before defining them, let us consider a question that
may at first seem a bit nonsensical. Recall that we have said thatpi denotes the
amount an agenti has to pay the mechanism. How much doesi value a dollar?
To make sense of this question, we must first note that utility is specified in its
own units, rather than in units of currency, so we need to perform some kind of
conversion. (Recall the discussion at the end of Section 3.1.2.) Indeed, this conver-
sion can be understood as the purpose offi. However, the conversion is nontrivial
because for most people the value of a dollar depends on the amount of money
they start out with in the first place. (For example, if you are broke and starving
then a dollar could lead to a substantial increase in your utility; if you are a mil-
lionaire, you might not bend over to pick up the same dollar if it was lying on the
street.) To make the same point in another way, consider a fair lottery in which a
ticket costs$x and pays off$2x half of the time. Holding your wealth constant,
your willingness to participate in this lottery would probably depend onx. Most
people are willing to play for sufficiently small values ofx (say$1), but not for
larger values (say$10, 000). However, we have modeled agents as expected utility
maximizers—how can we express the idea that an agent’s willingness to partici-
pate in this lottery can depend onx, when the lottery’s expected value is the same
in both cases?

These two examples illustrate that we will often want thefi functions to be
nonlinear. The curvature offi givesi’s risk attitude, which we can understand asrisk attitude
the way thati feels about lotteries such as the one just described.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

282 10 Protocols for Strategic Agents: Mechanism Design

u

$
(a) Risk neutrality

* *+,*-,./*0./*+,0./*-,0u

$
(b) Risk neutrality: fair lottery

u

$
(c) Risk aversion

1 123143
5617561237561437u

$
(d) Risk aversion: fair lottery

u

$
(e) Risk seeking

8 89:8;:<=8><=89:><=8;:>u

$
(f) Risk seeking: fair lottery

Figure 10.3: Risk attitudes: risk aversion, risk neutrality, risk seeking, and in each
case, utility for the outcomes of a fair lottery.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.3 Quasilinear preferences 283

If an agenti simply wants to maximize his expected revenue, we say the agent
is risk neutral. Such an agent has a linear value for money, as illustrated in Fig-risk neutral
ure 10.3a. To see why this is so, consider Figure 10.3b. This figure describes a
situation where the agent starts out with an endowment of$k, and must decide
whether or not to participate in a fair lottery that awards$k + x half the time, and
$k − x the other half of the time. From looking at the graph, we can seethat
u(k) = 1

2
u(k − x) + 1

2
u(k + x)—the agent is indifferent between participating

in the lottery and not participating. This is what we would expect, as the lottery’s
expected value isk, the same as the value for not participating.

In contrast, consider the value-for-money curve illustrated in Figure 10.3c. We
call such an agentrisk averse—he has a sublinear value for money, which meansrisk averse
that he prefers a “sure thing” to a risky situation with the same expected value.
Consider the same fair lottery described earlier from the point of view of a risk-
averse agent, as illustrated in Figure 10.3d. We can see that for this agentu(k) >
1
2
u(k − x) + 1

2
u(k + x)—the marginal disutility of losing$x is greater than the

marginal utility of gaining$x, given an initial endowment ofk.
Finally, the opposite of risk aversion isrisk seeking, illustrated in Figure 10.3e.risk seeking

Such an agent has a superlinear value for money, which means that the agent
prefers engaging in lotteries to a sure thing with the same expected value. This
is shown in Figure 10.3f. For example, an agent might prefer to spend$1 to buy
a ticket that has a 1

1,000
chance of paying off$1, 000, as compared to keeping the

dollar.
The examples above suggest that people might exhibit different risk attitudes in

different regions offi. For example, a person could be risk seeking for very small
amounts of money, risk neutral for moderate amounts and risk averse for large
amounts. Nevertheless, in what follows we will assume that agents are risk neutral
unless indicated otherwise. The assumption of risk neutrality is made partly for
mathematical convenience, partly to avoid making an (often difficult to justify) as-
sumption about the particular shape of agents’ value-for-money curves, and partly
because risk neutrality is reasonable when the amounts of money being exchanged
through the mechanism are moderate. Considerable work in the literature extends
results such as those presented in this chapter and the next to the case of agents
with different risk attitudes.

Even once we have assumed that agents are risk neutral, there remains one more
degree of freedom in agents’ utility functions: the slope offi. If every agent’s
value-for-money curve is linear and has the same slope (∀i ∈ N, fi(p) = βp, for
β ∈ R+), then we say that the agents havetransferable utility. This name reflectstransferable

utility the fact that, regardless of the nonmonetary choicex ∈ X, one agent can transfer
any given amount of utility to another by giving that agent an appropriate amount
of money. More formally, for allx ∈ X, for any pair of agentsi, j ∈ N and
for anyk ∈ R, i’s utility is increased by exactlyk andj’s utility decreased by
exactlyk whenj paysi the amountk

β
. We will assume that this property holds for

the remainder of this chapter and throughout Chapter 11, except where we indicate
otherwise.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

284 10 Protocols for Strategic Agents: Mechanism Design

10.3.2 Mechanism design in the quasilinear setting

Now that we have defined the quasilinear preference model, we can talk about the
design of mechanisms for agents with these preferences. As discussed earlier, we
assume that agents are risk neutral and have transferable utility. For convenience,
let βi = 1, meaning that we can think of agents’ utilities for differentchoices
as being expressed in dollars. We concentrate on Bayesian games because most
mechanism design is performed in such domains.

First, we point out that since quasilinear preferences split the outcome space into
two parts, we can modify our formal definition of a mechanism accordingly.

Definition 10.3.2 (Quasilinear mechanism)A mechanism in the quasilinear set-
ting (for a Bayesian game setting(N,O = X×R

n,Θ, p, u)) is a triple(A, x , ℘),mechanism in
the quasilinear
setting

where

• A = A1 × · · · ×An, whereAi is the set of actions available to agenti ∈ N ,

• x : A 7→ Π(X) maps each action profile to a distribution over choices, and

• ℘ : A 7→ R
n maps each action profile to a payment for each agent.

In effect, we have split the functionM into two functionsx and℘, wherex is
thechoice ruleand℘ is thepayment rule. We will use the notation℘i to denotechoice rule

payment rule
the payment function for agenti.

A direct revelation mechanism in the quasilinear setting is one in which each
agent is asked to state his type.

Definition 10.3.3 (Direct quasilinear mechanism)Adirect quasilinear mechanismdirect
quasilinear
mechanism

(for a Bayesian game setting(N,O = X × R
n,Θ, p, u)) is a pair (x , ℘). It de-

fines a standard mechanism in the quasilinear setting, where for eachi,Ai = Θi.

In many quasilinear mechanism design settings it is helpful to make the assump-
tion that agents’ utilities depend only on their own types, a property that we call
conditional utility independence.5

Definition 10.3.4 (Conditional utility independence) A Bayesian game exhibits
conditional utility independenceif for all agentsi ∈ N , for all outcomeso ∈ Oconditional

utility
independence

and for all pairs of joint typesθ and θ′ ∈ Θ for which θi = θ′i, it holds that
ui(o, θ) = ui(o, θ

′).

We will assume conditional utility independence for the restof this section, and
indeed for most of the rest of the chapter. When we do so, we can write an agenti’s
utility function asui(o, θi), since it does not depend on the other agents’ types. We
can also refer to an agent’svaluationfor choicex ∈ X, writtenvi(x) = ui(x, θ).valuation

5. This assumption is sometimes referred to asprivacy. We avoid that terminology here because the assump-
tion does not imply that agents cannot learn about others’ utility functions by observing their own types.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.3 Quasilinear preferences 285

vi should be thought of as the maximum amount of money thati would be willing
to pay to get the mechanism designer to implement choicex—in fact, having to pay
this much would exactly makei indifferent about whether he was offered this deal
or not.6 Note that an agent’s valuation depends on his type, even though we do not
explicitly refer toθi. In the future when we discuss direct quasilinear mechanisms,
we will usually mean mechanisms that ask agents to declare their valuations for
each choice; of course, this alternate definition is equivalent to Definition 10.3.3.7

LetVi denote the set of all possible valuations for agenti. We will use the notation
v̂i ∈ Vi to denote the valuation that agenti declares to such a direct mechanism,
which may be different from his true valuationvi. We denote the vector of all
agents’ declared valuations asv̂ and the set of all possible valuation vectors asV .
Finally, denote the vector of declared valuations from all agents other thani asv̂−i.

Now we can state some properties that it is common to require of quasilinear
mechanisms.

Definition 10.3.5 (Truthfulness) A quasilinear mechanism istruthful if it is directtruthful
and∀i∀vi, agenti’s equilibrium strategy is to adopt the strategyv̂i = vi.

Of course, this is equivalent to the definition of truthfulness that we gave in Sec-
tion 10.2.2; we have simply updated the notation for the quasilinear utility setting.

Definition 10.3.6 (Efficiency) A quasilinear mechanism isstrictly Pareto efficient,strict Pareto
efficiency or justefficient, if in equilibrium it selects a choicex such that∀v∀x′,

∑
i vi(x) ≥

efficiency

∑
i vi(x

′).

That is, an efficient mechanism selects the choice that maximizes the sum of
agents’ utilities, disregarding the monetary payments that agents are required to
make. We describe this property aseconomic efficiencywhen there is a danger that
it will be confused with other (e.g., computational) notions of efficiency. Observe
that efficiency is defined in terms of agents’ true valuations, not their declared
valuations. This condition is also known associal welfare maximization.social welfare

maximization The attentive reader might wonder about the relationship between strict Pareto
efficiency as defined in Definitions 3.3.2 and 10.3.6. The underlying concept is
indeed the same. The reason why we can get away with summing agents’ valua-
tions here arises from our assumption that agents’ preferences are quasilinear, and
hence that agents’ utilities for different choices can be traded off against different
payments. Recall that we observed in Section 3.3.1 that there can be many Pareto
efficient outcomes because of the fact that agents’ utility functions are only unique
up to positive affine transformations. In a quasilinear setting, if we include the op-
erator of the mechanism8 as an agent who values money linearly and is indifferent

6. Observe that here we rely upon the assumption of risk neutrality discussed earlier. Furthermore, observe
that it is also meaningful to extend the concept of valuation beyond settings in which conditional utility
independence holds; in such cases, we say that agents do not know their own valuations. We consider one
such setting in Section 11.1.10.
7. Here we assume, as is common in the literature, that the mechanism designer knows each agent’s value-
for-money functionfi.
8. For example, this would be a seller in a single-sided auction, or a market maker in a double-sided market.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

286 10 Protocols for Strategic Agents: Mechanism Design

between the mechanism’s choices, it can be shown that all Pareto efficient out-
comes involve the mechanism making the same choice and differ only in monetary
allocations.

Definition 10.3.7 (Budget balance)A quasilinear mechanism isbudget balancedbudget balance
when∀v, ∑i ℘i(s(v)) = 0, wheres is the equilibrium strategy profile.

In other words, regardless of the agents’ types, the mechanism collects and dis-
burses the same amount of money from and to the agents, meaning that it makes
neither a profit nor a loss.

Sometimes we relax this condition and require onlyweak budget balance, mean-weak budget
balance ing that∀v, ∑i ℘i(s(v)) ≥ 0 (i.e., the mechanism never takes a loss, but it may

make a profit). Finally, we can require that either strict or weak budget balance
holdex ante, which means thatEv [

∑
i ℘i(s(v))] is either equal to or greater than

zero. (That is, the mechanism is required to break even or make a profit only on
expectation.)

Definition 10.3.8 (Ex interimindividual rationality) A quasilinear mechanism is
ex interim individually rationalwhenex interim

individual
rationality ∀i∀vi, Ev−i|vi

[vi(x (si(vi), s−i(v−i)))− ℘i(si(vi), s−i(v−i))] ≥ 0,

wheres is the equilibrium strategy profile.

This condition requires that no agent loses by participating in the mechanism.
We call it ex interimbecause it holds foreverypossible valuation for agenti, but
averages over the possible valuations of the other agents. This approach makes
sense because it requires that, based on the information that an agent has when he
chooses to participate in a mechanism, no agent would be better off choosing not
to participate. Of course, we can also strengthen the condition to say that no agent
everloses by participation.

Definition 10.3.9 (Ex postindividual rationality) A quasilinear mechanism isex
post individually rationalwhen∀i∀v, vi(x (s(v)))−℘i(s(v)) ≥ 0, wheres is theex post

individual
rationality

equilibrium strategy profile.

We can also restrict mechanisms based on their computational requirements
rather than their economic properties.

Definition 10.3.10 (Tractability) A quasilinear mechanism istractablewhen∀a ∈tractability
A, x (a) and℘(a) can be computed in polynomial time.

Finally, in some domains there will be many possible mechanisms that satisfy
the constraints we choose, meaning that we need to have some way of choosing
among them. (And as we will see later, for other combinations of constraints no
mechanisms exist at all.) The usual approach is to define an optimization problem

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.3 Quasilinear preferences 287

that identifies the optimal outcome in the feasible set. For example, although we
have defined efficiency as a constraint, it is also possible to soften the constraint
and require the mechanism to achieve as much social welfare as possible. Here we
define some other quantities that a mechanism designer can seek to optimize.

First, the mechanism designer can take a selfish perspective. Interestingly, this
goal turns out to be quite different from the goal of maximizing social welfare. (We
give an example of the differences between these approaches when we consider
single-good auctions in Section 11.1.)

Definition 10.3.11 (Revenue maximization)A quasilinear mechanism isrevenue
maximizingwhen, among the set of functionsx and℘ that satisfy the other con-revenue

maximization straints, the mechanism selects thex and℘ that maximizeEv [
∑

i ℘i(s(v))], where
s(v) denotes the agents’ equilibrium strategy profile.

Conversely, the designer might try to collect aslittle revenue as possible, for
example if the mechanism uses payments only to provide incentives, but is not
intended to make money. The budget balance constraint is the best way to solve this
problem, but sometimes it is impossible to satisfy. In such cases, one approach is
to set weak budget balance as a constraint and then to pick the revenue minimizing
mechanism, effectively softening the (strict) budget balance constraint. Here we
present aworst-caserevenue minimization objective; of course, an average-case
objective is also possible.

Definition 10.3.12 (Revenue minimization)A quasilinear mechanism isrevenue
minimizing when, among the set of functionsx and℘ that satisfy the other con-revenue

minimization straints, the mechanism selects thex and℘ that minimizemaxv

∑
i ℘i(s(v)) in

equilibrium, wheres(v) denotes the agents’ equilibrium strategy profile.

The mechanism designer might be concerned with selecting afair outcome.
However, the notion of fairness can be tricky to formalize. For example, an out-
come that fines all agents $100 and makes a choice that all agents hate equally is in
some sense fair, but it does not seem desirable. Here we define so-calledmaxmin
fairness, which says that the fairest outcome is the one that makes the least-happy
agent the happiest. We also take an expected value over different valuation vectors,
but we could instead have required a mechanism that does the best in the worst
case.

Definition 10.3.13 (Maxmin fairness)A quasilinear mechanism ismaxmin fairmaxmin fairness
when, among the set of functionsx and℘ that satisfy the other constraints, the
mechanism selects thex and℘ that maximizeEv [mini∈N vi(x (s(v))) − ℘i(s(v))],
wheres(v) denotes the agents’ equilibrium strategy profile.

Finally, the mechanism designer might not be able to implement a social-welfare-
maximizing mechanism (e.g., in order to satisfy a tractability constraint) but may
want to get as close as possible. Thus, the goal could be minimizing theprice of an-
archy(see Definition 6.4.11), the worst-case ratio between optimal social welfare

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

288 10 Protocols for Strategic Agents: Mechanism Design

and the social welfare achieved by the given mechanism. Here we also consider
the worst case across agent valuations.

Definition 10.3.14 (Price-of-anarchy minimization) A quasilinear mechanismmin-
imizes the price of anarchywhen, among the set of functionsx and℘ that satisfyprice-of-anarchy

minimization the other constraints, the mechanism selects thex and℘ that minimize

max
v∈V

maxx∈X

∑
i∈N vi(x)∑

i∈N vi (x (s(v)))
,

wheres(v) denotes the agents’ equilibrium strategy profile in theworstequilibrium
of the mechanism—that is, the one in which

∑
i∈N vi(x (s(v))) is the smallest.9

10.4 Efficient mechanisms

Efficiency (Definition 10.3.6) is often considered to be one of the most important
properties for a mechanism to satisfy in the quasilinear setting. For example, when-
ever an inefficient choice is selected, it is possible to find a set of side payments
among the agents with the property that all agents would prefer the efficient choice
in combination with the side payments to the inefficient choice. (Intuitively, the
sum of agents’ valuations for the efficient choice is greater than for the inefficient
choice. Thus, the agents who prefer the efficient choice would still strictly prefer it
even if they had to make side payments to the other agents so that each of them also
strictly preferred the efficient choice.) Consequently, a great deal of research has
considered the design of mechanisms that are guaranteed to select efficient choices
when agents follow dominant or equilibrium strategies. In this section we survey
these mechanisms.

10.4.1 Groves mechanisms

The most important family of efficient mechanisms are the Groves mechanisms.

Definition 10.4.1 (Groves mechanisms)Groves mechanismsare direct quasilin-Groves
mechanism ear mechanisms(x , ℘), for which

x (v̂) = arg max
x

∑

i

v̂i(x),

℘i(v̂) = hi(v̂−i)−
∑

j 6=i

v̂j(x (v̂)).

9. Note that we have to modify this definition along the lines we used in Definition 6.4.11 if∑
i∈N vi(x (s(v))) = 0 is possible.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.4 Efficient mechanisms 289

In other words, Groves mechanisms are direct mechanisms in which agents can
declare any valuation function̂v (and thus any quasilinear utility function̂u). The
mechanism then optimizes its choice assuming that the agents disclosed their true
utility function. An agent is made to pay an arbitrary amounthi(v̂−i) which does
not depend on his own declaration and is paid the sum of every other agent’s de-
clared valuation for the mechanism’s choice. The fact that the mechanism designer
has the freedom to choose thehi functions explains why we refer to thefamily of
Groves mechanisms rather than to a single mechanism.

The remarkable property of Groves mechanisms is that they provide a dominant-
strategy truthful implementation of a social-welfare-maximizing social choice func-
tion. It is easy to see that if a Groves mechanism is dominant-strategy truthful, then
it must be social-welfare-maximizing: the functionx in Definition 10.4.1 performs
exactly the maximization called for by Definition 10.3.6 whenv̂ = v. Thus, it suf-
fices to show the following.

Theorem 10.4.2Truth telling is a dominant strategy under any Groves mechanism.

Proof. Consider a situation where every agentj other thani follows some
arbitrary strategŷvj . Consider agenti’s problem of choosing the best strategy
v̂i. As a shorthand, we writêv = (v̂−i, v̂i). The best strategy fori is one that
solves

max
v̂i

(vi(x (v̂))− ℘(v̂)) .

Substituting in the payment function from the Groves mechanism, we have

max
v̂i

(

vi(x (v̂))− hi(v̂−i) +
∑

j 6=i

v̂j(x (v̂))

)

.

Sincehi(v̂−i) does not depend on̂vi, it is sufficient to solve

max
v̂i

(
vi(x (v̂)) +

∑

j 6=i

v̂j(x (v̂))

)
.

The only way in which the declaration̂vi influences the maximization above
is through the termvi(x (v̂)). If possible,i would like to pick a declaration̂vi

that will lead the mechanism to pick anx ∈ X which solves

max
x

(

vi(x) +
∑

j 6=i

v̂j(x)

)

. (10.1)

The Groves mechanism chooses anx ∈ X as

x (v̂) = arg max
x

(
∑

i

v̂i(x)

)

= arg max
x

(

v̂i(x) +
∑

j 6=i

v̂j(x)

)

.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

290 10 Protocols for Strategic Agents: Mechanism Design

Thus, agenti leads the mechanism to select the choice that he most prefers
by declaringv̂i = vi. Because this argument does not depend in any way
on the declarations of the other agents, truth telling is a dominant strategy for
agenti.

Intuitively, the reason that Groves mechanisms are dominant-strategy truthful is
that agents’ externalities are internalized. Imagine a mechanism in which agents de-
clared their valuations for the different choicesx ∈ X and the mechanism selected
the efficient choice, but in which the mechanism did not impose any payments on
agents. Clearly, agents would be able to change the mechanism’s choice to an-
other that they preferred by overstating their valuation. Under Groves mechanisms,
however, an agent’s utility does not depend only on the selected choice, because
paymentsare imposed. Since agents are paid the (reported) utility of all the other
agents under the chosen allocation, each agent becomes just as interested in maxi-
mizing the other agents’ utilities as in maximizing his own. Thus, once payments
are taken into account, all agents have the same interests.

Groves mechanisms illustrate a property that is generally true of dominant-strategy
truthful mechanisms: an agent’s payment does not depend on the amount of his
own declaration. Although other dominant-strategy truthful mechanisms exist in
the quasilinear setting, the next theorem shows that Groves mechanisms are the
onlymechanisms that implement an efficient allocation in dominant strategies among
agents with arbitrary quasilinear utilities.

Theorem 10.4.3 (Green–Laffont)An efficient social choice functionC : RXn 7→
X × R

n can be implemented in dominant strategies for agents with unrestricted
quasilinear utilities only if℘i(v) = h(v−i)−

∑
j 6=i vj(x (v)).

Proof. From the revelation principle, we can assume thatC is truthfully im-
plementable in dominant strategies. Thus, from the definition of efficiency, the
choice must be selected as

x = arg max
x

∑

i

vi(x)

We can write the payment function as

℘i(v) = h(vi, v−i)−
∑

j 6=i

vj(x (v)).

Observe that we can do this without loss of generality becauseh can be
an arbitrary function that cancels out the second term. Now for contradiction,
assume that there exist somevi andv′i such thath(vi, v−i) 6= h(v′i, v−i).

Case 1: x (vi, v−i) = x (v′i, v−i). SinceC is truthfully implementable in
dominant strategies, an agenti whose true valuation wasvi would be better off

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.4 Efficient mechanisms 291

declaringvi thanv′i:

vi(x (vi, v−i))− ℘i(vi, v−i) ≥ vi(x (v′i, v−i))− ℘i(v
′
i, v−i),

℘i(vi, v−i) ≤ ℘i(v
′
i, v−i).

In the same way, an agenti whose true valuation wasv′i would be better off
declaringv′i thanvi:

v′i(x (v′i, v−i))− ℘i(v
′
i, v−i) ≥ v′i(x (vi, v−i))− ℘i(vi, v−i),

℘i(v
′
i, v−i) ≤ ℘i(vi, v−i).

Thus, we must have

℘i(vi, v−i) = ℘i(v
′
i, v−i),

h(vi, v−i)−
∑

j 6=i

vj(x (vi, v−i)) = h(v′i, v−i)−
∑

j 6=i

vj(x (v′i, v−i)).

We are currently considering the case wherex (vi, v−i) = x (v′i, v−i). Thus
we can write

h(vi, v−i)−
∑

j 6=i

vj(x (vi, v−i)) = h(v′i, v−i)−
∑

j 6=i

vj(x (vi, v−i)),

h(vi, v−i) = h(v′i, v−i).

This is a contradiction.

Case 2:x (vi, v−i) 6= x (v′i, v−i). Without loss of generality, leth(vi, v−i) <
h(v′i, v−i). Since this inequality is strict, there must exist someǫ ∈ R+ such
thath(vi, v−i) < h(v′i, v−i)− ǫ.

Our mechanism must work for everyv. Consider a case wherei’s valuation
is

v′′i (x) =






−∑j 6=i vj(x (vi, v−i)) x = x (vi, v−i);
−∑j 6=i vj(x (v′i, v−i)) + ǫ x = x (v′i, v−i);
−∑j 6=i vj(x)− ǫ for any otherx.

Note that agenti still declares his valuations as real numbers; they just hap-
pen to satisfy the constraints given above. Also note that theǫ used here is
the sameǫ ∈ R+ mentioned earlier. From the fact thatC is truthfully imple-
mentable in dominant strategies, an agenti whose true valuation wasv′′i would
be better off declaringv′′i thanvi:

v′′i (x (v′′i , v−i))− ℘i(v
′′
i , v−i) ≥ v′′i (x (vi, v−i))− ℘i(vi, v−i). (10.2)

Because our mechanism is efficient, it must pick the choice that solves

f = max
x

(

v′′i (x) +
∑

j

vj(x)

)

.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

292 10 Protocols for Strategic Agents: Mechanism Design

Pickingx = x (v′i, v−i) givesf = ǫ; pickingx = x (vi, v−i) givesf = 0,
and any otherx givesf = −ǫ. Therefore, we can conclude that

x (v′′i , v−i) = x (v′i, v−i). (10.3)

Substituting Equation (10.3) into Equation (10.2), we get

v′′i (x (v′i, v−i))− ℘i(v
′′
i , v−i) ≥ v′′i (x (vi, v−i))− ℘i(vi, v−i). (10.4)

Expand Equation (10.4):

(
−
∑

j 6=i

vj(x (v′i, v−i)) + ǫ

)
−
(
h(v′′i , v−i)−

∑

j 6=i

vj(x (v′′i , v−i))

)

≥
(
−
∑

j 6=i

vj(x (vi, v−i))

)
−
(
h(vi, v−i)−

∑

j 6=i

vj(x (vi, v−i))

)
.

(10.5)

We can use Equation (10.3) to replacex (v′′i , v−i) by x (v′i, v−i) on the left-
hand side of Equation (10.5). The sums then cancel out, and the inequality
simplifies to

h(vi, v−i) ≥ h(v′′i , v−i)− ǫ. (10.6)

Sincex (v′′i , v−i) = x (v′i, v−i), by the argument from Case 1 we can show
that

h(v′′i , v−i) = h(v′i, v−i). (10.7)

Substituting Equation (10.7) into Equation (10.6), we get

h(vi, v−i) ≥ h(v′i, v−i)− ǫ.

This contradicts our assumption thath(x (vi, v−i)) < h(x (v′i, v−i))−ǫ. We
have thus shown that there cannot existvi, v

′
i such thath(vi, v−i) 6= h(v′i, v−i).

Although we do not give the proof here, it has also been shown that Groves
mechanisms are unique among Bayes–Nash incentive compatible efficient mecha-
nisms, in a weaker sense. Specifically, any Bayes–Nash incentive compatible effi-
cient mechanism corresponds to a Groves mechanism in the sense that each agent
makes the sameex interimexpected payments and hence has the sameex interim
expected utility under both mechanisms.

10.4.2 The VCG mechanism

So far, we have said nothing about how to set the functionhi in a Groves mech-
anism’s payment function. Here we will discuss the most popular answer, which

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.4 Efficient mechanisms 293

is called the Clarke tax. In the subsequent sections we will discuss some of its
properties, but first we define it.

Definition 10.4.4 (Clarke tax) TheClarke taxsets thehi term in a Groves mech-Clarke tax
anism as

hi(v̂−i) =
∑

j 6=i

v̂j (x (v̂−i)) ,

wherex is the Groves mechanism allocation function.

The resulting Groves mechanism goes by many names. We will see in Chap-
ter 11 that the Vickrey auction (invented in 1961) is a special case; thus, in resource
allocation settings the mechanism is sometimes known as thegeneralized Vickrey
auction. Second, the mechanism is also known as thepivot mechanism; we will
explain the rationale behind this name in a moment. From now on, though, we will
refer to it as theVickrey–Clarke–Groves mechanism(VCG), naming its contribu-Vickrey–Clarke–

Groves (VCG)
mechanism

tors in chronological order of their contributions. We restate the full mechanism
here.

Definition 10.4.5 (Vickrey–Clarke–Groves (VCG) mechanism)TheVCG mech-
anismis a direct quasilinear mechanism(x , ℘), where

x (v̂) = arg max
x

∑

i

v̂i(x),

℘i(v̂) =
∑

j 6=i

v̂j (x (v̂−i))−
∑

j 6=i

v̂j(x (v̂)).

First, note that because the Clarke tax does not depend on an agenti’s own dec-
larationv̂i, our previous arguments that Groves mechanisms are dominant-strategy
truthful and efficient carry over immediately to the VCG mechanism. Now, we try
to provide some intuition about the VCG payment rule. Assume that all agents
follow their dominant strategies and declare their valuations truthfully. The sec-
ond sum in the VCG payment rule pays each agenti the sum of every other agent
j 6= i’s utility for the mechanism’s choice. The first sum charges each agenti the
sum of every other agent’s utility for the choice thatwould have been madehad
i not participated in the mechanism. Thus, each agent is made topay hissocial
cost—the aggregate impact that his participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mecha-
nism? If some agenti does not change the mechanism’s choice by his participation—
that is, if x (v) = x (v−i)—then the two sums in the VCG payment function will
cancel out. The social cost ofi’s participation is zero, and so he has to pay nothing.
In order for an agenti to be made to pay a nonzero amount, he must bepivotal in
the sense that the mechanism’s choicex (v) is different from its choice withouti,
x (v−i). This is why VCG is sometimes called the pivot mechanism—onlypivotal
agents are made to pay. Of course, it is possible that some agents willimprove

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

294 10 Protocols for Strategic Agents: Mechanism Design

other agents’ utilities by participating; such agents will be made to pay a negative
amount, or in other words will be paid by the mechanism.

Let us see an example of how the VCG mechanism works. Recall that Sec-
tion 10.1.2 discussed the problem of buying a shortest path in a transportation net-
work. We will now reconsider that example, and determine what route and what
payments the VCG mechanism would select. For convenience, we reproduce Fig-
ure 10.1 as Figure 10.4, and label the nodes so that we have names to refer to the
agents (the edges).

B
2

1

D

2

A

3

2

F

C

5

3
E

1

Figure 10.4: Transportation network with selfish agents.

Note that in this example, the numbers labeling the edges in the graph denote
agents’ costs rather than utilities; thus, an agent’s utility is−c if a route involving
his edge (having costc) is selected, and zero otherwise. Thearg max in x will
amount to cost minimization. Thus,x (v) will return the shortest path in the graph,
which isABEF .

How much will agents have to pay? First, let us consider the agentAC. The
shortest path taking his declaration into account has a length of 5 and imposes a cost
of −5 on agents other than him (because it does not involve him). Likewise, the
shortest path withoutAC ’s declaration also has a length of 5. Thus, his payment
is pAC = (−5) − (−5) = 0. This is what we expect, sinceAC is not pivotal.
Clearly, by the same argumentBD, CE, CF , andDF will all be made to pay
zero.

Now let us consider the pivotal agents. The shortest path takingAB’s decla-
ration into account has a length of 5, and imposes a cost of 2 on other agents.
The shortest path withoutAB is ACEF , which has a cost of6. ThuspAB =
(−6) − (−2) = −4: AB is paid4 for his participation. Arguing similarly, you
can verify thatpBE = (−6) − (−4) = −2, andpEF = (−7) − (−4) = −3.
Note that althoughEF had the same cost asBE, they are paid different amounts
for the use of their edges. This occurs becauseEF has moremarket power: for
the other agents, the situation withoutEF is worse than the situation withoutBE.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.4 Efficient mechanisms 295

10.4.3 VCG and individual rationality

We have seen that Groves mechanisms are dominant-strategy truthful and efficient.
We have also seen that no other mechanism has both of these properties in general
quasilinear settings. Thus, we might be a bit worried that we have not been able
to guarantee either individual rationality or budget balance, two properties that
are quite important in practice. (Recall that individual rationality means that no
agent would prefer not to participate in the mechanism; budget balance means
that the mechanism does not lose money.) We will consider budget balance in
Section 10.4.6; here we investigate individual rationality.

As it turns out, our worry is well founded: even with the freedom to sethi, we
cannot find a mechanism that guarantees us individual rationality in an unrestricted
quasilinear setting. However, we are often able to guarantee the strongest variety
of individual rationality when the setting satisfies certain mild restrictions.

Definition 10.4.6 (Choice-set monotonicity)An environment exhibitschoice-set
monotonicity if ∀i, X−i ⊆ X (removing any agent weakly decreases—that is,choice-set

monotonicity never increases—the mechanism’s set of possible choicesX).

Definition 10.4.7 (No negative externalities)An environment exhibitsno negative
externalitiesif ∀i∀x ∈ X−i, vi(x) ≥ 0 (every agent has zero or positive utility forno negative

externalities any choice that can be made without his participation).

These assumptions are often quite reasonable, as we illustrate with two exam-
ples. First, consider running VCG to decide whether or not to undertake a public
project such as building a road. In this case, the set of choices is independent of
the number of agents, satisfying choice-set monotonicity. No agent negatively val-
ues the project, though some might value the situation in which the project is not
undertaken more highly than the situation in which it is.

Second, consider a market consisting of a set of agents interested in buying a
single unit of a good such as a share of stock and another set of agents interested in
selling a single unit of this good. The choices in this environment are sets of buyer–
seller pairings. (Prices are imposed through the payment function.) If a new agent
is introduced into the market, no previously existing pairings become infeasible,
but new ones become possible; thus choice-set monotonicity is satisfied. Because
agents have zero utility both for choices that involve trades between other agents
and no trades at all, there are no negative externalities.

Under these restrictions, it turns out that the VCG mechanism ensuresex post
individual rationality.

Theorem 10.4.8The VCG mechanism isex postindividually rational when the
choice-set monotonicity and no negative externalities properties hold.

Proof. All agents truthfully declare their valuations in equilibrium. Then we

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

296 10 Protocols for Strategic Agents: Mechanism Design

can write agenti’s utility as

ui = vi(x (v))−
(
∑

j 6=i

vj(x (v−i))−
∑

j 6=i

vj(x (v))

)

=
∑

j

vj(x (v))−
∑

j 6=i

vj(x (v−i)). (10.8)

We know thatx (v) is the choice that maximizes social welfare, and that this
optimization could have pickedx (v−i) instead (by choice-set monotonicity).
Thus, ∑

j

vj(x (v)) ≥
∑

j

vj(x (v−i)).

Furthermore, from no negative externalities,

vi(x (v−i)) ≥ 0.

Therefore, ∑

i

vi(x (v)) ≥
∑

j 6=i

vj(x (v−i)),

and thus Equation (10.8) is nonnegative.

10.4.4 VCG and weak budget balance

What about weak budget balance, the requirement that the mechanism will not lose
money? Our two previous conditions, choice-set monotonicity and no negative
externalities, are not sufficient to guarantee weak budget balance: for example, the
“buying the shortest path” example given earlier satisfied these two conditions, but
we saw that the VCG mechanism paid out money and did not collect any. Thus,
we will have to explore further restrictions to the quasilinear setting.

Definition 10.4.9 (No single-agent effect)An environment exhibitsno single-
agent effectif ∀i, ∀v−i, ∀x ∈ arg maxy

∑
j vj(y) there exists a choicex′ thatno single-agent

effect is feasible withouti and that has
∑

j 6=i vj(x
′) ≥∑j 6=i vj(x).

In other words, removing any agent does not worsen the total value of the best
solution to the others, regardless of their valuations. For example, this property is
satisfied in a single-sided auction—dropping an agent just reduces the amount of
competition in the auction, making the others better off.

Theorem 10.4.10The VCG mechanism is weakly budget balanced when the no
single-agent effect property holds.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.4 Efficient mechanisms 297

Proof. As before, we start by assuming truth telling in equilibrium. We must
show that the sum of transfers from agents to the center is greater than or equal
to zero.

∑

i

℘i(v) =
∑

i

(
∑

j 6=i

vj(x (v−i))−
∑

j 6=i

vj(x (v))

)

From the no single-agent effect condition we have that

∀i
∑

j 6=i

vj(x (v−i)) ≥
∑

j 6=i

vj(x (v)).

Thus the result follows directly.

Indeed, we can say something more about VCG’s revenue properties: restricting
ourselves to settings in which VCG isex postindividually rational as discussed
earlier, and comparing to all other efficient andex interimIR mechanisms, VCG
turns out to collect the maximal amount of revenue from the agents. This is some-
what surprising, since this result does not require dominant strategies, and hence
compares VCG to all Bayes–Nash mechanisms. A useful corollary of this result
is that VCG is as budget balanced as any efficient mechanism can be: it satisfies
weak budget balance in every case whereanydominant strategy, efficient andex
interim IR mechanism would be able to do so.

10.4.5 Drawbacks of VCG

The VCG mechanism is one of the most powerful positive resultsin mechanism
design: it gives us a general way of constructing dominant-strategy truthful mech-
anisms to implement social-welfare-maximizing social choice functions in quasi-
linear settings. We have seen that no fundamentally different mechanism could do
the same job. And VCG gives us even more: under the right conditions it further
guaranteesex postindividual rationality and weak budget balance. Thus, it is not
surprising that this mechanism has been enormously influential and continues to
be widely studied.

However, despite these attractive properties, VCG also has some undesirable
characteristics. In this section, we survey six of them. Before we go on, how-
ever, we offer a caveat: although there exist mechanisms that circumvent each of
the drawbacks we discuss, none of the drawbacks areuniqueto VCG, or even to
Groves mechanisms. Indeed, in some cases the problems are known to crop up in
extremely broad classes of mechanisms; we cite some arguments to this effect at
the end of the chapter.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

298 10 Protocols for Strategic Agents: Mechanism Design

1. Agents must fully disclose private information

VCG requires agents to fully reveal their private information (e.g., in the transporta-
tion network example, every agent has to tell the mechanism his costs exactly). In
some real-world domains, this private information may have value to agents that
extends beyond the current interaction—for example, the agents may know that
they will compete with each other again in the future. In such settings, it is often
preferable to elicit only as much information from agents as is required to deter-
mine the social welfare maximizing choice and compute the VCG payments. We
discuss this issue further when we come to ascending auctions in Chapter 11.

2. Susceptibility to collusion

Consider a referendum setting in which three agents use the VCG mechanism to
decide between two choices. For example, this mechanism could be useful in
the road-building referendum setting discussed earlier. Table 10.1 shows a set of
valuations and the VCG payments that each agent would be required to make.

We know from Theorem 10.4.2 that no agent can gain by changing his declara-
tion. However, the same cannot be said about groups of agents. It turns out that
groups of colluding agents can achieve higher utility by coordinating their decla-
rations rather than honestly reporting their valuations. For example, Table 10.2
shows that agents 1 and 2 can reduce both of their payments without changing the
mechanism’s decision by both increasing their declared valuations by $50.

Agent U(build road) U(do not build road) Payment

1 200 0 150
2 100 0 50
3 0 250 0

Table 10.1: Valuations for agents in the road-building referendum example.

Agent U(build road) U(do not build road) Payment

1 250 0 100
2 150 0 0
3 0 250 0

Table 10.2: Agents in the road-building referendum can gain by colluding.

3. VCG is not frugal

Consider again the transportation network example that we worked through in Sec-
tion 10.4.2. We saw that the shortest path has a length of 5, the second shortest

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.4 Efficient mechanisms 299

s 1 2 k − 2 k − 1 t· · ·
c
k

c
k

c
k

c
k

c
k

c
k

c(1 + ǫ)

Figure 10.5: A transportation network example for which VCG’s payments are not
even close to the cost of the second disjoint path.

disjoint path has a length of 7, and VCG ends up paying 9. Can we give a bound
on how much more than the agents’ costs VCG can pay? Loosely speaking, mech-
anisms whose payments are small by such a measure are calledfrugal.frugal

mechanism Before deciding whether VCG is frugal, we must determine what kind of bound
to look for. We might want VCG to pay an amount similar to the agents’ true costs.
However, even in the simplest possible network it is easy to see that this is not
possible. Consider a graph where there are only two paths, each owned by a single
agent. In this case VCG selects the shortest path and pays the cost of the longer
path, no matter how much longer it is.

It might seem more promising to hope that VCG’s payments would be at least
close to the cost of thesecondshortest disjoint path. Indeed, in our two-agent
example this is always exactly what VCG pays. However, now consider a different
graph that has two paths as illustrated in Figure 10.5. The top path involvesk
agents, each of whom has a cost ofc

k
; thus, the path has a total cost ofc. The lower

path involves a single agent with a cost ofc(1 + ǫ). VCG would select the path
with costc, and pay each of thek agentsc(1 + ǫ)− (k− 1) c

k
. Hence VCG’s total

payment would bec(1 + kǫ). For fixedǫ, this means that VCG’s payment isΘ(k)
times the cost of the second shortest disjoint path. Thus VCG is said not to be a
frugal mechanism.

4. Dropping bidders can increase revenue

Now we will considerrevenue monotonicity: the property that a mechanism’s rev-revenue
monotonicity enue always weakly increases as agents are added to the mechanism. Although it

may seem intuitive that having more agents should never mean less revenue, in fact
VCG does not satisfy this property. To see why, let us return to the road-building
example.

Consider the new valuations given in Table 10.3. Observe that the social-welfare-
maximizing choice is to build the road. Agent 2 is pivotal and so would be made to
pay 90, his social cost. Now see what happens when we add a third agent, as shown
in Table 10.4. Again, VCG would decide that the road should be built. However,
since in this second case the choice does not change wheneitherwinning agent is
dropped, neither of them is made to pay anything, and so the mechanism collects

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

300 10 Protocols for Strategic Agents: Mechanism Design

Agent U(build road) U(do not build road) Payment

1 0 90 0
2 100 0 90

Table 10.3: Valuations for agents in the road-building referendum example.

Agent U(build road) U(do not build road) Payment

1 0 90 0
2 100 0 0
3 100 0 0

Table 10.4: Adding agent 3 causes VCG to select the same choice but to collect
zero revenue.

zero revenue. Observe that the road-building referendum problem satisfies the “no
single-agent effect” property; thus revenue monotonicity can fail even when the
mechanism is guaranteed to be weakly budget balanced.

The fact that VCG is not revenue monotonic can also be understood as a strategic
opportunity for agent 2, in the setting where agent 3 does not exist. Specifically,
agent 2 can reduce his payment to zero if he is able to participate in the mechanism
under multiple identities, submitting valuations both as himself and as agent 3.
(This assumption might be reasonable, for example, if the mechanism is executed
over the Internet.) Note that this strategy is not without its risks, however: for
example, if agent 1’s valuation were 150, both of agent 2’s identities would be
pivotal and so agent 2 would end up paying more than his true valuation.

5. Cannot return all revenue to the agents

In a setting such as this road-building example, we may want to use VCG to induce
agents to report their valuations honestly, but may not want to make a profit by col-
lecting money from the agents. In our example this might be true if the referendum
was held by a government interested only in maximizing social welfare. Thus,
we would want to find some way of returning the mechanism’s profits back to the
agents—that is, we would want a (strictly) budget-balanced mechanism rather than
a weakly budget-balanced one. This turns out to be surprisingly hard to achieve,
even when the “no single-agent effect” property holds, because the possibility of
receiving a rebate after the mechanism has been run changes the agents’ incentives.
In fact, even if profits are given to a charity that the agents care about, or spent
in a way that benefits the local economy and hence benefits the agents, the VCG
mechanism can be undermined. This having been said, itis possible to return at
least some of the revenues to the agents, although this must be done carefully. We

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.4 Efficient mechanisms 301

give pointers to the relevant literature at the end of the chapter.

6. Computational intractability

Finally, even when there are no problemsin principle with using VCG, there can
still be practical obstacles. Perhaps the biggest such problem is that efficient mech-
anisms can require unreasonable amounts of computation: evaluating thearg max
can require solving an NP-hard problem in many practical domains. Thus, VCG
can fail to satisfy thetractability property (Definition 10.3.10). This problem is
not just theoretical: we present important examples in which VCG is intractable in
Sections 11.2.3 and 11.3.2. In Section 10.5 below, we consider some alternatives
to VCG for use in such settings.

10.4.6 Budget balance and efficiency

In Section 10.4.4 we identified a realistic case in which the VCG mechanism is
weakly budget balanced. However, we also noted that there exist other important
and practical settings in which the no single-agent effect property does not hold.
For example, define asimple exchangeas an environment consisting of buyers andsimple exchange
sellers with quasilinear utility functions, all interested in trading a single identical
unit of some good. The no single-agent effect property is not satisfied in a simple
exchange because dropping a seller could make some buyer worse off and vice
versa. Can we find some other argument to show that VCG will remain budget
balanced in this important setting?

It turns out that neither VCG nor any other Groves mechanism is budget bal-
anced in the simple exchange setting. (Recall Theorem 10.4.3, which showed that
only Groves mechanisms are both dominant-strategy incentive-compatible and ef-
ficient.)

Theorem 10.4.11 (Green–Laffont; Hurwicz) No dominant-strategy incentive-compatible
mechanism is always both efficient and weakly budget balanced, even if agents are
restricted to the simple exchange setting.

Furthermore, another seminal result showed that a similar problem arises in the
broader class of Bayes–Nash incentive-compatible mechanisms (which, recall, in-
cludes the class of dominant-strategy incentive-compatible mechanisms) if we also
requireex interimindividual rationality and allow general quasilinear utility func-
tions.

Theorem 10.4.12 (Myerson–Satterthwaite)No Bayes–Nash incentive-compatible
mechanism is always simultaneously efficient, weakly budget balanced, andex in-
terim individually rational, even if agents are restricted to quasilinear utility func-
tions.

On the other hand, it turns out that itis possible to design a Bayes–Nash incentive
compatible mechanism that achieves any two of these three properties.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

302 10 Protocols for Strategic Agents: Mechanism Design

10.4.7 The AGV mechanism

Of particular interest is the AGV mechanism, which trades away ex interimindi-
vidual rationality and dominant strategies in exchange for budget balance andex
anteindividual rationality.

Definition 10.4.13 (Arrow; d’Aspremont–Gérard-Varet (AGV) mechanism) The
Arrow; d’Aspremont–Gérard-Varet mechanism(AGV) is a direct quasilinear mech-Arrow;

d’Aspremont–
Gérard-Varet
(AGV)
mechanism

anism(x , ℘), where

x (v̂) = arg max
x

∑

i

v̂i(x),

℘i(v̂) =

(
1

n− 1

∑

j 6=i

ESW−j(v̂j)

)

− ESW−i(v̂i),

ESW−i(v̂i) = Ev−i

[
∑

j 6=i

vj (x (v̂i, v−i))

]

.

ESW (standing for “expected social welfare”) is an intermediateterm that is
used to make the definition of℘more concise. Observe that AGV’s allocation rule
is the same as under Groves mechanisms. Although we will not prove this or any
of the other properties we mention here, AGV is incentive compatible, from which
we can conclude that it is also efficient. Again like Groves mechanisms, each agent
i is given a payment reflecting the other agents’ valuations forthe choice selected
given his declaration. While in Groves mechanisms this calculation used−i’s
declared valuations, however, AGV computes−i’s ex anteexpected social welfare
giveni’s declaration. The rest of the payment is computed very differently than it
is under VCG: each agent is charged a1

n−1
share of the payments made to each

of the other agents. This guarantees that the mechanism is budget balanced (i.e.,
that it always collects from the agents exactly the total amount that it pays back to
them). Two sacrifices are made in exchange for this property: AGV is truthful only
in Bayes–Nash equilibrium rather than in dominant strategies and is onlyex ante
individually rational.

The AGV mechanism illustrates two senses in which we can discover new, use-
ful mechanisms by relaxing properties that we had previously insisted on. First,
our move from dominant-strategy incentive compatibility to Bayes–Nash incen-
tive compatibility allowed us to circumvent Theorem 10.4.3, which told us that
efficiency can be achieved under dominant strategies only by Groves mechanisms.
(AGV is also efficient, but is not a Groves mechanism.) Second, moving fromex
interim to ex anteindividual rationality is sufficient to get around the negative re-
sult from Theorem 10.4.12, that we cannot simultaneously achieve weak budget
balance, efficiency, andex interimindividual rationality, even under Bayes–Nash
equilibrium.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.5 Beyond efficiency 303

10.5 Beyond efficiency

Throughout our consideration of the quasilinear setting in this chapter we have
so far focused on efficient mechanisms. As we discussed in Section 10.4.5, effi-
cient choice rules can require unreasonable amounts of computation, and hence
both Groves mechanisms and AGV can fail to satisfy thetractability property. In
this section we consider two ways of addressing this issue. The first is to explore
dominant-strategy mechanisms that implement different social choice functions.
We have already seen that the quasilinear preference setting is considerably more
amenable to dominant strategy implementation than the unrestricted preferences
setting. However, there are still limits—what are they? Second, we will examine
an alternate way of building mechanisms, by using a Groves payment rule with
an alternate choice function, and leveraging agents’ computational limitations in
order to achieve the implementation.

10.5.1 What else can be implemented in dominant strategies?

Here we give some characterizations of the social choice functions that can be im-
plemented in dominant strategies in the quasilinear setting and of how payments
must be constrained in order to enable such implementations. As always, the reve-
lation principle allows us to restrict ourselves to truthful mechanisms without loss
of generality. We also restrict ourselves todeterministicmechanisms: this restric-
tion does turn out to be substantive.

Let Xi(v̂−i) ⊆ X denote the set of choices that can be selected by the choice rule
x given the declaration̂v−i by the agents other thani (i.e., the range ofx (·, v̂−i)).
Now we can state conditions that are both necessary and sufficient for dominant-
strategy truthfulness that are both intuitive and useful.

Theorem 10.5.1A direct, deterministic mechanism is dominant-strategy incentive-
compatible if and only if, for everyi ∈ N and everŷv−i ∈ V−i:

1. The payment function℘i(v̂) can be written as℘i(v̂−i, x (v̂));

2. For everyv̂i ∈ Vi, x (v̂i, v̂−i) ∈ arg maxx∈Xi(v̂−i)
(v̂i(x)− ℘i(v̂−i, x)).

The first condition says that an agent’s payment can only depend on other agents’
declarations and the selected choice; itcannotdepend otherwise on the agent’s own
declaration. The second condition says that, taking the other agent’s declarations
and the payment function into account, from every player’s point of view the mech-
anism selects the most preferable choice. This result is not very difficult to prove;
the interested reader is encouraged to try.

As the above characterization suggests, there is a tight connection between the
choice rules and payment rules of dominant-strategy truthful mechanisms. In fact,
under reasonable assumptions about the valuation space, once a choice rule is cho-
sen, all possible payment rules differ only in their choice of a functionhi(v̂−i) that
is added to the rest of the payment. We already saw an example of this with the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

304 10 Protocols for Strategic Agents: Mechanism Design

Groves family of mechanisms: these mechanisms share the same choice rule, and
their payment rules differ only in a constanthi(v̂−i).

Given this strong link between choice rules and payment rules, it is interesting
to characterize a set ofchoice rulesthat can be implemented in dominant strate-
gies, without reference to payments. Here we will consider such a characterization,
though in general it turns out only to offer anecessarycondition for dominant-
strategy truthfulness.

Definition 10.5.2 (WMON) A social choice functionC satisfiesweak monotonic-
ity (WMON) if for all i ∈ N and allv−i ∈ V−i, C(vi, v−i) 6= C(v′i, v−i) impliesweak

monotonicity
(WMON)

thatvi(C(vi, v−i))− vi(C(v′i, v−i)) ≥ v′i(C(vi, v−i))− v′i(C(v′i, v−i)).

In words, WMON says that any time the choice function’s decision can be al-
tered by a single agent changing his declaration, it must be the case that this change
expressed a relative increase in preference for the new choice over the old choice.

Theorem 10.5.3All social choice functions implementable by deterministic dominant-
strategy incentive-compatible mechanisms in quasilinear settings satisfy WMON.
Furthermore, letC be an arbitrary social choice functionC : V1×· · ·×Vn 7→ X
satisfying WMON and having the property that∀i ∈ N , Vi is a convex set. Then
C can be implemented in dominant strategies.

Although Theorem 10.5.3 does not provide a full characterization of those so-
cial choice functions that can be implemented in dominant strategies, it gets pretty
close—the convexity restriction is often acceptable. A bigger problem is that
WMON is a local characterization, speaking about how the mechanism treats each
agent individually. It would be desirable to have a global characterization that gave
the social choice function directly. This also turns out to be possible.

Definition 10.5.4 (Affine maximizer) A social choice function is anaffine maxi-
mizer if it has the formaffine maximizer

arg max
x∈X

(
γx +

∑

i∈N

wivi(x)

)
,

where eachγx is an arbitrary constant (may be−∞) and eachwi ∈ R+.

In the case of general quasilinear preferences (i.e., when each agent can have
any valuation for each choicex ∈ X) and where the choice function selects from
more than two alternatives, affine maximizers turn out to be the only social choice
functions implementable in dominant strategies.

Theorem 10.5.5 (Roberts)If there are at least three choices that a social choice
function will select given some input, and if agents have general quasilinear pref-
erences, then the set of (deterministic) social choice functions implementable in
dominant strategies is precisely the set of affine maximizers.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.5 Beyond efficiency 305

Note that efficiency is an affine-maximizing social choice function for which
∀x ∈ X, γx = 0 and∀i ∈ N,wi = 1. Indeed, affine maximizing mechanisms
can be seen as weighted Groves mechanisms—they transform both the choices
and the agents’ valuations by applying linear weights, and then effectively run a
Groves mechanism in the transformed space. Thus, Theorem 10.5.5 says that we
cannot stray very far from Groves mechanisms even if we are willing to give up on
efficiency.

Is this the end of the story on dominant-strategy implementation in quasilinear
settings? Not quite. It turns out that the assumption that agents have general quasi-
linear preferences is a strong one, and does not hold in many domains of interest.
As another extreme, we can considersingle-parameter valuations: each agentisingle-parameter

valuation partitions the set of choicesX into a setXi,wins in which i “wins” and receives
some constant payoffvi that does not depend on the choicex ∈ Xi,wins, and a set
of choicesXi,loses = X \ Xi,wins in which i “loses” and receives zero payoff.10

Importantly, the setsXi,wins andXi,loses are assumed to be common knowledge,
and so the agent’s private information can be summarized by a single parameter,vi.
Such settings are quite practical: we will see several that satisfy these conditions in
Chapter 11. Single-parameter settings are interesting because for such preferences,
it is possible to go well beyond affine maximizers. In fact, additional characteriza-
tions exist describing the social choice functions that can be implemented in this
and other restricted-preference settings. We will not describe them here, instead
referring interested readers to the works cited at the end of the chapter. However,
we do present a dominant-strategy incentive-compatible, non-affine-maximizing
mechanism for a single-parameter setting in Section 11.3.5.

10.5.2 Tractable Groves mechanisms

Now we consider a general approach that attempts to implementtractable, inef-
ficient social choice functions by sticking with Groves mechanisms, but replac-
ing the (possibly exponential-time) computation of thearg max with some other
polynomial-time algorithm. The very clever idea here is not to build mechanisms
that are impossible to manipulate (indeed, in many cases it can be shown that this
cannot be done), but rather to build mechanisms that agents will be unable to ma-
nipulate in practice, given their computational limitations.

First, we define the class of mechanisms being considered.

Definition 10.5.6 (Groves-based mechanisms)Groves-based mechanismsare di-Groves-based
mechanism rect quasilinear mechanisms(x , ℘), for which

x (v̂) is an arbitrary function mapping type declarations to choices; and

℘i(v̂) = hi(v̂−i)−
∑

j 6=i

v̂j(x (v̂)).

10. The assumption that this second payoff is zero can be understood as a normalization and does not change
the set of social choice functions that can be implemented.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

306 10 Protocols for Strategic Agents: Mechanism Design

That is, a mechanism is Groves based if it uses the Groves payment function,
regardless of what allocation function it uses. (Contrast Definition 10.5.6 with
Definition 10.4.1, which defined a Groves mechanism.)

Most interesting Groves-based mechanisms are not dominant-strategy truthful.
For example, consider a property sometimes calledreasonableness: if there exists
some goodg that only one agenti values above zero,g should be allocated toi. It
can be shown that the only dominant-strategy truthful Groves-based mechanisms
that satisfy reasonableness are the Groves mechanisms themselves. This rules out
the use of most greedy algorithms as candidates for the allocation functionx in
truthful Groves-based mechanisms, as most such algorithms would select “reason-
able” allocations.

If tractable Groves-based mechanisms lose the all-important property of dominant-
strategy truthfulness, why are they still interesting? The proof of Theorem 10.4.2
essentially argued that the Groves payment function aligns agents’ utilities, mak-
ing all agents prefer the optimal allocation. Groves-based mechanisms still have
this property, but may not select the optimal allocation. We can conclude that the
only way an agent can gain by lying to a Groves-based mechanism is tohelp it by
causing it to select a more efficient allocation.

We now come to the idea of a second-chance mechanism. Intuitively, since lies
by agents can only help the mechanism, the mechanism can simply ask the agents
how they intend to lie and select a choice that would be picked because of such a lie
if it turns out to be better than what the mechanism would have picked otherwise.

Definition 10.5.7 (Second-chance mechanisms)Given a Groves-based mechanism
(x , ℘), a second-chance mechanismworks as follows:second-chance

mechanism
1. Each agenti is asked to submit a valuation declarationv̂i ∈ Vi and anappeal

functionl : V 7→ V .appeal function

2. The mechanism computesx (v̂), and alsox (li(v̂)) for all i ∈ N . From the set
of choices thus identified, the mechanism keeps one that maximizes the sum of
agents’ declared valuations

3. The mechanism charges each agenti ℘(v̂).

Intuitively, an appeal function maps agents’ valuations to valuations that they
might instead have chosen to report by lying. It is important that the appeal func-
tions be computationally bounded (e.g., their execution could be time limited). Oth-
erwise, these functions can solve the social welfare maximization problem and then
select an input that would causex to select this choice. When appeal functions are
computationally restricted, we cannot in general say that second-chance mecha-
nisms are truthful. However, they arefeasibly truthful, because an agent can usefeasibly truthful
the appeal function to try out any lie that he believes might help him. Thus in a
second-chance mechanism, a computationally limited agent can do no better than
to declare his true valuation along with the best appeal function he is able to con-
struct.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.6 Computational applications of mechanism design 307

10.6 Computational applications of mechanism design

We now survey some applications of mechanism design, to give a sense of some
more recent work that has drawn on the theory we have described so far. How-
ever, we must offer two caveats. First, we speak here only aboutcomputational
applications of mechanism design, by which we mean mechanisms that contain an
interesting computational ingredient and/or mechanisms applied to computational
domains (e.g., computer networks). Thus we skip over some highly influential
applications from economics, such as theories of taxation, government regulation,
and corporate finance. Second, without a doubt the most significant application of
mechanism design—computational or not—is the design and analysis of auctions.
Because there is so much to say about this application, we defer its discussion to
Chapter 11.

Some of the mechanism design applications we discuss in this section are ex-
amples of so-calledalgorithmic mechanism design. This term describes settingsalgorithmic

mechanism
design

in which a center wants to solve an optimization problem, but the inputs to this
problem are the private information of self-interested agents. The center must thus
design a mechanism that solves the optimization while inducing the agents to re-
veal their information truthfully. Observe that this setting does not really describe
a different problem from classical mechanism design, though it does adopt a differ-
ent perspective. It also tends to describe work that has a somewhat different flavor,
often emphasizing approximation algorithms and worst-case analysis.

10.6.1 Task scheduling

One problem that has been well studied in the context of algorithmic mechanism
design is that of task scheduling. Considern agents who can perform tasks and
a setT tasks that must be allocated. Each agenti’s type ti is a vector, giving the
minimum amount of timeti,j in which i can perform each taskj. The center’s
goal is to minimize the completion time of the last task, called themakespan. Amakespan
choicex by the mechanism is an allocation of each task to some agent; agents must
perform the tasks they are assigned. Letx(i, j) equal 1 if an agenti is assigned
taskj, and zero otherwise. Note that some agents may be given more than one
task and some may not be given a task at all. The mechanism is able toverify the
agents’ work, observing the true amount of time it took an agent to complete his
tasks. We write the true amount of timei spent on taskj ast̃i,j ; of coursẽti,j must
always be greater than or equal toti,j . An agenti’s valuation for a choicex by the
mechanism is−∑j∈T x(i, j)t̃i,j , the sum of the true amounts of time he spends
on his assigned tasks. Of course, an agenti can lie about the amount of time it will
take him to perform a task. We denote the tuple of all agents’ declarations ast̂.

The task scheduling problem cannot be solved with a Groves mechanism. While
such a mechanism would indeed provide agents with dominant strategies for truth-
fully revealing their types, it would choose the wrong allocation, maximizing the
sum of agents’ welfare rather than minimizing the makespan. Indeed, note that

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

308 10 Protocols for Strategic Agents: Mechanism Design

makespan is like a worst-case version of social welfare: it measures the unhappi-
ness of the unhappiest agent, and ignores the other agents completely. Another
family of mechanisms does work for solving the task allocation scheduling prob-
lem. These mechanisms can be understood as generalizing Groves mechanisms to
objective functions other than social welfare.

Definition 10.6.1 (Compensation and penalty mechanisms)Compensation and
penalty mechanismsare quasilinear mechanisms(x , ℘), for whichcompensation

and penalty
mechanism

x (t̂) = arg min
x

(
max
i∈N

∑

j∈T

x(i, j)t̂i,j

)

℘i(t̂) = hi(t̂−i)−
∑

j∈T

x(i, j)t̃i,j + max

{∑

j∈T

x(i, j)t̃i,j , max
i′ 6=i∈N

∑

j∈T

x(i′, j)t̂i′,j

}
.

Thus, the mechanism selects the choice that minimizes makespan, given the
agents’ declarations. What types should agents declare? Should agents solve tasks
as quickly as possible, or can they increase their utilities by taking longer? An
answer is given by the following theorem.

Theorem 10.6.2Compensation and penalty mechanisms are dominant-strategy in-
centive compatible: agents choose to complete their tasks as quickly as possible
(t̃i,j = ti,j) and to report these completion times truthfully (t̂i,j = ti,j).

Proof. The first term in the payment function℘i, hi(t̂−i), does not depend on
i’s declaration. Thus it does not affecti’s incentives, and so we can disregard
it.

The rest of℘i consists of two terms. The second term is a payment to agent
i equal to his true cost for his assigned tasks. This payment exactly compen-
satesi for any tasks he was assigned, making him indifferent betweenall task
assignments regardless of how long he spent completing his tasks.

The third term of℘i is a penalty to i in the amount of the mechanism’s
objective function, except thati’s actual task completion time is used instead
of his declared time. The strategic problem fori is thus to choose thẽt andt̂
that will lead the mechanism to select thex that makes this penalty as small
as possible. By choosing̃ti,j > ti,j , i does not influencex (this depends only
on t̂i,j) and can only increase his penalty.t̃i,j < ti,j is impossible, and so
it is a dominant strategy fori to choosẽti,j = ti,j . If i declareŝti,j > ti,j ,
then he can only increase the makespan and hence his penalty, by making the
mechanism allocate tasks suboptimally to the other agents. Ifi declareŝti,j <
ti,j , he can reduce the makespan; however, he cannot reduce his penalty since
it depends oñti,j rather than̂ti,j . In this case he still canincreasehis penalty
by causing the mechanism to allocate tasks suboptimally. Thus,i’s dominant
strategy is to declarêti,j = ti,j .

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.6 Computational applications of mechanism design 309

Observe that it is important that the mechanism can verify the amount of time
an agent took to complete the task. If this were not the case, the agent could under-
report his completion time, driving down the makespan and hence reducing his own
penalty. Note also that these mechanisms really do generalize Groves mechanisms:
if we replace the mechanism’s objective function (inx and the third term of℘)
with social welfare, we recover Groves.

While compensation and penalty mechanisms are truthful even withhi = 0, they
are not individually rational, as an agent’s utility is always simply the negative of
his penalty, and this penalty is always positive. However, we can regain individual
rationality in the same way as we did in moving from Groves mechanisms to VCG.
Specifically, we can sethi to be the mechanism’s objective function wheni does
not participate,

hi(t̂−i) = min
x

(
max

i′ 6=i∈N

∑

j∈T

x(i′, j)t̂i′,j

)
.

Now hi will always be greater than or equal toi’s penalty, because the makespan
is guaranteed to weakly increase if we omiti. This ensures thati never loses by
participating in the mechanism.

As we indicated at the beginning of the section, work on algorithmic mecha-
nism design often focuses on the use of approximation algorithms. Such an ap-
proach is sensible for the task scheduling problem because finding the makespan-
minimizing allocation (x(t̂) in compensation and penalty mechanisms) is an NP-
hard problem, whereas approximation algorithms can run in polynomial time. Al-
though we do not go into the details here, there is a whole constellation of results
about what approximation bounds are achievable by which variety of dominant-
strategy approximation-algorithm-based mechanism, under what assumptions (e.g.,
verification possible or not; restrictions on valuations). For example, in the case
without verification no deterministic mechanism based on an approximation al-
gorithm can achieve better than a 2-approximation; this bound is tight for the 2
agent case. On the other hand, randomized mechanisms can do better, achieving a
1.75-approximation. More details are available in the paper cited at the end of the
chapter.

10.6.2 Bandwidth allocation in computer networks

When designing a computer network, the network operator wants to ensure that the
most important network traffic gets the best performance and/or that some fairness
criterion is satisfied. However, optimizing traffic in this way is difficult because the
network operator does not know the users’ tasks or how important they are. Thus,
the network operator faces a mechanism design problem. Although much more
elaborate settings have been studied (see the notes at the end of the chapter), in
this section we will consider the problem of allocating the capacity of a single link
in a network. The reason that this problem is still tricky is that the bandwidth of

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

310 10 Protocols for Strategic Agents: Mechanism Design

a link is not allocated all-or-nothing to a single buyer, as it was in our example at
the beginning of the chapter (Section 10.1.2). Instead, the link has a real-valued
capacity that can be divided arbitrarily between the agents. Thus, even this simple
problem considers an choice spaceX that is uncountably infinite, and valuation
functions that can be understood as continuous “demand curves.”

Formally, consider a domain withN users who want to use a network resource
with capacityC ∈ R+. Each user has a valuation functionvi : R+ 7→ R ex-
pressing his happiness for being allocated any nonnegative amount of capacitydi.
We will assume throughout that this functionvi is concave, strictly increasing, and
continuous.11

We will begin by considering a particular mechanism that has been widely stud-
ied: theproportional allocation mechanism. This is a quasilinear mechanism inproportional

allocation
mechanism

which agents are invited to specify a single valuewi ∈ R+. The mechanism in-
terprets each valuewi as the payment that useri offers to make to the network. In
order to determine the amount of capacity that each user will receive, we start from
the assumption that each user must be charged for his use of the resource at the
same rate,µ. Assuming that the network operator wants to allocate all capacity,
we can then calculate this rate uniquely asµ =

∑
i
wi

C
, implying that each agenti

receives the allocationdi = wi

µ
.

Unlike most of the mechanisms discussed in this chapter, the proportional al-
location mechanism is not direct. However, this is one of its attractive qualities.
Even under our assumptions of concavity, continuity, and monotonicity, an agent’s
valuation function can be arbitrarily complex. In a real network system, it would
defeat the purpose of an allocation mechanism to allow agents to communicate a
great deal of information about their valuation functions—the whole idea is to al-
locate bandwidth efficiently. Since the proportional allocation mechanism requires
each agent to declare only a single real number, its proponents have argued that it
is practical and have even gone so far as to describe ways that it could be added to
existing (e.g., TCP/IP) network architectures.

A more serious concern is that the proportional allocation mechanism appears
strategically complex, since agents can affect their payments (rather than just their
allocations) by changing their declarations. Nevertheless, there are a number of
interesting things that we can say about the mechanism. First, let us set aside our
usual game-theoretic assumption that agents play best responses to each other and
to the rules of the mechanism. Instead, let us assume that agents areprice takers:price taker
that they consider the rateµ to be fixed and that they select the best declarations
wi given µ. (In fact, an agent’s declarationwi is used in the calculation ofµ;
thus, we assume that agents disregard this connection.) Given this assumption,
it is interesting to ask whether allocations chosen by our mechanism constitute a
competitive equilibrium(Definition 2.3.4). Formally, a declaration profilew andcompetitive

equilibrium rateµ constitute a competitive equilibrium if eachwi maximizesi’s quasilinear

11. Furthermore, it is necessary to make some differentiability assumptions about the valuation functions;
for details see the references cited at the end of the chapter.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.6 Computational applications of mechanism design 311

valuationvi(
wi

µ
) − wi, and if µ =

∑
i
wi

C
. It is possible to prove the following

result.

Theorem 10.6.3Givenn agents with valuation functions(v1, . . . , vn) and a re-
source with capacityC > 0, there exists a competitive equilibrium(w,µ) of the
proportional allocation mechanism. Furthermore, the allocation is efficient: the
choicesdi = wi

µ
maximize the social welfare

∑
i vi(di) − wi subject to capacity

constraints.

Thus, given price-taking agents, full efficiency can be achieved by the propor-
tional allocation mechanism, even though it only elicits a single scalar value from
each agent.

Now, let us return to the more standard game-theoretic setting, in which agents
take into account their abilities to affectµ through their own declarations. Thus,
our solution concept shifts from the competitive equilibrium to the Nash equilib-
rium. It is possible to show that a Nash equilibrium exists12 and that it is unique.
How does this Nash equilibrium compare to the competitive equilibrium described
in Theorem 10.6.3? The natural way to formalize this question is to ask what frac-
tion of the social welfare achieved in the competitive equilibrium is also achieved
in the Nash equilibrium. When we ask how small this fraction becomes in the
worst case, we arrive precisely at the notion of minimizing theprice of anarchyprice of anarchy
(see Definition 10.3.14; recall also our previous use of the price of anarchy in the
context of “selfish routing” in Section 6.4.5).

Theorem 10.6.4Letn ≥ 2, letdCE be an allocation profile achievable in compet-
itive equilibrium and letdNE be the unique allocation profile achievable in Nash
equilibrium. Then any profile of valuation functionsv for which ∀i, vi(0) ≥ 0
satisfies ∑

i

vi(d
NE
i) ≥ 3

4

∑

i

vi(d
CE
i).

In other words, the price of anarchy is4
3
; in the worst case, the Nash equilibrium

achieves 25% less efficiency than the competitive equilibrium. While it is always
disappointing not to achieve full efficiency, this result should be understood as
good news. Even in the worst case, strategic behavior by agents will only cause a
small reduction in social welfare.

So far, we have analyzed a given mechanism rather than showing that this mech-
anism optimizes some objective function. However, the proportional allocation
mechanism can indeed be justified in this way. Specifically, it achieves minimal
price of anarchy, as compared to a broad family of mechanisms in which agents’
declarations are a single scalar and the mechanism charges all users the same rate.
We do not state this result formally here, as the precise definition of the family of
mechanisms is quite technical; instead, we refer the reader to the references cited

12. In settings with continuous action spaces, the existence of Nash equilibrium is not guaranteed.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

312 10 Protocols for Strategic Agents: Mechanism Design

at the end of the chapter. We also note that when the setting is relaxed so that
users still submit only a single scalar but the mechanism is allowed to charge dif-
ferent users at different rates, a VCG-like mechanism can be used to achieve full
efficiency.

10.6.3 Multicast cost sharing

Consider the problem of streaming media (e.g., a television broadcast) over a dig-
ital network. If this information is sent naively (e.g., using the TCP/IP protocol),
then each user establishes a separate connection with the server and the same infor-
mation may be sent many times over the same network links. This approach can
easily overwhelm a link’s capacity. A more sensible alternative ismulticast routing,multicast

routing in which information is sent only once across each link, and it is replicated onto
multiple outgoing links where necessary. Besides saving bandwidth, this approach
can also make more economic sense. For example, individual users sharing a satel-
lite link might not be willing to pay the full cost of receiving a high-bandwidth
video stream, but could be willing to split the cost among themselves. Such a sys-
tem faces the problem ofmulticast cost sharing: given a set of users with differentmulticast cost

sharing values for receiving the transmission and a network with costly links, who should
receive the transmission and how much should they each pay? This is a mechanism
design problem.

Formally, consider an undirected graph with nodesN (a set of agents) and links
L. Each linkl ∈ L has a costc(l) ≥ 0. One of the agents,α0 ∈ N is the source
of the transmission; there is also a set of agentsN∗ ⊆ N who are interested in
receiving it. Eachi ∈ N∗ values the transmission atvi > 0.

Our goal is to find a cost-sharing mechanism, a direct quasilinear mechanism
(x , ℘) that receives declarationŝvi of each agenti’s utility and determines which
agents will receive the transmission and how much they will pay. The functionx

determines a set of usersS ⊆ N∗ who will receive the transmission. In order to
do so, we must find amulticast routing treeT (S) ⊆ L rooted atα0 that spansS.multicast

routing tree We make a monotonicity assumption about the algorithm used to findT (S),

S1 ⊆ S2 ⇒ T (S1) ⊆ T (S2).

The mechanism also includes a payment function℘ that ensures that the agents
in S share the costs of the links inT (S). We denote the payment collected from
i ∈ S aspi. We assume that the mechanism is computed by trusted hardware in
the network (e.g., the routers); however, we will be concerned with communication
complexity, and hence will look for ways that this computation can be distributed
throughout the system.

Ideally, we would like a cost-sharing mechanism to be dominant-strategy incen-
tive compatible, budget balanced, and efficient. However, we have already seen
(Theorem 10.4.11) that such mechanisms do not exist. Thus, we will consider
mechanisms that achieve two of these properties and relax the third.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.6 Computational applications of mechanism design 313

Truthful and budget balanced: The Shapley value mechanism

First, we will describe a dominant-strategy truthful mechanism that achieves bud-
get balance at the expense of efficiency. Intuitively, this mechanism is built around
the idea that the cost of a link should be divided equally among the agents that use
it. Its name comes from the fact that this objective can be seen as a special case of
the Shapley value from coalitional game theory (see Section 12.2.1). We describe
a centralized version of the mechanism in Figure 10.6.

S ← N∗ // assume that every agent will receive the transmission
repeat

Find the multicast routing treeT (S)
Compute paymentspi such that each agenti pays an equal share of the
cost for every link inT ({i})
foreach i ∈ S do

if v̂i < pi then S ← S \ {i} // i is dropped fromS

until no agents were dropped fromS

Figure 10.6: An algorithm for computing the allocation and payments for the Shap-
ley value mechanism.

To see why this algorithm leads to a dominant-strategy truthful mechanism, ob-
serve that the payments are “cross-monotonic.” This means that each agent’s pay-
ment can only increase when another agent is dropped, and hence that an agent’s
incentives are not affected by the order in which agents are dropped by the algo-
rithm. That is, if the payment that the mechanism would charge an agenti given a
set of other agentsS exceedsi’s utility, then i’s payment is guaranteed to exceed
his utility for all subsets of the other agentsS′ ⊂ S. Since we only drop agents
when their proposed payments exceed their utilities, the order in which we drop
them is unimportant. Because we can drop agents “greedily” (i.e., without having
to consider the possibility of reinstating them) the algorithm runs in polynomial
time.

This algorithm can be run in a network by having all agents send their utilities
to some node (e.g., the sourceα0) and then running the algorithm there. However,
although the algorithm is computationally tractable, this centralized approach re-
quires an unreasonable amount ofcommunicationas the network becomes large.
Thus, we would prefer a distributed solution. Unfortunately, no distributed algo-
rithm can compute the same allocation and payments using asymptotically less
communication than the centralized solution.

Theorem 10.6.5Any (deterministic or randomized) distributed algorithm that com-
putes the same allocation and payments as the Shapley value algorithm must send
Ω(|N∗|) bits over linearly many links in the worst case.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

314 10 Protocols for Strategic Agents: Mechanism Design

// Upward pass
foreachnodei, bottom updo

mi ← v̂i − c(li)
foreachnodej ∈ children ofi do

mi ← mi + max(mj, 0)

// Downward pass
S ← ∅
sroot ← mroot

foreachnodei, top downdo
if si ≥ 0 then

S ← S
⋃{i}

pi ← max(v̂i − si, 0)

foreachnodej ∈ children ofi do
sj ← min(si,mj)

Figure 10.7: A distributed algorithm for computing the efficient allocation and
VCG payments for multicast cost sharing.

Truthful and efficient: The VCG mechanism

Now we consider relaxing the budget balance requirement and instead insisting
on efficiency. Unsurprisingly (consider Theorem 10.4.3) we must obtain a Groves
mechanism in this case; VCG is the obvious choice. VCG can be easily used as
a cost-sharing mechanism in the centralized case. Like the Shapley value mecha-
nism, it requires only polynomial computation and hence is tractable. However, it
has an interesting and important advantage over the Shapley value mechanism: it
can also be made to work efficiently as a distributed algorithm.

Theorem 10.6.6A distributed algorithm can compute the same allocation and
payments as VCG by sending exactly two values across each link.

Proof. The algorithm in Figure 10.7 computes VCG payments and allocations.
Let li be the link connecting nodei to its parent. Every nonroot nodei sends
and receives a single real-valued message overli.

This algorithm can be understood as passing messages from one node in the tree
to the next. Observe that the first for loop proceeds “bottom up” (i.e., computingm
for all children of a nodei before computingm for nodei itself), while the second
for loop proceeds “top down” (i.e., computings for a nodei before computings
for any of i’s children). Thus we can see them’s as messages that are passed up
the tree, starting at the leaves, and thes’s as messages that are passed back down,
starting at the root.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.6 Computational applications of mechanism design 315

0

2
3

0

1

2

1
1

2 0

1

3

2

(a) Multicast spanning tree: nodes are la-
beled with values, edges are labeled with
costs.

1

−1

−1

1

1

1

1

0

0

2

2

1

1

(b) Upward pass: each nodei computes
mi and passes it to its parent.

1

−1
1

−1

−1

1

0
1

−1 0

0

1

0

(c) Downward pass: each nodei computes
sj for child j and passes it down.

0

0 1

0 0 2

2

(d) Final Allocation: only connected edges
are shown; nodes are labeled with pay-
ments.

Figure 10.8: An example run of the algorithm from Figure 10.7.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

316 10 Protocols for Strategic Agents: Mechanism Design

Let us consider applying this algorithm to a sample multicast spanning tree (Fig-
ure 10.8a). In the upward pass (Figure 10.8b), every nodei computesmi, the
marginal value connectingi to the network, given that its parent is connected. This
is the maximum amount the agents on the subtree rooted ati would be willing
to pay to join the multicast. In the downward pass (Figure 10.8c), every nodei
computessj for each child nodej. sj is the actual total surplus generated by con-
nectingj to the multicast tree. Ifmj or sj is negative, the efficient allocation does
not connectj. Thus,sj can also be seen as the maximum amount by which agents
in the subtree rooted atsj could reduce their joint value declaration while remain-
ing connected. Each connected nodej is chargedmax(v̂j − sj, 0), meaning that
his surplus is equal to the amount he could have under-reported his value without
being disconnected. These payments are illustrated in Figure 10.8d.

10.6.4 Two-sided matching

So far in this chapter we have concentrated on mechanism design in quasilinear set-
tings, meaning that we have assumed that money can be transferred between agents
and the mechanism. However, there exist many interesting settings where such
transfers are impossible, for example, because of legal restrictions. Examples of
such problems include kidney exchanges, college admissions, and the assignment
of medical interns to hospitals.Two-sided matchingis a widely studied model thattwo-sided

matching can be used to describe such domains. Under this model, each agent belongs to one
of two groups. Members of each group are matched up, based on their declared
preferences over their candidate partners. The mechanism design problem is to in-
duce agents to disclose these preferences in a way that allows a desirable matching
to be chosen, despite the restriction that payments cannot be imposed.

We will use the running example of a cohort of graduate students who must
align with thesis advisors. Each student has a preference ordering over advisors
(depending on their research interests, personalities, etc.), and likewise each poten-
tial advisor has a preference ordering over students. In this setting a social choice
function is a decision about which students should be assigned to which advisors,
given their preferences; as always, the mechanism design concern is how to imple-
ment a desired social choice function.

We now define the setting more formally. LetA be a set of advisors and letS be
a set of graduate students. We do not assume that|A| = |S|; thus, some students
and/or advisors may remain unpaired. We assume that each student can have at
most one advisor and each advisor will take at most one new student.13 Each
studenti has a preference ordering≻i over the advisors, and each advisorj has a
preference ordering≻j over the students. We writea ≻s a

′ to mean that student
s prefers advisora to advisora′, and∅ ≻s a to mean thats prefers not finding
a supervisor to aligning with advisora. In the latter case we say that advisora is
unacceptableto students. Similarly, we writes ≻a s

′ and∅ ≻a s. Note that weunacceptable
matching

13. Many but not all of the results in this section can also be extended to the case where advisors can take

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.6 Computational applications of mechanism design 317

have assumed that all preferences are strict,14 but that each agent can identify a set
of partners with whom he would prefer not to be matched, effectively expressing
a tie among unacceptable partners. In what follows, we adopt the convention that
all advisors are female and all students are male. The resulting problem of finding
good male–female pairings pays homage to the problem introduced in the two-
sided matching literature a half-century ago, so-calledstable marriage.stable marriage

Definition 10.6.7 (Matching) A matchingµ : A ∪ S → A ∪ S ∪ {∅} is anmatching
assignment of advisors to students such that each advisor is assigned to at most
one student and vice versa. More formally,µ(s) = a if and only ifµ(a) = s.
Furthermore,∀s ∈ S, either∃a ∈ A,µ(s) = a or µ(s) = ∅ (the student is
unpaired), and likewise∀a ∈ A, either∃s ∈ S, µ(a) = s or µ(a) = ∅.

Note that it is always possible that some students has the same match under
two different matchingsµ andµ′, that isµ(s) = µ′(s). In this case,s must be
indifferent between matchingsµ andµ′. A similar argument is true for advisors.
Therefore, we use the operator� as well as≻ when describing an agent’s pref-
erence relation over matchings. More formally,µ(s) �s µ

′(s) means that either
µ(s) ≻s µ

′(s) or µ(s) = µ′(s). Similarly, µ(a) �a µ′(a) means that either
µ(a) ≻a µ

′(a) or µ(a) = µ′(a).
Clearly, there are many possible matchings. The key question is which matching

should be chosen, given students’ and advisors’ preference orderings. In other
words, what properties does a desirable matching have? We identify two.

Definition 10.6.8 (Individual rationality) A matchingµ is individually rationalifindividually
rational
matching

no agenti prefers to remain unmatched than to be matched toµ(i).

Definition 10.6.9 (Unblocked) A matchingµ is unblockedif there exists no pair
unblocked
matching

(s, a) such thatµ(s) 6= a, buta ≻s µ(s) ands ≻a µ(a).

Intuitively, a matching is individually rational if no agent is matched with an
unacceptable partner; a matching is unblocked if there exists no pair that would
prefer to be matched with each other than with their respective partners. Putting
these two definitions together, we obtain the concept of a stable matching.

Definition 10.6.10 (Stable matching)A matchingµ is stable if and only if it isstable matching
individually rational and unblocked.

It turns out that in the setting we have defined above, no matter how many stu-
dents and advisors there are and what preferences they have, there always exists at
least one stable matching.

Theorem 10.6.11 (Gale and Shapley, 1962)A stable matching always exists.

multiple students.
14. Our assumption that preferences are strict is restrictive; some of the results presented in this section no
longer hold if it is relaxed.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

318 10 Protocols for Strategic Agents: Mechanism Design

Step 1: each student applies to his most preferred advisor.
repeat

Step 2: each advisor keeps her most preferred acceptable application (if
any) and rejects the rest (if any).
Step 3: each student who was rejected at the previous step applies to his
next acceptable choice.

until no student applied in the last step

Figure 10.9: Deferred acceptance algorithm, student-application version.

Proof. The proof is obtained by giving a procedure that produces a stable
matching given any set of student and advisor preferences. Here, we de-
scribe the so-called “student-application” version of the algorithm (Figure
10.9). There is an analogous algorithm in which advisors apply to students.
This algorithm must stop in at most a quadratic number of steps, since no
student ever applies more than once to any advisor. The outcome is a match-
ing, since at any step each student is paired with at most one advisor and vice
versa. The matching is individually rational, since no student or advisor is ever
matched to an unacceptable agent.

It only remains to show that the matching is unblocked. Letµ be the match-
ing produced by the algorithm. Assume for contradiction thatµ is blocked by
some students and advisora. Sinces prefersa to his own match atµ, a must
be acceptable tos, and so he must have applied to her before having applied
to his match. Sinces is not matched toa in µ, he must have been rejected by
her in favor of someone she liked better. Therefore,(s, a) does not blockµ, a
contradiction.

Thus, there always exists at least one stable matching. However, these matchings
are not necessarily unique—given a set of student and advisor preferences, there
may exist many stable matchings. Let us now consider how different matchings
can be compared.

Definition 10.6.12 A stable matchingµ is student optimalif every student likes itstudent-optimal
matching at least as well as any other stable matching; that is,∀s ∈ S and for every other

stable matchingµ′, µ(s) �s µ
′(s).

Along the same lines, we can defineadvisor-optimalmatching. Now we canadvisor-optimal
matching draw the following conclusions about stable matchings.

Theorem 10.6.13There exists exactly one student-optimal stable matching and
one advisor-optimal stable matching. The matching produced by the student-application
version of the deferred application algorithm is the student-optimal stable match-
ing, and the matching produced by the advisor-application version of the deferred
application algorithm is the advisor-optimal stable matching.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.6 Computational applications of mechanism design 319

Next, it turns out that any stable matching that is better for all the students is
worse for all the advisors and vice versa.

Theorem 10.6.14If µ andµ′ are stable matchings,∀s ∈ S, µ(s) �s µ
′(s) if and

only if ∀a ∈ A, µ′(a) �a µ(a).

Say that an advisora is achievablefor students, and vice versa, if there isachievable
match a stable matchingµ that matchesa to s. Then we can state one implication of

the above theorem: that the student-optimal stable matching is the worst stable
matching from each advisor’s point of view, and vice versa.

Corollary 10.6.15 The student-optimal stable matching matches each advisor with
her least preferred achievable student, and the advisor-optimal stable matching
matches each student with her least preferred achievable advisor.

Now let us move to the mechanism design question. If agents’ preferences are
private information, can we find a mechanism that ensures that a stable matching
will be achieved? As is common in the matching literature, we restrict our attention
to settings in which neither the agents’ equilibrium strategies nor the mechanism
itself are allowed to depend on the distribution over agents’ preferences. Thus, we
must rely on either dominant-strategy orex postequilibrium implementation. Un-
fortunately, it turns out that stable matchings cannot be implemented under either
equilibrium concept.

Theorem 10.6.16No mechanism implements stable matching in dominant strate-
gies.

Proof. By the revelation principle, if such a mechanism exists, then there also
exists a direct truthful mechanism that selects matchings that are stable with re-
spect to the declared preference orderings. Consider a setting with two students,
s1 and s2, and two advisors,a1, anda2. Imagine thats1, s2 and a1 declare
the following preference orderings:a1≻̂s1

a2, a2≻̂s2
a1, ands2≻̂a1

s1. Assume
thata2’s true preference ordering is the following:s1 ≻a2

s2. If a2 declares
the truth, then (1) the setting will have two stable matchings,µ andµ′, given
byµ(si) = ai for i ∈ {1, 2}, andµ′(si) = aj for i, j ∈ {1, 2}, j 6= i, and (2)
any stable matching mechanism must choose one ofµ orµ′. Suppose the mech-
anism choosesµ. Observe that ifa2 declares that her only acceptable student
is s1, thenµ′ is the only stable matching with respect to the stated preferences
and the mechanism must selectµ′—which a2 prefers toµ. Similarly, we can
show that if the mechanism choosesµ′ when the above preference orderings
are stated, then in a setting wherea2 ≻s2

a1 is s2’s true preference ordering,
s2 benefits by misreporting his preference ordering. Therefore, declaring the
truth is not a dominant strategy for every agent.

Furthermore, it does not help to move to theex postequilibrium concept, as can
be proved along the same lines as Theorem 10.6.16.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

320 10 Protocols for Strategic Agents: Mechanism Design

Theorem 10.6.17No mechanism implements stable matching inex postequilib-
rium.

All is not hopeless, however—it turns out that we can obtain a positive mecha-
nism design result for stable two-sided matching. The key is to relax our assump-
tion thatall agents are strategic. In our setting we will assume that advisors can
be compelled to behave honestly. Under this assumption, it is enough to prove the
following result.

Theorem 10.6.18Under the direct mechanism associated with the student-application
version of the deferred acceptance algorithm, it is a dominant strategy for each stu-
dent to declare his true preferences.

Proof. This proof proceeds by contradiction. Suppose that the claim is not
true and, without loss of generality, say that it is not a dominant strategy for
students1 to state his true preference ordering. Then, there is a preference pro-
file [≻̂] = (≻s1

, ≻̂s2
, . . . , ≻̂s|S|

, ≻̂a1
, . . . , ≻̂a|A|

) such thats1 benefits from
reporting≻′

s1
6=≻s1

. Let µ be the stable matching obtained by applying the
student application version of the deferred acceptance algorithm to[≻̂]. By
Theorem 10.6.13,µ is student optimal with respect to[≻̂]. Let µ′ be the
stable matching obtained by applying the same algorithm to[≻̂′

] = (≻′
s1

, ≻̂s2
, . . . , ≻̂s|S|

, ≻̂a1
, . . . , ≻̂a|A|

). Note that except fors1, all the other stu-

dents and advisors declare the same preference ordering under[≻̂] and[≻̂′
].

LetR = {s1} ∪ {s : µ′(s)≻̂sµ(s)} denote the set of students who strictly
preferµ′ to µ (with respect to their declared preferences[≻̂]). Note that we
have includeds1 in R because, by assumption,µ′(s1) ≻s1

µ(s1). Let T =
{a : µ′(a) ∈ R} denote the set of advisors who are matched with some student
from R underµ′. In what follows we first show (Part 1) that any advisor
a ∈ T is matched with an (always different) student fromR underµ; that is,
{a : µ′(a) ∈ R} = {a : µ(a) ∈ R} = T . Then (Part 2) we show that
there exist someaℓ ∈ T andsr 6∈ R such that(sr, aℓ) blocksµ′ at [≻̂′

] and
thereforeµ′ is not stable with respect to[≻̂′

]. This contradicts our assumption
thatµ′ is a stable matching with respect to[≻̂′

].
Part 1: For anys ∈ R, let a = µ′(s). Stability of µ with respect to

[≻̂] requires that advisora be matched to some student underµ (rather than
being unpaired), as otherwise(s, a) would blockµ at [≻̂]; let s′ = µ(a).
If s′ = s1, then sinces1 prefers his match underµ′ to his match underµ,
s′ ∈ R. Otherwise, since (with respect to his preferences declaredin [≻̂]) s
strictly prefersµ′(s) to µ(s), stability of µ with respect to[≻̂] implies that
s′≻̂as. Since we defineds = µ′(a), thuss′≻̂aµ

′(a). Then, stability ofµ′

with respect to[≻̂′
] implies thatµ′(s′)≻̂s′a. Since we defineda = µ(s′), thus

µ′(s′)≻̂s′µ(s′) and therefores′ ∈ R. As a result, we can writeT = {a :
µ′(a) ∈ R} = {a : µ(a) ∈ R}.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.7 Constrained mechanism design 321

Part 2: Since every students ∈ R prefersµ′(s) to µ(s), stability of µ
with respect to[≻̂] implies that∀a ∈ T, µ(a)≻̂aµ

′(a). Therefore, during the
execution of the student-application algorithm on[≻̂], each students ∈ R will
apply toµ′(s) and will get rejected byµ′(s) at some iteration. In other words,
eacha ∈ T rejectsµ′(a) ∈ R at some iteration. Letsℓ be (weakly) the last
student inR who applies to an advisor during the execution of the student-
application algorithm. This application is sent toµ(sℓ) ∈ T ; let µ(sℓ) = aℓ.
By construction,aℓ must have rejectedµ′(aℓ) at some strictly earlier iteration
of the algorithm. Thus, whensℓ applies toaℓ, aℓ must reject an application
from somesr /∈ R such thatsr≻̂aℓ

µ′(aℓ) (fact 1). Note thatsr 6= s1, since
sr /∈ R ands1 ∈ R. Sincesr applies toaℓ before he finally gets matched to
µ(sr), we have thataℓ≻̂sr

µ(sr). Furthermore, sincesr /∈ R, we also have that
µ(sr)�̂sr

µ′(sr). Thereforeaℓ≻̂sr
µ′(sr) (fact 2). Thus, from (fact 1) and (fact

2), (sr, aℓ) blocksµ′ at [≻̂′
] andµ′ is not stable with respect to[≻̂′

], yielding
our contradiction.

Of course, it is similarly possible to achieve a direct mechanism under which
truth telling is a dominant strategy for advisors by using the advisor-application
version of the deferred acceptance algorithm.

10.7 Constrained mechanism design

So far we have assumed that the mechanism designer is free to design any mech-
anism, but this assumption is violated in many applications—the ones discussed
in this section, and many others. In particular, often one starts with given strategy
spaces for each of the agents, with limited or no ability to change those. Examples
abound:

• A city official who wishes to improve the traffic flow in the city cannot redesign
cars or build new roads;

• A UN mediator who wishes to incent two countries fighting over a scarce re-
source to cease hostilities cannot change their military capabilities or the amount
or value of the resource;

• A computer network operator who wishes to route traffic a certain way cannot
change the network topology or the underlying routing algorithm.

Many other examples exist, and in fact such constraints can be thought of as the
norm rather than the exception. How can such would-be mechanism designers
intervene to influence the course of events?

In Chapter 2 we already encountered this problem. Specifically, in Section 2.4
we saw how imposingsocial laws—that is, restricting the options available tosocial law
agents—can be beneficial to all agents. Social laws played an important coordi-
nating role (as in “drive on the right side of the road") and, furthermore, in some

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

322 10 Protocols for Strategic Agents: Mechanism Design

cases prevented the narrow self interests of the agents from hurting them (e.g., al-
lowing cooperation in the Prisoners’ Dilemma game). However, in that discussion
we made the important assumption that once a social law was imposed (or agreed
upon, depending on the interpretation), the agents could be assumed to follow it.

Here we relax this assumption, and we do so in three ways. First, we view the
players as having the option of entering into a contract among themselves. Once
they do—and only then—the center can impose arbitrary fines on law breakers, if
he is aware of such deviations. The question in this case is which contracts the
agents can be expected to enter, and how the work of the center can be minimized
or even eliminated. Second, we consider the case in which the center can simply
bribe the players to play a certain way (or, in more neutral language, offer positive
incentives for certain actions). The question in this case is how the center can bias
the outcome toward the desired one while minimizing his cost. Finally, we consider
a center who offers to play on behalf of the agents, who in turn are free to accept
or reject the offer. We look at each setting in turn.

10.7.1 Contracts

Consider any given gameG, and a center who can do the following.

1. Propose a contract beforeG is played. This contract specifies a particular out-
come, that is, a unique action for each agent,15 and a penalty for deviating from
it.

2. Collect signatures on the contract and make it common knowledge who signed.

3. Monitor the players’ actions during the execution ofG.

4. If the contract was signed by all agents, fine anyone who deviated from it as
specified by the contract.

Here we assume that players still have the freedom to choose whether or not to
honor the agreement; the challenge is to design a mechanism such that, in equilib-
rium, they will do so.

The technical results in this line of work will refer to games of complete infor-
mation, but for intuition consider the example of an online marketplace such as
eBay. (We discuss auctions in detail in Chapter 11, but those details are not needed
here.) Consider the entire game being played, including the decision after the
close of the auction by the seller of whether to deliver the good and by the buyer of
whether to send payment. Straightforward analysis shows that that the equilibrium
is for neither to keep his promise, and the experience with fraud in online auctions
demonstrates that the problem is not merely theoretical. It would be in an online
auction site’s interest to find a way to bind its customers to their promises.

15. In the parlance of Section 2.4, aconvention.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.7 Constrained mechanism design 323

The first question one may ask is what the achievable outcomes are. What out-
comes may the center suggest, with associated penalties, that the agents will ac-
cept? However, once the problem is couched in a formal setting, it is not hard to
show a folk theorem of sorts: any outcome will be accepted when accompanied by
appropriate fines, so long as the payoffs of each agent in that outcome are better
than that player’s payoffs insomeequilibrium of the original game.

Although the center can achieve almost any outcome, it would seem to require
great effort: suggesting an outcome, collecting signatures, observing the game, and
enforcing the contracts. If this procedure happens not just for one game, but for
hundreds or thousands per day, the center may wish to find a way to avoid this
burden while still achieving the same effect.

However, one can often achieve the same effects with much less effort on the part
of the center. We continue to assume that the center still needs to propose a contract.
We also simply assume that it does not monitor the game. Nor does it participate in
the signing phase; the agents do that among themselves using a broadcast channel.
While we might imagine that the players could simply broadcast their signatures,
this protocol allows a single player to learn the others’ signatures and threaten
them with fines. Nonetheless, one can construct a more complicated protocol—
using a second stage of contracts—that does not require the center’s participation.
The only phase in which the center’s protocol requires it to get involved under some
conditions is the enforcement stage. However, here too one can minimize the effort
required in actuality. This is done by devising contracts that,in equilibrium, at this
stage too the center sits idle. Among other things, one can show that if the game
play isverifiable(if the center can discover after the fact whether players obeyed
the contract), then anything achievable by a fully engaged center is also achievable
by a center that in equilibrium always sits idle.

10.7.2 Bribes

Consider the following simple congestion setting, similar to the one discussed in
Section 10.1.2. Assume that there are two agents, 1 and 2, who must select among
two service providers. One of the service providers,f , is a fast one, while the other,
s, is a slower one. We capture this by having an agent obtain a payoff of 6 when
he is the only one who usesf , and a payoff of4 when he is the only one who uses
s. If both agents select the same service provider then the speeds they each obtain
decrease by a factor of 2, leading to half the payoff. Thus, if both agents usef then
each of them obtains a payoff of 3, while if both uses then each obtains 2. Written
in normal form, this game is described as follows.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

324 10 Protocols for Strategic Agents: Mechanism Design

M =

f s

f 3, 3 6, 4

s 4, 6 2, 2

Assume that the mechanism designer wishes to prevent the agents from using
the same service provider (leading to low payoffs for both) and further wants to
obtain a mechanism in which each agent has a dominant strategy. Then it can do
as follows: it can promise to pay agent 1 a value of 10 if both agents will usef ,
and promise to pay agent 2 a value of 10 if both agents will uses. These promises
transformM to the following game.

M ′ =

f s

f 13, 3 6, 4

s 4, 6 2, 12

Notice that inM ′, strategyf is dominant for agent 1, and strategys is dominant
for agent 2. As a result the only rational strategy profile is the one in which agent
1 choosesf and agent 2 choosess. Hence, the mechanism designer implements
one of the desired outcomes. Moreover, given that the strategy profile(f, s) is
selected, the mechanism will have to pay nothing. It has just implemented,in
dominant strategies, a desired behavior (which had previously been obtained in
one of the game’s Nash equilibria) at zero cost, relying only on its creditability,
without modifying the rules of interactions or enforcing any type of behavior! In
this case we say that the desired behavior has a 0-implementation. More generally,
an outcome has ak-implementationif it can be implemented in dominant strategiesk-

implementation using such payments with a cost in equilibrium of at mostk. This definition can
be used to prove the following result.

Theorem 10.7.1An outcome is0-implementable iff it is a Nash equilibrium.

10.7.3 Mediators

We have so far considered a center who can enforce contracts, and one who can
offer monetary incentives. We now consider a more active center, one who can
play on behalf of agents.

Consider the ever-recurring example of the Prisoners’ Dilemma game.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.7 Constrained mechanism design 325

C D

C 4, 4 0, 6

D 6, 0 1, 1

As you know, the strategy profile(D,D) is a Nash equilibrium, and even an
equilibrium in weakly dominant strategies. However, it is not what is called a
strong equilibrium, that is, a strategy profile that is stable against group deviations.strong

equilibrium If bothplayers deviate to(C,C), the payoff of each one of them will increase.
Now consider a reliable mediator who offers the agents the following protocol.

If both agents agree to use the mediator’s services then he will perform the action
C (cooperate) on behalf of both agents. However, if only one agent agrees to use
his services then he will perform the actionD (defect) on behalf of that agent. We
assume that when accepting the mediator’s offer the agent is committed to using the
mediator and forgoes the option of acting on his own; however, he is free to reject
the offer, in which case he is free to use any strategy. This induces the following
game between the agents.

Mediator C D

Mediator 4, 4 6, 0 1, 1

C 0, 6 4, 4 0, 6

D 1, 1 6, 0 1, 1

The mediated game has a most desirable property: it is a strong equilibrium for
the two agents to use the mediator’s services, guaranteeing each a payoff of 4. No
coalition (i.e., either of the two agents alone, or the pair) can deviate and achieve
for all coalition members a payoff greater than 4.

This example turns out to be more than a happy coincidence. While strong equi-
libria are rare in general, adding mediators make them less rare. For example,
adding a mediator to anybalanced symmetric gameyields a strong equilibriumbalanced game
with optimal surplus.16 Also, if we consider only deviations by coalitions of size
at mostk (a so-calledk-strong equilibrium), we have the following. For any sym-
metric game withn agents, ifk! dividesn then there exists ak-strong mediated

16. Full discussion of balanced games is beyond the scope of this discussion. However, we remark that a
game in strategic form is called balanced if its associated core is nonempty. The core of a game is defined in
the context of coalitional games in Chapter 12.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

326 10 Protocols for Strategic Agents: Mechanism Design

equilibrium, leading to optimal surplus.17 However, ifk! does not dividen, then it
can be shown that the game may or may not possess ak-strong equilibrium.

10.8 History and references

Mechanism design is covered to varying degrees in modern game theory textbooks,
but even better are the microeconomic textbook of Mas-Colell et al. [1995] and
books on auction theory such as Krishna [2002]. Good overviews from a computer
science perspective are given in the introductory chapters of Parkes [2001] and in
Nisan [2007]. Specific publications that underlie some of the results covered in
this chapter are as follows.

The foundational idea of mechanisms as communication systems that select out-
comes based on messages from agents is due to Hurwicz [1960], who also elabo-
rated the theory to include the idea that mechanisms should be “incentive compat-
ible” [1972]. The revelation principle was first articulated by Gibbard [1973] and
was developed in the greatest generality by Myerson [1979; 1982; 1986]. In 2007,
Hurwicz and Myerson shared a Nobel Prize (along with Maskin, whose work we
do not discuss in this book), “for having laid the foundations of mechanism design
theory.” Theorem 10.2.6 is due to both Satterthwaite and Gibbard, in two separate
publications [Gibbard, 1973; Satterthwaite, 1975].

The VCG mechanism was anticipated by Vickrey [1961], who outlined an ex-
tension of the second-price auction to multiple identical goods. Groves [1973] ex-
plicitly considered the general family of truthful mechanisms applying to multiple
distinct goods (though the result had appeared already in his 1969 Ph.D. disserta-
tion). Clarke [1971] proposed his tax for use with public goods (i.e., goods such
as roads and national defense that are paid for by all regardless of personal use).
Theorem 10.4.3 is due to Green and Laffont [1977]; Theorem 10.4.11 is due to
that paper as well as to the earlier Hurwicz [1975]. The fact that Groves mecha-
nisms are payoff equivalent to all other Bayes–Nash incentive-compatible efficient
mechanisms was shown by Krishna and Perry [1998] and Williams [1999]; the
former reference also gave the results that VCG isex interim individually ratio-
nal and that VCG collects the maximal amount of revenue among allex interim
individually-rational Groves mechanisms. Recent work shows that some “VCG
drawbacks” are also problems with broad classes of mechanisms; for example, this
has been shown for nonfrugality [Archer and Tardos, 2002; Elkind et al., 2004] and
for revenue monotonicity [Rastegari et al., 2007]. The problem of participating in
Groves mechanisms under multiple identities (specifically in the case of combina-
torial auctions, which are described in Section 11.3) was investigated by Yokoo
[2006]. Although it is not generally possible to returnall VCG revenue to the
agents, recent research has investigated VCG-like mechanisms that collect as little

17. As an anecdote, we note that the Israeli parliament consists of120 = 5! members. Hence, every
anonymous game played by this parliament possesses an optimal surplus symmetric 5-strong equilibrium.
While no Parliament member is able to give the right of voting to a mediator, this right of voting could be
replaced in real life by a commitment to follow the mediator’s algorithm.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

10.8 History and references 327

revenue from the agents as possible and thus minimize the extent to which they vio-
late (strong) budget balance [Porter et al., 2004b; Cavallo, 2006; Guo and Conitzer,
2007]. Interestingly, the first of these papers came to the problem through a desire
to achievefair outcomes. The Myerson–Satterthwaite theorem (10.4.12) appears
in Myerson and Satterthwaite [1983]. The AGV mechanism is due (independently)
to Arrow [1977] and d’Aspremont and Gérard-Varet [1979].

The section on implementation in dominant strategies follows Nisan [2007]; The-
orem 10.5.5 is due to Roberts [1979]. Second-chance mechanisms are due to Nisan
and Ronen [2007]. (One difference: we preferred the termGroves-based mecha-
nismsto Nisan and Ronen’sVCG-based mechanisms.)

Our section on task scheduling reports results due to Nisan and Ronen [2001];
this work also introduced the termalgorithmic mechanism design. Our section
on bandwidth allocation in computer networks follows Johari [2007], which in
turn draws on Johari and Tsitsiklis [2004]; the proportional allocation mechanism
is due to Kelly [1997], and the VCG-like mechanism is described in Johari and
Tsitsiklis [2005]. Our section on multicast cost sharing follows Feigenbaum et al.
[2007], which draws especially on Feigenbaum et al. [2001; 2003]. Our discus-
sion of mechanisms for two-sided matching draws on Roth and Sotomayor [1990],
Schummer and Vohra [2007] and Gale and Shapley [1962]. The first algorithm
for finding stable matchings was developed by Stalnaker [1953], and was used to
match medical interns to hospitals. The stable matching problem was formalized
by Gale and Shapley [1962], who also introduced the deferred acceptance algo-
rithm. Theorems 10.6.13 and 10.6.14 follow Knuth [1976]; Theorems 10.6.16 and
10.6.17 are due to Roth [1984]; and Theorem 10.6.18 draws partly on Schummer
and Vohra [2007] and subsequent unpublished correspondence between Baharak
Rastegari and Rakesh Vohra. A more general version of Theorem 10.6.18 appeared
in Roth and Sotomayor [1990] and Dubins and Freedman [1981].

The notion of social laws and conventions are introduced in Shoham and Tennen-
holtz [1995]. The use of contracts to influence the outcome of a game is discussed
in McGrew and Shoham [2004]. The use of monetary incentives to influence the
outcome of a game, ork-implementation, is introduced in Monderer and Tennen-
holtz [2003]. Mediators and their connections to strong equilibria are discussed in
Monderer and Tennenholtz [2006].

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

11 Protocols for Multiagent Resource
Allocation: Auctions

In this chapter we consider the problem of allocating (discrete) resources among
selfish agents in a multiagent system. Auctions—an interesting and important
application of mechanism design—turn out to provide a general solution to this
problem. We describe various different flavors of auctions, including single-good,
multiunit, and combinatorial auctions. In each case, we survey some of the key
theoretical, practical, and computational insights from the literature.

The auction setting is important for two reasons. First, auctions are widely used
in real life, in consumer, corporate, as well as government settings. Millions of
people use auctions daily on Internet consumer Web sites to trade goods. More
complex types of auctions have been used by governments around the world to sell
important public resources such as access to electromagnetic spectrum. Indeed, all
financial markets constitute a type of auction (one of the family of so-calleddouble
auctions). Auctions are also often used in computational settings, to efficiently
allocate bandwidth and processing power to applications and users.

The second—and more fundamental—reason to care about auctions is that they
provide a general theoretical framework for understanding resource allocation prob-
lems among self-interested agents. Formally speaking, an auction is any protocol
that allows agents to indicate their interest in one or more resources and that uses
these indications of interest to determine both an allocation of resources and a set
of payments by the agents. Thus, auctions are important for a wide range of com-
putational settings (e.g., the sharing of computational power in a grid computer on
a network) that would not normally be thought of as auctions and that might not
even use money as the basis of payments.

11.1 Single-good auctions

It is important to realize that the most familiar type of auction—the ascending-bid,
English auction—is a drop in the ocean of auction types. Indeed, since auctions
are simply mechanisms (see Chapter 10) for allocating goods, there is an infinite
number of auction types. In the most familiar types of auctions there is one good for
sale, one seller, and multiple potential buyers. Each buyer has his own valuation
for the good, and each wishes to purchase it at the lowest possible price. These

330 11 Protocols for Multiagent Resource Allocation: Auctions

auctions are calledsingle-sided, because there are multiple agents on only one sidesingle-sided
auction of the market. Our task is to design a protocol for this auction that satisfies certain

desirable global criteria. For example, we might want an auction protocol that
maximizes the expected revenue of the seller. Or, we might want an auction that is
economically efficient; that is, one that guarantees that the potential buyer with the
highest valuation ends up with the good.

Given the popularity of auctions, on the one hand, and the diversity of auction
mechanisms, on the other, it is not surprising that the literature on the topic is vast.
In this section we provide a taste for this literature, concentrating on auctions for
selling a single good. We explore richer settings later in the chapter.

11.1.1 Canonical auction families

To give a feel for the broad space of single-good auctions, we start by describing
some of the most famous families: English, Japanese, Dutch, and sealed-bid auc-
tions. We end the section by presenting a unifying view of auctions as structured
negotiations.

English auctions

The English auctionis perhaps the best-known family of auctions, since in oneEnglish auction
form or another such auctions are used in the venerable, old-guard auction houses,
as well as most of the online consumer auction sites. The auctioneer sets a starting
price for the good, and agents then have the option to announce successive bids,
each of which must be higher than the previous bid (usually by some minimum
increment set by the auctioneer). The rules for when the auction closes vary; in
some instances the auction ends at a fixed time, in others it ends after a fixed period
during which no new bids are made, in others at the latest of the two, and in still
other instances at the earliest of the two. The final bidder, who by definition is the
agent with the highest bid, must purchase the good for the amount of his final bid.

Japanese auctions

TheJapanese auction1 is similar to the English auction in that it is an ascending-Japanese auction
bid auction but is different otherwise. Here the auctioneer sets a starting price for
the good, and each agent must choose whether or not to be “in,” that is, whether
he is willing to purchase the good at that price. The auctioneer then calls out
successively increasing prices in a regular fashion,2 and after each call each agent
must announce whether he is still in. When he drops out it is irrevocable, and he
cannot reenter the auction. The auction ends when there is exactly one agent left
in; the agent must then purchase the good for the current price.

1. Unlike the termsEnglishandDutch, the termJapaneseis not used universally; however, it is commonly
used, and there is no competing name for this family of auctions.
2. In the theoretical analyses of this auction the assumption is usually that the prices rise continuously.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 331

Dutch auctions

In a Dutch auctionthe auctioneer begins by announcing a high price and then pro-Dutch auction
ceeds to announce successively lower prices in a regular fashion. In practice, the
descending prices are indicated by a clock that all of the agents can see. The auc-
tion ends when the first agent signals the auctioneer by pressing a buzzer and stop-
ping the clock; the signaling agent must then purchase the good for the displayed
price. This auction gets its name from the fact that it is used in the Amsterdam
flower market; in practice, it is most often used in settings where goods must be
sold quickly.

Sealed-bid auctions

All the auctions discussed so far are consideredopen-outcryauctions, in that allopen-outcry
auction the bidding is done by calling out the bids in public (however, as we will discuss

shortly, in the case of the Dutch auction this is something of an optical illusion).
The family ofsealed-bid auctions, probably the best known after English auctions,sealed-bid

auction is different. In this case, each agent submits to the auctioneer a secret, “sealed”
bid for the good that is not accessible to any of the other agents. The agent with
the highest bid must purchase the good, but the price at which he does so depends
on the type of sealed-bid auction. In a first-price sealed-bid auction (or simply
first-price auction) the winning agent pays an amount equal to his own bid. Infirst-price

auction a second-price auctionhe pays an amount equal to the next highest bid (i.e., the

second-price
auction

highest rejected bid). The second-price auction is also called theVickrey auction.
In general, in akth-price auctionthe winning agent purchases the good for a price

kth-price auction
equal to thekth highest bid.

Auctions as structured negotiations

While it is useful to have reviewed the best-known auction types, this list is far
from exhaustive. For example, consider the following auction, consisting of a se-
quence of sealed bids. In the first round the lowest bidder drops out; his bid is
announced and becomes the minimum bid in the next round for the remaining bid-
ders. This process continues until only one bidder remains; this bidder wins and
pays the minimum bid in the final round. This auction, called theelimination auc-
tion, is different from the auctions described earlier, and yet makes perfect sense.elimination

auction Or consider a procurement reverse auction, in which an initial sealed-bid auction
is conducted among the interested suppliers, and then a reverse English auction
is conducted among the three cheapest suppliers (the “finalists”) to determine the
ultimate supplier. This two-phase auction is not uncommon in industry.

Indeed, a taxonomical perspective obscures the elements common to all auctions,
and thus the infinite nature of the space. What is an auction? At heart it is simply
a structured framework for negotiation. Each such negotiation has certain rules,
which can be broken down into three categories.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

332 11 Protocols for Multiagent Resource Allocation: Auctions

1. Bidding rules: How are offers made (by whom, when, what can their content
be)?

2. Clearing rules: When do trades occur, or what are those trades (who gets which
goods, and what money changes hands) as a function of the bidding?

3. Information rules: Who knows what when about the state of negotiation?

The different auctions we have discussed make different choices along these
three axes, but it is clear that other rules can be instituted. Indeed, when viewed
this way, it becomes clear that what seem like three radically different commerce
mechanisms—the hushed purchase of a Matisse at a high-end auction house in
London, the mundane purchase of groceries at the local supermarket, and the one-
on-one horse trading in a Middle Easternsouk—are simply auctions that make
different choices along these three dimensions.

11.1.2 Auctions as Bayesian mechanisms

We now move to a more formal investigation of single-good auctions. Our starting
point is the observation that choosing an auction that has various desired prop-
erties is a mechanism design problem. Ordinarily we assume that agents’ utility
functions in an auction setting are quasilinear. To define an auction as a quasilinear
mechanism (see Definition 10.3.2) we must identify the following elements:

• set of agentsN ,

• set of outcomesO = X ×R
n,

• set of actionsAi available to each agenti ∈ N ,

• choice functionx that selects one of the outcomes given the agents’ actions,
and

• payment function℘ that determines what each agent must pay given all agents’
actions.

In an auction, the possible outcomesO consist of all possible ways to allocate
the good—the set of choicesX—and all possible ways of charging the agents. The
agents’ actions will vary in different auction types. In a sealed-bid auction, each set
Ai is an interval fromR (i.e., an agent’s action is the declaration of a bid amount
between some minimum and maximum value). A Japanese auction is an extensive-
form game with chance nodesimperfect information (see Section 5.2), and so in
this case the action space is the space of all policies the agent could follow (i.e.,
all different ways of acting conditioned on different observed histories). As in all
mechanism design problems, the choice and payment functionsx and℘ depend on
the objective of the auction, such as achieving an efficient allocation or maximizing
revenue.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 333

A Bayesian game with quasilinear preferences includes two more ingredients
that we need to specify: the common prior and the agents’ utility functions. We will
say more about the common prior—the distribution from which the agents’ types
are drawn—later; here, just note that the definition of an auction as a Bayesian
game is incomplete without it. Considering the agents’ utility functions, first
note that the quasilinearity assumption (see Definition 10.3.1) allows us to write
ui(o, θi) = ui(x, θi) − fi(pi). The functionfi indicates the agent’s risk attitude,
as discussed in Section 10.3.1. Unless we indicate otherwise, we will commonly
assume risk neutrality.

We are left with the task of describing the agents’ valuations: their utilities for
different allocations of the goodsx ∈ X. Auction theory distinguishes between
a number of different settings here. One of the best-known and most extensively
studied is theindependent private value(IPV) setting. In this setting all agents’independent

private value
(IPV)

valuations are drawn independently from the same (commonly known) distribution,
and an agent’s type (or “signal”) consists only of his own valuation, giving him no
information about the valuations of the others. An example where the IPV setting
is appropriate is in auctions consisting of bidders with personal tastes who aim
to buy a piece of art purely for their own enjoyment. In most of this section we
will assume that agents have independent private values, though we will explore an
alternative, the common-value assumption, in Section 11.1.10.

11.1.3 Second-price, Japanese, and English auctions

Let us now consider whether the second-price sealed-bid auction, which is a direct
mechanism, is truthful (i.e., whether it provides incentive for the agents to bid their
true values). The following, very conceptually straightforward proof shows that in
the IPV case it is.

Theorem 11.1.1In a second-price auction where bidders have independent pri-
vate values, truth telling is a dominant strategy.

The second-price auction is a special case of the VCG mechanism, and hence
of the Groves mechanism. Thus, Theorem 11.1.1 follows directly from Theo-
rem 10.4.2. However, a proof of this narrower claim is considerably more intuitive
than the general argument.

Proof. Assume that all bidders other thani bid in some arbitrary way, and
consideri’s best response. First, consider the case wherei’s valuation is larger
than the highest of the other bidders’ bids. In this casei would win and would
pay the next-highest bid amount, as illustrated in Figure 11.1a. Couldi be bet-
ter off by bidding dishonestly in this case? If he bid higher, he would still win
and would still pay the same amount, as illustrated in Figure 11.1b. If he bid
lower, he would either still win and still pay the same amount (Figure 11.1c) or
lose and pay zero (Figure 11.1d).3 Sincei gets nonnegative utility for receiv-
ing the good at a price less than or equal to his valuation,i cannot gain, and

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

334 11 Protocols for Multiagent Resource Allocation: Auctions

next-highest

bid
i’s bid

i pays

i’s true
value

(a) Bidding honestly,i
has the highest bid.

next-highest

bid
i’s bid

i pays

i’s true
value

(b) i bids higher and
still wins.

next-highest

bid
i’s bid

i pays

i’s true
value

(c) i bids lower and
still wins.

highest

bid
i’s bid

winner

pays

i’s true
value

(d) i bids even lower
and loses.

highest

bid
i’s bid

i’s true
value

(e) Bidding honestly,i
does not have the high-
est bid.

highest

bid
i’s bid

i’s true
value

(f) i bids lower and
still loses.

highest

bid
i’s bid

i’s true
value

(g) i bids higher and
still loses.

next-highest

bid
i’s bid

i pays

i’s true
value

(h) i bids even higher
and wins.

Figure 11.1: A case analysis to show that honest bidding is a dominant strategy in
a second-price auction with independent private values.

would sometimes lose by bidding dishonestly in this case. Now consider the
other case, wherei’s valuation is less than at least one other bidder’s bid. In
this casei would lose and pay zero (Figure 11.1e). If he bid less, he would
still lose and pay zero (Figure 11.1f). If he bid more, either he would still lose
and pay zero (Figure 11.1g) or he would win and pay more than his valuation
(Figure 11.1h), achieving negative utility. Thus again,i cannot gain, and would
sometimes lose by bidding dishonestly in this case.

Notice that this proof does not depend on the agents’ risk attitudes. Thus, an
agent’s dominant strategy in a second-price auction is the same regardless of whether
the agent is risk neutral, risk averse or risk seeking.

In the IPV case, we can identify strong relationships between the second-price
auction and Japanese and English auctions. Consider first the comparison between
second-price and Japanese auctions. In both cases the bidder must select a number
(in the sealed-bid case the number is the one written down, and in the Japanese case
it is the price at which the agent will drop out); the bidder with highest amount wins,
and pays the amount selected by the second-highest bidder. The difference between
the auctions is that information about other agents’ bid amounts is disclosed in the
Japanese auction. In the sealed-bid auction an agent’s bid amount must be selected
without knowing anything about the amounts selected by others, whereas in the

3. Figure 11.1d is oversimplified: the winner will not always payi’s bid in this case. (Do you see why?)

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 335

Japanese auction the amount can be updated based on the prices at which lower
bidders are observed to drop out. In general, this difference can be important (see
Section 11.1.10); however, it makes no difference in the IPV case. Thus, Japanese
auctions are also dominant-strategy truthful when agents have independent private
values.

Obviously, the Japanese and English auctions are closely related. Thus, it is
not surprising to find that second-price and English auctions are also similar. One
connection can be seen throughproxy bidding, a service offered on some onlineproxy bidding
auction sites such as eBay. Under proxy bidding, a bidder tells the system the
maximum amount he is willing to pay. The user can then leave the site, and the
system bids as the bidder’s proxy: every time the bidder is outbid, the system will
respond with a bid one increment higher, until the bidder’s maximum is reached.
It is easy to see that if all bidders use the proxy service and update it only once,
what occurs will be identical to a second-price auction (excepting that the winner’s
payment may be one bid increment higher).

The main complication with English auctions is that bidders can place so-called
jump bids: bids that are greater than the previous high bid by more than the mini-
mum increment. Although it seems relatively innocuous, this feature complicates
analysis of such auctions. Indeed, when an ascending auction is analyzed it is
almost always the Japanese variant, not the English.

11.1.4 First-price and Dutch auctions

Let us now consider first-price auctions. The first observation we can make is that
the Dutch auction and the first-price auction, while quite different in appearance,
are actually the same auction (in the technical jargon, they arestrategically equiv-
alent). In both auctions each agent must select an amount without knowing about
the other agents’ selections; the agent with the highest amount wins the auction,
and must purchase the good for that amount. Strategic equivalence is a very strong
property: it says the auctions are exactly the same no matter what risk attitudes
the agents have, and no matter what valuation model describes their utility func-
tions. This being the case, it is interesting to ask why both auction types are held
in practice. One answer is that they make a trade-off between time complexity and
communication complexity. First-price auctions require each bidder to send a mes-
sage to the auctioneer, which could be unwieldy with a large number of bidders.
Dutch auctions require only a single bit of information to be communicated to the
auctioneer, but requires the auctioneer to broadcast prices.

Of course, all this talk of equivalence does not help us to understand anything
about how an agent should actuallybid in a first-price or Dutch auction. Unfor-
tunately, unlike the case of second-price auctions, here we do not have the luxury
of dominant strategies, and must thus resort to Bayes–Nash equilibrium analysis.
Let us assume that agents have independent private valuations. Furthermore, in a
first-price auction, an agent’s risk attitude also matters. For example, a risk-averse
agent would be willing to sacrifice some expected utility (by increasing his bid over

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

336 11 Protocols for Multiagent Resource Allocation: Auctions

what a risk-neutral agent would bid), in order to increase his probability of winning
the auction. Let us assume that agents are risk neutral and that their valuations are
drawn uniformly from some interval, say[0, 1]. Let si denote the bid of playeri,
andvi denote his true valuation. Thus if playeri wins, his payoff isui = vi − si;
if he loses, it isui = 0. Now we prove in the case of two agents that there is an
equilibrium in which each player bids half of his true valuation. (This also happens
to be theuniquesymmetric equilibrium, but we do not demonstrate that here.)

Proposition 11.1.2 In a first-price auction with two risk-neutral bidders whose
valuations are drawn independently and uniformly at random from the interval
[0, 1], (1

2
v1,

1
2
v2) is a Bayes–Nash equilibrium strategy profile.

Proof. Assume that bidder 2 bids1
2
v2. From the fact thatv2 was drawn from a

uniform distribution, all values ofv2 between 0 and 1 are equally likely. Now
consider bidder 1’s expected utility, in order to write an expression for his best
response.

E[u1] =

∫ 1

0

u1dv2 (11.1)

The integral in Equation (11.1) can be broken up into two smaller integrals that
describe cases in which player 1 does and does not win the auction.

E[u1] =

∫ 2s1

0

u1dv2 +

∫ 1

2s1

u1dv2

We can now substitute in values foru1. In the first case, because 2 bids1
2
v2,

1 wins whenv2 < 2s1 and gains utilityv1 − s1. In the second case 1 loses
and gains utility0. Observe that we can ignore the case where the agents tie,
because this occurs with probability zero.

E[u1] =

∫ 2s1

0

(v1 − s1)dv2 + 0

= (v1 − s1)v2

∣∣∣∣
2s1

0

= 2v1s1 − 2s2
1 (11.2)

We can find bidder 1’s best response to bidder 2’s strategy by taking the deriva-
tive of Equation (11.2) and setting it equal to zero.

∂

∂s1

(2v1s1 − 2s2
1) = 0

2v1 − 4s1 = 0

s1 =
1

2
v1

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 337

Thus when player 2 is bidding half her valuation, player 1’s best strategy is
to bid half his valuation. The calculation of the optimal bid for player 2 is
analogous, given the symmetry of the game and the equilibrium.

This proposition was quite narrow: it spoke about the case of only two bidders,
and considered valuations that were drawn uniformly at random from a particular
interval of the real numbers. Nevertheless, this is already enough for us to be
able to observe that first-price auctions are not incentive compatible (and hence,
unsurprisingly, are not equivalent to second-price auctions).

Somewhat more generally, we have the following theorem.

Theorem 11.1.3In a first-price sealed-bid auction withn risk-neutral agents whose
valuations are independently drawn from a uniform distribution on the same bounded
interval of the real numbers, the unique symmetric equilibrium is given by the strat-
egy profile(n−1

n
v1, . . . ,

n−1
n
vn).

In other words, the unique equilibrium of the auction occurs when each player
bids n−1

n
of his valuation. This theorem can be proved using an argument similar

to that used in Proposition 11.1.2, although the calculus gets a bit more involved
(for one thing, we must reason about the fact that each of several opposing agents
may place the high bid). However, there is a broader problem: that proof only
showed how toverify an equilibrium strategy. How do we identify one in the first
place? Although it is also possible to do this from first principles (at least for
straightforward auctions such as first-price), we will explain a simpler technique in
the next section.

11.1.5 Revenue equivalence

Of the large (in fact, infinite) space of auctions, which one should an auctioneer
choose? To a certain degree, the choice does not matter, a result formalized by the
following important theorem.4

Theorem 11.1.4 (Revenue equivalence theorem)Assume that each ofn risk-neutral
agents has an independent private valuation for a single good at auction, drawn
from a common cumulative distributionF (v) that is strictly increasing and atom-
less on[v, v̄]. Then any efficient5 auction mechanism in which any agent with
valuationv has an expected utility of zero yields the same expected revenue, and
hence results in any bidder with valuationvi making the same expected payment.

4. What is stated, in fact, is the revenue equivalence theorem for the private-value, single-good case. Similar
theorems hold for other—though not all—cases.
5. Here we make use of the definition of economic efficiency given in Definition 10.3.6. Equivalently, we
could require that the auction has a symmetric and increasing equilibrium and always allocates the good to
an agent who placed the highest bid.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

338 11 Protocols for Multiagent Resource Allocation: Auctions

Proof. Consider any mechanism (direct or indirect) for allocating the good.
Let ui(vi) be i’s expected utility given true valuationvi, assuming that all
agents includingi follow their equilibrium strategies. LetPi(vi) be i’s prob-
ability of being awarded the good given (i) that his true type isvi; (ii) that he
follows the equilibrium strategy for an agent with typevi; and (iii) that all other
agents follow their equilibrium strategies.

ui(vi) = viPi(vi)− E[payment by typevi of playeri] (11.3)

From the definition of equilibrium, for any other valuationv̂i thati could have,

ui(vi) ≥ ui(v̂i) + (vi − v̂i)Pi(v̂i). (11.4)

To understand Equation (11.4), observe that ifi followed the equilibrium strat-
egy for a player with valuation̂vi rather than for a player with his (true) valua-
tion vi, i would make all the same payments and would win the good with the
same probability as an agent with valuationv̂i. However, whenever he wins the
good,i values it(vi − v̂i) more than an agent of typêvi does. The inequality
must hold because in equilibrium this deviation must be unprofitable. Consider
v̂i = vi + dvi, by substituting this expression into Equation (11.4):

ui(vi) ≥ ui(vi + dvi) + dviPi(vi + dvi). (11.5)

Likewise, considering the possibility thati’s true type could bevi + dvi,

ui(vi + dvi) ≥ ui(vi) + dviPi(vi). (11.6)

Combining Equations (11.5) and (11.6), we have

Pi(vi + dvi) ≥
ui(vi + dvi)− ui(vi)

dvi

≥ Pi(vi). (11.7)

Taking the limit asdvi → 0 gives

dui

dvi

= Pi(vi). (11.8)

Integrating up,

ui(vi) = ui(v) +

∫ vi

x=v

Pi(x)dx. (11.9)

Now consider any two efficient auction mechanisms in which the expected
payment of an agent with valuationv is zero. A bidder with valuationv will
never win (since the distribution is atomless), so his expected utilityui(v) = 0.
Because both mechanisms are efficient, every agenti always has the same
Pi(vi) (his probability of winning given his typevi) under the two mecha-
nisms. Since the right-hand side of Equation (11.9) involves onlyPi(vi) and
ui(v), each agenti must therefore have the same expected utilityui in both

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 339

mechanisms. From Equation (11.3), this means that a player of any given type
vi must make the same expected payment in both mechanisms. Thus,i’s ex
anteexpected payment is also the same in both mechanisms. Since this is true
for all i, the auctioneer’s expected revenue is also the same in both mechanisms.

Thus, when bidders are risk neutral and have independent private valuations, all
the auctions we have spoken about so far—English, Japanese, Dutch, and all sealed-
bid auction protocols—are revenue equivalent. The revenue equivalence theorem
is useful beyond telling the auctioneer that it does not much matter which auction
she holds, however. It is also a powerful analytic tool. In particular, we can make
use of this theorem to identify equilibrium bidding strategies for auctions that meet
the theorem’s conditions.

For example, let us consider again then-bidder first-price auction discussed in
Theorem 11.1.3. Does this auction satisfy the conditions of the revenue equiva-
lence theorem? The second condition is easy to verify; the first is harder, because
it speaks about the outcomes of the auction under the equilibrium bidding strate-
gies. For now, let us assume that the first condition is satisfied as well.

The revenue equivalence theorem only helps us, of course, if we use it to com-
pare the revenue from a first-price auction with that of another auction that we
already understand. The second-price auction serves nicely in this latter role: we
already know its equilibrium strategy, and it meets the conditions of the theorem.
We know from the proof that a bidder of the same type will make the same expected
payment in both auctions. In both of the auctions we are considering, a bidder’s
payment is zero unless he wins. Thus a bidder’s expected payment conditional on
being the winner of a first-price auction must be the same as his expected payment
conditional on being the winner of a second-price auction. Since the first-price
auction is efficient, we can observe that under the symmetric equilibrium agents
will bid this amount all the time: if the agent is the high bidder then he will make
the right expected payment, and if he is not, his bid amount will not matter.

We must now find an expression for the expected value of the second-highest
valuation, given that bidderi has the highest valuation. It is helpful to know the
formula for thekth order statistic, in this case of draws from the uniform distribu-order statistic
tion. Thekth order statistic of a distribution is a formula for the expected value of
thekth-largest ofn draws. Forn IID draws from[0, vmax], thekth order statistic is

n+ 1− k
n+ 1

vmax. (11.10)

If bidder i’s valuationvi is the highest, then there aren − 1 other valuations
drawn from the uniform distribution on[0, vi]. Thus, the expected value of the
second-highest valuation is the first-order statistic ofn−1 draws from[0, vi]. Sub-
stituting into Equation (11.10), we have(n−1)+1−(1)

(n−1)+1
(vi) = n−1

n
vi. This confirms

the equilibrium strategy from Theorem 11.1.3. It also gives us a suspicion (that
turns out to be correct) about the equilibrium strategy for first-price auctions under

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

340 11 Protocols for Multiagent Resource Allocation: Auctions

valuation distributions other than uniform: each bidder bids the expectation of the
second-highest valuation, conditioned on the assumption that his own valuation is
the highest.

A caveat must be given about the revenue equivalence theorem: this result makes
an “if” statement, not an “if and only if” statement. That is, while it is true that all
auctions satisfying the theorem’s conditions must yield the same expected revenue,
it is not true that all strategies yielding that expected revenue constitute equilibria.
Thus, after using the revenue equivalence theorem to identify a strategy profile that
one believes to be an equilibrium, one must then prove that this strategy profile
is indeed an equilibrium. This should be done in the standard way, by assuming
that all but one of the agents play according to the equilibrium and show that the
equilibrium strategy is a best response for the remaining agent.

Finally, recall that we assumed above that the first-price auction allocates the
good to the bidder with the highest valuation. The reason it was reasonable to
do this (although we could instead have proved that the auction has a symmetric,
increasing equilibrium) is that we have to check the strategy profile derived using
the revenue equivalence theorem anyway. Given the equilibrium strategy, it is easy
to confirm that the bidder with the highest valuation will indeed win the good.

11.1.6 Risk attitudes

One of the key assumptions of the revenue equivalence theoremis that agents
are risk neutral. It turns out that many of the auctions we have been discussing
cease to be revenue-equivalent when agents’ risk attitudes change. Recall from
Section 10.3.1 that an agent’s risk attitude can be understood as describing his pref-
erence between a sure payment and a gamble with the same expected value. (Risk-
averse agents prefer the sure thing; risk-neutral agents are indifferent; risk-seeking
agents prefer to gamble.)

To illustrate how revenue equivalence breaks down when agents are not risk-
neutral, consider an auction environment involvingn bidders with IPV valuations
drawn uniformly from[0, 1]. Bidderi, having valuationvi, must decide whether
he would prefer to engage in a first-price auction or a second-price auction. Regard-
less of which auction he chooses (presuming that he, along with the other bidders,
follows the chosen auction’s equilibrium strategy),i knows that he will gain pos-
itive utility only if he has the highest utility. In the case of the first-price auction,
i will always gain 1

n
vi when he has the highest valuation. In the case of having

the highest valuation in a second-price auctioni’s expectedgain will be 1
n
vi, but

because he will pay the second-highest actual bid, the amount ofi’s gain will vary
based on the other bidders’ valuations. Thus, in choosing between the first-price
and second-price auctions and conditioning on the belief that he will have the high-
est valuation,i is presented with the choice between a sure payment and a risky
payment with the same expected value. Ifi is risk averse, he will value the sure
payment more highly than the risky payment, and hence will bid more aggressively
in the first-price auction, causing it to yield the auctioneer a higher revenue than

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 341

the second-price auction. (Note that it isi’s behavior in thefirst-priceauction that
will change: the second-price auction has the same dominant strategy regardless of
i’s risk attitude.) Ifi is risk seeking he will bidlessaggressively in the first-price
auction, and the auctioneer will derive greater profit from holding a second-price
auction.

The strategic equivalence of Dutch and first-price auctions continues to hold un-
der different risk attitudes; likewise, the (weaker) equivalence of Japanese, English,
and second-price auctions continues to hold as long as bidders have IPV valuations.
These conclusions are summarized in Table 11.1.

Risk-neutral, IPV
Jap

=
Eng

=
2nd

=
1st

=
DutchRisk-averse, IPV = = < =

Risk-seeking, IPV = = > =

Table 11.1: Relationships between revenues of various single-good auction proto-
cols.

A similar dynamic holds if the bidders are all risk neutral, but theseller is ei-
ther risk averse or risk seeking. The variations in bidders’ payments are greater
in second-price auctions than they are in first-price auctions, because the former
depends on the two highest draws from the valuation distribution, while the latter
depends on only the highest draw. However, these payments have the same expec-
tation in both auctions. Thus, a risk-averse seller would prefer to hold a first-price
auction, while a risk-seeking seller would prefer to hold a second-price auction.

11.1.7 Auction variations

In this section we consider three variations on our auction model. First, we consider
reverse auctions, in which one buyer accepts bids from a set of sellers. Second, we
discuss the effect of entry costs on equilibrium strategies. Finally, we consider
auctions with uncertain numbers of bidders.

Reverse auctions

So far, we have considered auctions in which there is one seller and a set of buyers.
What about the opposite: an environment in which there is one buyer and a set of
sellers? This is what occurs when a buyer engages in arequest for quote(RFQ).request for quote
Broadly, this is called areverse auction, because in its open-outcry variety this

reverse auction scenario involves prices that descend rather than ascending.
It turns out that everything that we have said about auctions also applies to re-

verse auctions. Reverse auctions are simply auctions in which we substitute the
word “seller” for “buyer” and vice versa and furthermore, negate all numbers in-
dicating prices or bid amounts. Because of this equivalence we will not discuss
reverse auctions any further; note, however, that our concentration on (nonreverse)
auctions is without loss of generality.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

342 11 Protocols for Multiagent Resource Allocation: Auctions

Auctions with entry costs

A second auction variationdoescomplicate things, though we will not analyze it
here. This is the introduction of anentry costto an auction. Imagine that a first-entry cost
price auction cost $1 to attend. How should bidders decide whether or not to attend,
and then how should they decide to bid given that they’re no longer sure how many
other bidders will have chosen to attend? This is a realistic way of augmenting
our auction model: for example, it can be used to model the cost of researching an
auction, driving (or navigating a Web browser) to it, and spending the time to bid.
However, it can make equilibrium analysis much more complex.

Things are straightforward for second-price (or, for IPV valuations, Japanese
and English) auctions. To decide whether to participate, bidders must evaluate
their expected gain from participation. This means that the equilibrium strategy in
these auctions nowdoesdepend on the distribution of other agents’ valuations and
on the number of these agents. The good news is that, once they have decided to
bid, it remains an equilibrium for bidders to bid truthfully.

In first-price auctions (and, generally, other auctions that do not have a dominant-
strategy equilibrium) auctions with entry costs are harder—though certainly not
impossible—to analyze. Again, bidders must make a trade-off between their ex-
pected gain from participating in the auction and the cost of doing so. The com-
plication here is that, since he is uncertain about other agents’ valuations, a given
bidder will thus also be uncertain about the number of agents who will decide that
participating in the auction is in their interest. Since an agent’s equilibrium strategy
given that he has chosen to participate depends on the number of other participat-
ing agents, this makes that equilibrium strategy more complicated to compute. And
that, in turn, makes it more difficult to determine the agent’s expected gain from
participating in the first place.

Auctions with uncertain numbers of bidders

Our standard model of auctions has presumed that the number of bidders is com-
mon knowledge. However, it may be the case that bidders are uncertain about the
number of competitors they face, especially in a sealed-bid auction or in an auc-
tion held over the internet. The preceding discussion of entry costs gave another
example of how this could occur. Thus, it is natural to elaborate our model to al-
low for the possibility that bidders might be uncertain about the number of agents
participating in the auction.

It turns out that modeling this scenario is not as straightforward as it might ap-
pear. In particular, one must be careful about the fact that bidders will be able to
update theirex antebeliefs about the total number of participants by conditioning
on the fact of their own selection, and thus may lead to a situation in which bid-
ders’ beliefs about the number of participants may be asymmetric. (This can be
especially difficult when the model does not place an upper bound on the number
of agents who can participate in an auction.) We will not discuss these modeling

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 343

issues here; interested readers should consult the notes at the end of the chapter.
Instead, simply assume that the bidders hold symmetric beliefs, each believing that
the probability that the auction will involvej bidders isp(j).

Because the dominant strategy for bidding in second-price auctions does not
depend on the number of bidders in the auction, it still holds in this environment.
The same is not true of first-price auctions, however. LetF (v) be a cumulative
probability density function indicating the probability that a bidder’s valuation is
greater than or equal tov, and letbe(vi, j) be the equilibrium bid amount in a
(classical) first-price auction withj bidders, for a bidder with valuationj. Then
the symmetric equilibrium of a first-price auction with an uncertain number of
bidders is

b(vi) =
∞∑

j=2

F j−1(vi)p(j)∑∞

k=2 F
k−1(vi)p(k)

be(vi, j).

Interestingly, because the proof of the revenue equivalencetheorem does not
depend on the number of agents, that theorem applies directly to this environment.
Thus, in this stochastic environment the seller’s revenue is the same when she runs
a first-price and a second-price auction. The revenue equivalence theorem can thus
be used to derive the strategy above.

11.1.8 “Optimal” (revenue-maximizing) auctions

So far in our theoretical analysis we have considered only those auctions in which
the good is allocated to the high bidder and the seller imposes no reserve price.
These assumptions make sense, especially when the seller wants to ensureeco-
nomic efficiency—that is, that the bidder who values the good most gets it. How-
ever, we might instead believe that the seller does not care who gets the good, but
rather seeks to maximize her expected revenue. In order to do so, she may be
willing to risk failing to sell the good even when there is an interested buyer, and
furthermore might be willing sometimes to sell to a buyer who did not make the
highest bid, in order to encourage high bidders to bid more aggressively. Mech-
anisms that are designed to maximize the seller’s expected revenue are known as
optimal auctions.optimal auction

Consider an IPV setting where bidders are risk neutral and each bidderi’s val-
uation is drawn from some strictly increasing cumulative density functionFi(v),
having probability density functionfi(v). Note that we allow for the possibility
thatFi 6= Fj : bidders’ valuations can come from different distributions. Such
interactions are calledasymmetric auctions. We do assume that the seller knowsasymmetric

auction the distribution from which each individual bidder’s valuation is drawn and hence
is able to distinguish strong bidders from weak bidders.

Define bidderi’s virtual valuationasvirtual valuation

ψi(vi) = vi −
1− Fi(vi)

fi(vi)
,

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

344 11 Protocols for Multiagent Resource Allocation: Auctions

and assume that the valuation distribution is such that eachψi is increasing invi.
Also define an agent-specific reserve pricer∗i as the value for whichψi(r

∗
i) = 0.

The optimal (single-good) auction is a sealed-bid auction in which every agent
is asked to declare his true valuation. These declarations are used to compute a
virtual (declared) valuation for each agent. The good is sold to the agenti whose
virtual valuationψi(v̂i) is the highest, as long as this value is positive (i.e., the
agent’s declared valuationvi exceeds his reserve pricer∗i). If every agent’s virtual
valuation is negative, the seller keeps the good and achieves a revenue of zero. If
the good is sold, the winning agenti is charged the smallest valuation that he could
have declared while still remaining the winner:inf{v∗i : ψi(v

∗
i) ≥ 0 and∀j 6=

i, ψi(v
∗
i) ≥ ψj(v̂j)}.

How would bidders behave in this auction? Note that it can be understood as a
second-price auction with a reserve price, held in virtual valuation space rather than
in the space of actual valuations. However, since neither the reserve prices nor the
transformation between actual and virtual valuations depends on the agent’s decla-
ration, the proof that a second-price auction is dominant-strategy truthful applies
here as well, and hence the optimal auction remains strategy-proof.

We began this discussion by introducing a new assumption: that different bid-
ders’ valuations could be drawn from different distributions. What happens when
this does not occur, and instead all bidders’ valuations come from the same distri-
bution? In this case, the optimal auction has a simpler interpretation: it is simply
a second-price auction (without virtual valuations) in which the seller sets a re-
serve pricer∗ at the value that satisfiesr∗ − 1−Fi(r

∗)

fi(r∗)
= 0. For this reason, it

is common to hear the claim that optimal auctions correspond to setting reserve
prices optimally. It is important to recognize that this claim holds only in the case
of symmetricIPV valuations. In the asymmetric case, the virtual valuations can
be understood as artificially increasing the amount of weak bidders’ bids in order
to make them more competitive. This sacrifices efficiency, but more than makes
up for it on expectation by forcing bidders with higher expected valuations to bid
more aggressively.

Although optimal auctions are interesting from a theoretical point of view, they
are rarely to never used in practice. The problem is that they are notdetail free:detail-free

auction they require the seller to incorporate information about the bidders’ valuation dis-
tributions into the mechanism. Such auctions are often considered impractical;
famously, theWilson doctrineurges auction designers to consider only detail freeWilson doctrine
mechanisms. With this criticism in mind, it is interesting to ask the following ques-
tion. In a symmetric IPV setting, is it better for the auctioneer to set an optimal
reserve price (causing the auction to depend on the bidders’ valuation distribution)
or to attract one additional bidder to the auction? Interestingly, the auctioneer is
better off in the latter case. Intuitively, an extra bidder is similar to a reserve price
in the sense that his addition to the auction increases competition among the other
bidders, but differs because he can also buy the good himself. This suggests that
trying to attract as many bidders as possible (by, among other things, running an
auction protocol with which bidders are comfortable) may be more important than

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 345

trying to figure out the bidders’ valuation distributions in order to run an optimal
auction.

11.1.9 Collusion

Since we have seen that an auctioneer can increase her expected revenue by increas-
ing competition among bidders, it is not surprising that bidders, conversely, can
reduce their expected payments to the auctioneer by reducing competition among
themselves. Such cooperation between bidders is calledcollusion. Collusion iscollusion
usually illegal; interestingly, however, it is also notoriously difficult for agents to
pull off. The reason is conceptually similar to the situation faced by agents play-
ing the Prisoner’s Dilemma (see Section 3.4.3): while a given agent is better off
if everyone cooperates than if everyone behaves selfishly, he isevenbetter off if
everyone else cooperates and he behaves selfishly himself. An interesting question
to ask about collusion, therefore, is which collusive protocols have the property
that agents will gain by colluding while being unable to gain further by deviating
from the protocol.

Second-price auctions

First, consider a protocol for collusion in second-price (or Japanese/English) auc-
tions. We assume that a set of two or more colluding agents is chosen exogenously;
this set of agents is called acartelor abidding ring. Assume that the agents are riskcartel

bidding ring
neutral and have IPV valuations. It is sometimes necessary (as it is in this case) to
assume the existence of an agent who is not interested in the good being auctioned,
but who serves to run the bidding ring. This agent does not behave strategically,
and hence could be a simple computer program. We will refer to this agent as the
ring center. Observe that there may be agents who participate in the main auc-ring center
tion and do not participate in the cartel; there may even be multiple cartels. The
protocol follows.

1. Each agent in the cartel submits a bid to the ring center.

2. The ring center identifies the maximum bid that he received,v̂r
1; he submits this

bid in the main auction and drops the other bids. Denote the highest dropped
bid asv̂r

2.

3. If the ring center’s bid wins in the main auction (at the second-highest price in
that auction,̂v2), the ring center awards the good to the bidder who placed the
maximum bid in the cartel and requires that bidder to paymax(v̂2, v̂

r
2).

4. The ring center gives every agent who participated in the bidding ring a payment
of k, regardless of the amount of that agent’s bid and regardless of whether or
not the cartel’s bid won the good in the main auction.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

346 11 Protocols for Multiagent Resource Allocation: Auctions

How should agents bid if they are faced with this bidding ring protocol? First
of all, consider the case wherek = 0. Here it is easy to see that this protocol
is strategically equivalent to a second-price auction in a world where the bidder’s
cartel does not exist. The high bidder always wins, and always pays the globally
second-highest price (the max of the second-highest prices in the cartel and in the
main auction). Thus the auction is dominant-strategy truthful, and agents have no
incentive to cheat each other in the bidding ring’s “preauction.” At the same time,
however, agents also do not gain by participating in the bidding ring: they would
be just as happy if the cartel disbanded and they had to bid directly in the main
auction.

Although fork = 0 the situation with and without the bidding ring is equivalent
from the bidders’ point of view, it is different from the point of view of the ring cen-
ter. In particular, with positive probabilitŷvr

2 will be the globally second-highest
valuation, and hence the ring center will make a profit. (He will payv̂2 for the good
in the main auction, and will be paid̂vr

2 > v̂2 for it by the winning bidder.) Let
c > 0 denote the ring center’s expected profit. If there arenr agents in the bidding
ring, the ring center could pay each agent up tok = c

nr
and still budget balance

on expectation. For values ofk smaller than this amount but greater than zero, the
ring center will profit on expectation while still giving agents a strict preference for
participation in the bidding ring.

How are agents able to gain in this setting—doesn’t the revenue equivalence
theorem say that their gains should be the same in all efficient auctions? Observe
that the agents’ expected payments are in fact unchanged, although not all of this
amount goes to the auctioneer. What does change is the unconditional payment that
every agent receives from the ring center. The second condition of the revenue-
equivalence theorem states that a bidder with the lowest possible valuation must
receive zero expected utility. This condition is violated under our bidding ring
protocol, in which such an agent has an expected utility ofk.

First-price auctions

The construction of bidding ring protocols is much more difficult in the first-price
auction setting. This is for a number of reasons. First, in order to make a lower
expected payment, the winner must actually place a lower bid. In a second-price
auction, a winner can instead persuade the second-highest bidder to leave the auc-
tion and make the same bid he would have made anyway. This difference matters
because in the second-price auction the second-highest bidder has no incentive to
renege on his offer to drop out of the auction; by doing so, he can only make the
winner pay more. In the first-price auction, the second-highest bidder could trick
the highest bidder into bidding lower by offering to drop out, and then could still
win the good at less than his valuation. Some sort of enforcement mechanism is
therefore required for punishing cheaters. Another problem with bidding rings for
first-price auctions concerns how we model what noncolluding bidders know about
the presence of a bidding ring in their auction. In the second-price auction we were

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 347

able to gloss over this point: the noncolluding agents did not care whether other
agents might have been colluding, because their dominant strategy was indepen-
dent of the number of agents or their valuation distributions. (Observe that in our
previous protocol, if the cumulative density function of bidders’ valuation distribu-
tion wasF , the ring center could be understood as an agent with a valuation drawn
from a distribution with CDFF nr .) In a first-price auction, the number of bidders
and their valuation distributions matter to bidders’ equilibrium strategies. If we
assume that bidders know the true number of bidders, then a collusive protocol in
which bidders are dropped does not make much sense. (The strategies of other
bidders in the main auction would be unaffected.) If we assume that noncolluding
bidders follow the equilibrium strategy based on the number of bidders who actu-
ally bid in the main auction, bidder-dropping collusion does make sense, but the
noncolluding bidders no longer follow an equilibrium strategy. (They would gain
on expectation if they bid more aggressively.)

For the most part, the literature on collusion has sidestepped this problem by con-
sidering first-price auctions only under the assumption that alln bidders belong to
the cartel. In this setting, two kinds of bidding ring protocols have been proposed.

The first assumes that the same bidders will have repeated opportunities to col-
lude. Under this protocol all bidders except one are dropped, and this bidder bids
zero (or the reserve price) in the main auction. Clearly, other bidders could gain
by cheating and also placing bids in the main auction; however, they are dissuaded
from doing so by the threat that if they cheat, the cartel will be disbanded and they
will lose the opportunity to collude in the future. Under appropriate assumptions
about agents’ discount rates (their valuations for profits in the future), their number,
their valuation distribution, and so on, it can be shown that it constitutes an equilib-
rium for agents to follow this protocol. A variation on the protocol, which works
almost regardless of the values of these variables, has the other agents forever pun-
ish any agent who cheats, following a grim trigger strategy (see Section 6.1.2).

The second protocol works in the case of a single, unrepeated, first-price auction.
It is similar to the protocol introduced in the previous section.

1. Each agent in the cartel submits a bid to the ring center.

2. The ring center identifies the maximum bid that he received,v̂1. The bidder
who placed this bid must pay the full amount of his bid to the ring center.

3. The ring center bids in the main auction at0. Note that the bidding ring always
wins in the main auction as there are no other bidders.

4. The ring center gives the good to the bidder who placed the winning bid in the
preauction.

5. The ring center pays every bidder other than the winner1
n−1

v̂1.

Observe that this protocol can be understood as holding a first-price auction
for the right to bid the reserve price in the main auction, with the profits of this

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

348 11 Protocols for Multiagent Resource Allocation: Auctions

preauction split evenly among the losing bidders. (We here assume a reserve price
of zero; the protocol can easily be extended to work for other reserve prices.) Let
bn+1(vi) denote the amount that bidderi would bid in the (standard) equilibrium
of a first-price auction with a total ofn+ 1 bidders. The symmetric equilibrium of
the bidding ring preauction is for each bidderi to bid

v̂i =
n− 1

n
bn+1(vi).

Demonstrating this fact is not trivial; details can be found in the paper cited at the
end of the chapter. Here we point out only the following. First, then−1

n
factor

has nothing to with the equilibrium bid amount for first-price auctions with a uni-
form valuation distribution; indeed, the result holds for any valuation distribution.
Rather, it can be interpreted as meaning that each bidder offers to pay everyone
else 1

n
bn+1(vi), and thereby also to gain utility of1

n
bn+1(vi) for himself. Sec-

ond, although the equilibrium strategy depends onbn+1, there are really onlyn
bidders. Finally, observe that this mechanism is budget balanced (i.e., not just on
expectation).

11.1.10 Interdependent values

So far, we have only considered the independent private values (IPV) setting. As
we discussed earlier, this setting is reasonable for domains in which the agents’
valuations are unrelated to each other, depending only on their own signals—for
example, because an agent is buying a good for his own personal use. In this
section, we discuss different models, in which agents’ valuations depend on both
their own signals and other agents’ signals.

Common values

First of all, we discuss thecommon value(CV) setting, in which all agents valuecommon value
the good at exactly the same amount. The twist is that the agents do not know
this amount, though they have (common) prior beliefs about its distribution. Each
agent has a private signal about the value, which allows him to condition his prior
beliefs to arrive at a posterior distribution over the good’s value.6

For example, consider the problem of buying the rights to drill for oil in a particu-
lar oil field. The field contains some (uncertain but fixed) amount of oil, the cost of
extraction is about the same no matter who buys the contract, and the value of the
oil will be determined by the price of oil when it is extracted. Given publicly avail-
able information about these issues, all oil drilling companies have the same prior

6. In fact, most of what we say in this section also applies to a much more general valuation model in which
each bidder may value the good differently. Specifically, in this model each bidder receives a signal drawn
independently from some distribution, and bidderi’s valuation for the good is some arbitrary function of
all of the bidders’ signals, subject to a symmetry condition that states thati’s valuation does not depend
on which other agents received which signals. We focus here on the common value model to simplify the
exposition.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.1 Single-good auctions 349

distribution over the value of the drilling rights. The difference between agents is
that each has different geologists who estimate the amount of oil and how easy it
will be to extract, and different financial analysts who estimate the way oil markets
will perform in the future. These signals cause agents to arrive at different posterior
distributions over the value of the drilling rights, based on which, each agenti can
determine an expected valuevi. How can this valuevi be interpreted? One way
of understanding it is to note that if a single agenti was selected at random and
offered a take-it-or-leave-it offer to buy the drilling contract for pricep, he would
achieve positive expected utility by accepting the offer if and only ifp < vi.

Now consider what would happen if these drilling rights were sold in a second-
price auction amongk risk-neutral agents. One might expect that each bidderi
ought to bidvi. However, it turns out that bidders would achieve negative expected
utility by following this strategy.7 How can this be—didn’t we previously claim
that i would be happy to pay any amount up tovi for the rights? The catch is
that, since the value of the good to each bidder is the same, each bidder cares as
much aboutother bidders’ signals as he does about his own. When he finds out
that he won the second-price auction, the winning bidder also learns that he had the
most optimistic signal. This information causes him to downgrade his expectation
about the value of the drilling rights, which can make him conclude that he paid
too much! This phenomenon is called thewinner’s curse.winner’s curse

Of course, the winner’s curse does not mean that in the CV setting the winner of
a second-price auction always pays too much. Instead, it goes to show that truth
telling is no longer a dominant strategy (or, indeed, an equilibrium strategy) of
the second-price auction in this setting. There is still an equilibrium strategy that
bidders can follow in order to achieve positive expected utility from participating
in the auction; this simply requires the bidders to consider how they would update
their beliefs on finding that they were the high bidder. The symmetric equilibrium
of a second-price auction in this setting is for each bidderi to bid the amountb(vi)
at which, if the second-highest bidder also happened to have bid b(vi), i would
achieve zero expected gain for the good, conditioned on the two highest signals
both beingvi.8 We do not prove this result—or even state it more formally—as
doing so would require the introduction of considerable notation.

What about auctions other than second-price in the CV setting? Let us consider
Japanese auctions, recalling from Section 11.1.3 that the this auction can be used
as a model of the English auction for theoretical analysis. Here the winner of
the auction has the opportunity to learn more about his opponents’ signals, by
observing the time steps at which each of them drops out of the auction. The winner
will thus have the opportunity to condition his strategy on each of his opponents’
signals, unless all of his opponents drop out at the same time. Let us assume
that the sequence of prices that will be called out by the auctioneer is known: the

7. As it turns out, we can make this statement only because we assumed thatk > 2. For the case of exactly
two bidders, biddingvi is the right thing to do.
8. We do not need to discuss how ties are broken sincei achieves zero expected utility whether he wins or
loses the good.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

350 11 Protocols for Multiagent Resource Allocation: Auctions

tth price will be pt. The symmetric equilibrium of a Japanese auction in the CV
setting is as follows. At each time stept, each agenti computes the expected
utility of winning the goodvi,ti

, given what he has learned about the signals of
opponents who dropped out in previous time steps, and assuming that all remaining
opponents drop out at the current time step. (Bidders can determine the signals of
opponents who dropped out, at least approximately, by inverting the equilibrium
strategy to determine what opponents’ signals must have been in order for them
to have dropped out when they did.) Ifvi,ti

> pt+1, then if all remaining agents
actually did drop out at timet and madei the winner at timet + 1, i would gain
on expectation. Thus,i remains in the auction at timet if vi,ti

> pt+1, and drops
out otherwise.

Observe that the stated equilibrium strategy is different from the strategy given
above for second-price auctions: thus, while second-price and Japanese auctions
are strategically equivalent in the IPV case, this equivalence does not hold in CV
domains.

Affiliated values and revenue comparisons

The common value model is generalized by another valuation model calledaffili-
ated values, which permits correlations between bidders’ signals. For example, thisaffiliated values
latter model can describe cases where a bidder’s valuation is divided into a private-
value component (e.g., the bidder’s inherent value for the good) and a common-
value component (e.g., the bidder’s private, noisy signal about the good’s resale
value). Technically, we say that agents have affiliated values when a high value of
one agent’s signal increases the probability that other agents will have high signals
as well. A thorough treatment is beyond the scope of this book; however, we make
two observations here.

First, in affiliated values settings generally—and thus in common-value settings
as a special case—Japanese (and English) auctions lead to higher expected prices
than sealed-bid second-price auctions. Even lower is the expected revenue from
first-price sealed-bid auctions. The intuition here is that the winner’s gain depends
on the privacy of his information. The more the price paid depends on others’ infor-
mation (rather than on expectations of others’ information), the more closely this
price is related to the winner’s information, since valuations are affiliated. As the
winner loses the privacy of his information, he can extract a smaller “information
rent,” and so must pay more to the seller.

Second, this argument leads to a powerful result known as thelinkage princi-
ple. If the seller has access to any private source of information that she knowslinkage principle
is affiliated with the bidders’ valuations, she is better off precommitting to reveal
it honestly. Consider the example of an auction of used cars, where the quality
of each car is a random variable about which the seller, and each bidder, receives
some information. The linkage principle states that the seller is better off commit-
ting to declare everything she knows about each car’s defects before the auctions,
even though this will sometimes lower the price at which she will be able to sell

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.2 Multiunit auctions 351

an individual car. The reason the seller gains by this disclosure is that making her
information public also reveals information about the winner’s signal and hence
reduces his ability to charge information rent. Note that the seller’s “commitment
power” is crucial to this argument. Bidders are only affected in the desired way if
the seller is able to convince them that she will always tell the truth, for example,
by agreeing to subject herself to an audit by a trusted third party.

11.2 Multiunit auctions

We have so far considered the problem of selling a single good to one winning
bidder. In practice there will often be more than one good to allocate, and different
goods may end up going to different bidders. Here we considermultiunit auctions,multiunit

auctions in which there is still only onekind of good available, but there are now multiple
identical copies of that good. (Think of new cars, tickets to a movie, MP3 down-
loads, or shares of stock in the same company.) Although this setting seems like
only a small step beyond the single-item case we considered earlier, it turns out
that there is still a lot to be said about it.

11.2.1 Canonical auction families

In Section 11.1.1 we surveyed some canonical single-good auction families. Here
we review the same auctions, explaining how each can be extended to the multiunit
case.

Sealed-bid auctions

Overall, sealed-bid auctions in multiunit settings differ from their single-unit cousins
in several ways. First, consider payment rules. If there are three items for sale, and
each of the top three bids requests a single unit, then each bid will win one good.
In general, these bids will offer different amounts; the question is what each bidder
should pay. In the pay-your-bid scheme (the so-calleddiscriminatory pricing rule)discriminatory

pricing rule each of the three top bidders pays a different amount, namely, his own bid. This
rule therefore generalizes the first-price auction. Under theuniform pricing ruleall

uniform pricing
rule

winners pay the same amount; this is usually either the highest among the losing
bids or the lowest among the winning bids.

Second, instead of placing a single bid, bidders generally have to provide a price
offer for every number of units. If a bidder simply names one number of units and
is unwilling to accept any fewer, we say he has placed anall-or-nothing bid. If heall-or-nothing

bid names one number of units but will accept any smaller number at the same price-
per-unit we call the biddivisible. We investigate some richer ways for bidders todivisible bid
specify multiunit valuations towards the end of Section 11.2.3.

Finally, tie-breaking can be tricky when bidders place all-or-nothing bids. For
example, consider an auction for 10 units in which the highest bids are as follows,
all of them all-or-nothing: 5 units for $20/unit, 3 units for $15/unit, 5 units for

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

352 11 Protocols for Multiagent Resource Allocation: Auctions

$15/unit, and 1 unit for $15/unit. Presumably, the first bid should be satisfied,
as well as two of the remaining three—but which? Here one sees different tie-
breaking rules—by quantity (larger bids win over smaller ones), by time (earlier
bids win over later bids), and combinations thereof.

English auctions

When moving to the multiunit case, designers of English auctions face all of the
problems discussed above. However, since bidders can revise their offers from one
round to the next, multiunit English auctions rarely ask bidders to specify more
than one number of units along with their price offer. Auction designers still face
the choice of whether to treat bids as all-or-nothing or divisible. Another subtlety
arises when you consider minimum increments. Consider the following example,
in which there is a total of 10 units available, and two bids: one for 5 units at
$1/unit, and one for 5 units at $4/unit. What is the lowest acceptable next bid?
Intuitively, it depends on the quantity—a bid for 3 units at $2/unit can be satisfied,
but a bid for 7 units at $2/unit cannot. This problem is avoided if the latter bid is
divisible, and hence can be partially satisfied.

Japanese auctions

Japanese auctions can be extended to the multiunit case in a similar way. Now
after each price increase each agent calls out a number rather than the simple in/out
declaration, signifying the number of units he is willing to buy at the current price.
A common restriction is that the number must decrease over time; the agent cannot
ask to buy more at a high price than he did at a lower price. The auction is over
when the supply equals or exceeds the demand. Different implementations of this
auction variety differ in what happens if supply exceeds demand: all bidders can
pay the last price at which demand exceeded supply, with some of the dropped
bidders reinserted according to one of the tie-breaking schemes above; goods can
go unsold; one or more bidders can be offered partial satisfaction of their bids at
the previous price; and so on.

Dutch auctions

In multiunit Dutch auctions, the seller calls out descending per unit prices, and
agents must augment their signals with the quantity they wish to buy. If that is not
the entire available quantity, the auction continues. Here there are several options—
the price can continue to descend from the current level, can be reset to a set per-
centage above the current price, or can be reset to the original high price.

11.2.2 Single-unit demand

Let us now investigate multiunit auctions more formally, starting with a very simple
model. Specifically, consider a setting withk identical goods for sale and risk-

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.2 Multiunit auctions 353

neutral bidders who want only1 unit each and have independent private values for
these single units. Observe that restricting ourselves to this setting gets us around
some of the tricky points above such as complex tie breaking.

We saw in Section 11.1.3 that the VCG mechanism can be applied to provide
useful insight into auction problems, yielding the second-price auction in the single-
good case. What sort of auction does VCG correspond to in our simple multiunit
setting? (You may want to think about this before reading on.) As before, since we
will simply apply VCG, the auction will be efficient and dominant-strategy truthful;
since the market is one-sided it will also satisfyex postindividual rationality and
weak budget balance. The auction mechanism is to sell the units to thek highest
bidders for the same price, and to set this price at the amount offered by the highest
losing bid. Thus, instead of a second-price auction we have ak+ 1st-price auction.

One immediate observation that we can make about this auction mechanism is
that a seller will not necessarily achieve higher profits by selling more units. For
example, consider the valuations in Table 11.2.

Bidder Bid amount

1 $25
2 $20
3 $15
4 $8

Table 11.2: Example valuations in a single-unit demand multiunit auction.

If the seller were to offer only a single unit using VCG, he would receive revenue
of $20. If he offered two units, he would receive $30: less than before on a per unit
basis, but still more revenue overall. However, if the seller offered three units he
would achieve total revenue of only $24, and if he offered four units he would get
no revenue at all. What is going on? The answer points to something fundamental
about markets. A dominant-strategy, efficient mechanism can use nothing but los-
ing bidders’ bids to set prices, and as the seller offers more and more units, there
will necessarily be a weaker and weaker pool of losing bidders to draw upon. Thus
the per unit price will weakly fall as the seller offers additional units for sale, and
depending on the bidders’ valuations, his total revenue can fall as well. What can
be done to fix this problem? As we saw for the single-good case in Section 11.1.8,
the seller’s revenue can be increased on expectation by permitting inefficient alloca-
tions, for example, by using knowledge of the valuation distribution to set reserve
prices. In the preceding example, the seller’s revenue would have been maximized
if he had been lucky enough to set a $15 reserve price. (To see how the auction
behaves in this case, think of the reserve price simply ask additional bids placed in
the auction by the seller.) However, these tactics only go so far. In the end, the law
of supply and demand holds—as the supply goes up, the price goes down, since
competition between bidders is reduced. We will return to the importance of this

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

354 11 Protocols for Multiagent Resource Allocation: Auctions

idea for multiunit auctions in Section 11.2.4.
Thek + 1st-price auction can be contrasted with another popular payment rule,

used for example in a multiunit English auction variant by the online auction site
eBay. In this auction bidders are charged the lowest winning bid rather than the
highest losing bid.9 This has the advantage that winning bidders always pay a
nonzero amount, even when there are fewer bids than there are units for sale. In
essence, this makes the bidders’ strategic problem somewhat harder (the lowest
winning bidder is able to improve his utility by bidding dishonestly, and so overall,
bidders no longer have dominant strategies) in exchange for making the seller’s
strategic problem somewhat easier. (While the seller can still lower his revenue by
selling too many units, he does not have to worry about the possibility of giving
them away for nothing.)

Despite such arguments for and against different mechanisms, as in the single-
good case, in some sense it does not matter what auction the seller chooses. This
is because the revenue equivalence theorem for that case (Theorem 11.1.4) can be
extended to cover multiunit auctions.10 The proof is similar, so we omit it.

Theorem 11.2.1 (Revenue equivalence theorem, multiunit version)Assume that
each ofn risk-neutral agents has an independent private valuation for a single
unit ofk identical goods at auction, drawn from a common cumulative distribution
F (v) that is strictly increasing and atomless on[v, v̄]. Then any efficient auction
mechanism in which any agent with valuationv has an expected utility of zero
yields the same expected revenue, and hence results in any bidder with valuation
vi making the same expected payment.

Thus all of the payment rules suggested in the previous paragraph must yield the
same expected revenue to the seller. Of course, this result holds only if we believe
that bidders are correctly described by the theorem’s assumptions (e.g., they are
risk neutral) and that they will play equilibrium strategies. The fact that auction
houses like eBay opt for non-dominant-strategy mechanisms suggests that these
beliefs may not always be reasonable in practice.

We can also use this revenue equivalence result to analyze another setting: re-
peated single-good auction mechanisms, or so-calledsequential auctions. For ex-sequential

auction ample, imagine a car dealer auctioning off a dozen new cars to a fixed set of bidders
through a sequence of second-price auctions. With a bit of effort, it can be shown
that for such an auction there is a symmetric equilibrium in which bidders’ bids
increase from one auction to the next, and in a given auction bidders with higher
valuations place higher bids. (To offer some intuition for the first of these claims,
bidders still have a dominant strategy to bid truthfully in the final auction. In previ-
ous auctions, bidders have positive expected utility after losing the auction, because

9. Confusingly, this multiunit English auction variant is sometimes called aDutch auction. This is a practice
to be discouraged; the correct use of the term is in connection with the descending open-outcry auction.
10. As before, we state a more restricted version of this revenue equivalence theorem than necessary. For
example, revenue equivalence holds forall pairs of auctions that share the same allocation rule (not just for
efficient auctions) and does not require our assumption of single-unit demand.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.2 Multiunit auctions 355

they can participate in future rounds. As the number of future rounds decreases, so
does this expected utility; hence in equilibrium bids rise.) We can therefore con-
clude that the auction is efficient, and thus by Theorem 11.2.1 each bidder makes
the same expected payment as under VCG. Thus there exists a symmetric equi-
librium in which bidders bid honestly in the final auctionk, and in each auction
j < k, each bidderi bids the expected value of thekth-highest of the other bidders’
valuations, conditional on the assumption that his valuationvi lies between the
jth-highest and thej + 1st-highest valuations. This makes sense because in each
auction the bidder who is correct in making this assumption will be the bidder who
places the second-highest bid and sets the price for the winner. Thus, the winner of
each auction will pay an unbiased estimate of the overallk+ 1st-highest valuation,
resulting in an auction that achieves the same expected revenue as VCG.

Very similar reasoning can be used to show that a symmetric equilibrium fork
sequentialfirst-price auctions is for each bidderi in each auctionj ≤ k to bid
the expected value of thekth-highest of the other bidders’ valuations, conditional
on the assumption that his valuationvi lies between thej − 1st-highest and the
jth-highest valuations. Thus, each bidder conditions on the assumption that he is
the highest bidder remaining; the bidder who is correct in making this assumption
wins, and hence pays an amount equal to the expected value of the overallk + 1st-
highest valuation.

11.2.3 Beyond single-unit demand

Now let us investigate how things change when we relax the restriction that each
bidder is only interested in a single unit of the good.

VCG for general multiunit auctions

How does VCG behave in this more general setting? We no longer have something
as simple as thek + 1st-price auction we encountered in Section 11.2.2. Instead,
we can say that all winning bidders who won the same number of units will pay the
same amount as each other. This makes sense because the change in social welfare
that results from dropping any one of these bidders will be the same. Bidders who
win different numbers of units will not necessarily pay the same per unit prices.
We can say, however, that bidders who win larger numbers of units will pay at least
as much (in total, though not necessarily per unit) as bidders who won smaller
numbers of units, as their impact on social welfare will always be at least as great.

VCG can also help us notice another interesting phenomenon in the general mul-
tiunit auction case. For all the auctions we have considered in this chapter so far,
it has always been computationally straightforward to identify the winners. In this
setting, however, the problem of finding the social-welfare-maximizing allocation
is computationally hard. Specifically, finding a subset of bids to satisfy that maxi-
mizes the sum of bidders’ valuations for them is equivalent to a weighted knapsack
problem, and hence is NP-complete.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

356 11 Protocols for Multiagent Resource Allocation: Auctions

Definition 11.2.2 (Winner determination problem (WDP)) Thewinner determi-
nation problem(WDP) for a general multiunit auction, wherem denotes the totalwinner

determination
problem, general
multiunit
auction

number of units available and̂vi(k) denotes bidderi’s declared valuation for be-
ing awardedk units, is to find the social-welfare-maximizing allocation of goods
to agents. This problem can be expressed as the following integer program.

maximize
∑

i∈N

∑

1≤k≤m

v̂i(k)xk,i (11.11)

subject to
∑

i∈N

∑

1≤k≤m

k · xk,i ≤ m (11.12)

∑

1≤k≤m

xk,i ≤ 1 ∀i ∈ N (11.13)

xk,i = {0, 1} ∀1 ≤ k ≤ m, i ∈ N (11.14)

This integer program uses a variablexk,i to indicate whether bidderi is allocated
exactlyk units, and then seeks to maximize the sum of agents’ valuations for the
chosen allocation in the objective function (11.11). Constraint (11.13) ensures that
no more than one of these indicator variables is nonzero for any bidder, and con-
straint (11.12) ensures that the total number of units allocated does not exceed the
number of units available. Constraint (11.14) requires that the indicator variables
are integral; it is this constraint that makes the problem computationally hard.

Representing multiunit valuations

We have assumed that agents can communicate their complete valuations to the
auctioneer. When a large number of units are available in an auction, this means
that bidders must specify a valuation for every number of units. In practice, it is
common that bidders would be provided with somebidding languagethat wouldbidding

language allow them to convey this same information more compactly.
Of course, the usefulness of a bidding language depends on the sorts of underly-

ing valuations that bidders will commonly want to express. A few common exam-
ples are the following.

• Additive valuation. The bidder’s valuation of a set is directly proportional to
the number of goods in the set, so thatvi(S) = c|S| for some constantc.

• Single item valuation. The bidder desires any single item, and only a single
item, so thatvi(S) = c for some constantc for all S 6= ∅.

• Fixed budget valuation.Similar to the additive valuation, but the bidder has a
maximum budget ofB, so thatvi(S) = min(c|S|, B).

• Majority valuation. The bidder values equally any majority of the goods, so
that

vi(S) =

{
1 if |S| ≥ m/2;
0 otherwise.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.2 Multiunit auctions 357

We can generalize all of these valuations to a general symmetric valuation.

• General symmetric valuation. Let p1, p2, . . . , pm be arbitrary nonnegative
prices, so thatpj specifies how much the bidder is willing to pay of thejth item
won. Then

vi(S) =

|S|∑

j=1

pj

• Downward sloping valuation. A downward sloping valuation is a symmetric
valuation in whichp1 ≥ p2 ≥ · · · ≥ pm.

11.2.4 Unlimited supply: random sampling auctions

Earlier, we suggested that MP3 downloads serve as a good example of a multiunit
good. However, they differ from the other examples we gave, such as new cars, in
an important way. This difference is that a seller of MP3 downloads can produce
additional units of the good at zero marginal cost, and hence has an effectively
unlimited supply of the good. This does not mean that the units have no value or
that the seller should give them away—after all, thefirst unit may be very expensive
to produce, requiring the seller to amortize this cost across the sale of multiple units.
What it does mean is that the seller will not face any supply restrictions other than
those she imposes herself.

We thus face the following multiunit auction problem: how should a seller
choose a multiunit auction mechanism for use in an unlimited supply setting if
she cares about maximizing her revenue? The goal will be finding an auction
mechanism that chooses among bids in a way that achieves good revenue without
artificially picking a specific number of goods to sell in advance, and also without
relying on distributional information about buyers’ valuations. We also want the
mechanism to be dominant-strategy truthful, individually rational, and weakly bud-
get balanced. Clearly, it will be necessary to artificially restrict supply (and thus
cause allocative inefficiency), because otherwise bidders would be able to win units
of the good in exchange for arbitrarily small payments. Although this assumption
can be relaxed, to simplify the presentation we will return to our previous assump-
tion that bidders are interested in buying at most one unit of the good.

The main insight that allows us to construct a mechanism for this case is that,
if we knewbidders’ valuations but had to offer the goods at the same price to all
bidders, it would be easy to compute the optimal single price.

Definition 11.2.3 (Optimal single price) Theoptimal single priceis calculated asoptimal single
price follows.

1. Order the bidders in descending order of valuation; letvi denote theith-highest
valuation.

2. Calculateopt ∈ arg maxi∈{1,...,n} i · vi.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

358 11 Protocols for Multiagent Resource Allocation: Auctions

3. The optimal single price isvopt.

Simply offering the good to the agents at the optimal single price is not a dominant-
strategy truthful mechanism: bidders would have incentive to misstate their valu-
ations. However, this procedure can be used as a building block to construct a
simple and powerful dominant-strategy truthful mechanism.

Definition 11.2.4 (Random sampling optimal price auction)Therandom sampling
optimal price auctionis defined as follows.random

sampling
optimal price
auction

1. Randomly partition the set of biddersN into two sets,N1 andN2 (i.e.,N =
N1 ∪N2; N1 ∩N2 = ∅; each bidder has probability 0.5 of being assigned to
each set).

2. Using the procedure above findp1 andp2, wherepi is the optimal single price
to charge the set of biddersNi.

3. Then set the allocation and payment rules as follows:

• For each bidderi ∈ N1, award a unit of the good if and only ifbi ≥ p2, and
charge the bidderp2;

• For each bidderj ∈ N2, award a unit of the good if and only ifbj ≥ p1, and
charge the bidderp1.

Observe that this mechanism follows the Wilson doctrine: it works even in the
absence of distributional information. Random sampling optimal price auctions
also have a number of other desirable properties.

Theorem 11.2.5Random sampling optimal price auctions are dominant-strategy
truthful, weakly budget balanced andex postindividually rational.

The proof of this theorem is left as an exercise to the reader. The proof of truth-
fulness is essentially the same as the proof of Theorem 11.1.1: bidders’ declared
valuations are used only to determine whether or not they win, but beyond serving
as a maximum price offer do not affect the price that a bidder pays. Of course the
random sampling auction is not efficient, as it sometimes refuses to sell units to
bidders who value them. The random sampling auction’s most interesting property
concerns revenue.

Theorem 11.2.6The random sampling optimal price auction always yields ex-
pected revenue that is at least a (1

4.68
) constant fraction of the revenue that would

be achieved by charging bidders the optimal single price, subject to the constraint
that at least two units of the good must be sold.

A host of other auctions have been proposed in the same vein, for example cov-
ering additional settings such as goods for which there is a limited supply of units.
(Here the trick is essentially to throw away low bidders so that the number of re-
maining bidders is the same as the number of goods, and then to proceed as before

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.2 Multiunit auctions 359

with the additional constraint that the highest rejected bid must not exceed the
single price charged to any winning bidder.) In this limited supply case, both the
random sampling optimal price auction and its more sophisticated counterparts can
achieve revenues much higher than VCG, and hence also higher than all the other
auctions discussed in Section 11.2.2. Other work considers theonline auctioncase,online auction
where bidders arrive one at a time and the auction must decide whether each bidder
wins or loses before seeing the next bid.

11.2.5 Position auctions

The last auction type we consider in this section goes somewhat beyond the mul-
tiunit auctions we have defined previously. Like multiunit auctions in the case of
single-unit demand,position auctionsnever allocate more than one item per bidderposition auction
and ask bidders to specify their preferences using a single real number. The wrinkle
is that these auctions sell a set of goods among which bidders are not indifferent:
one of a set of ordered positions. The motivating example for these auctions is the
sale of ranked advertisements on a page of search results. (For this reason, these
auctions are also calledsponsored search auctions.) Since the goods are not iden-
tical, we cannot consider them to be multiple units of the same good. In this sense
position auctions can be understood as combinatorial auctions, the topic of the Sec-
tion 11.3. Nevertheless, we choose to present them here because they have been
called multiunit auctions in the literature, and because their bidding and allocation
rules have a multiunit flavor.

Regardless of how we choose to classify them, position auctions are very impor-
tant. From a theoretical point of view they are interesting and have good properties
both in terms of incentives and computation. Practically speaking, major search
engines use them to sell many billions of dollars worth of advertising space annu-
ally, and indeed did so even before much was known about the auctions’ theoret-
ical properties. In these auctions, search engines offer a set of keyword-specific
“slots”—usually a list on the right-hand side of a page of search results—for sale
to interested advertisers. Slots are considered to be more valuable the closer they
are to the top of the page, because this affects their likelihood of being clicked by
a user. Advertisers place bids on keywords of interest, which are retained by the
system. Every time a user searches for a keyword on which advertisers have bid,
an auction is held. The outcome of this auction is a decision about which ads will
appear on the search results page and in which order. Advertisers are required to
pay only if a user clicks on their ad. Because sponsored search is the dominant
application of position auctions, we will use it as our motivating example here.

How should position auctions be modeled? The setting can be understood as
inducing an infinitely repeated Bayesian game, because a new auction is held every
time a user searches for a given keyword. However, researchers have argued that
it makes sense to study an unrepeated, perfect-information model of the setting.
The single-shot assumption is considered reasonable because advertisers tend to
value clicks additively (i.e., the value derived from a given user clicking on an ad

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

360 11 Protocols for Multiagent Resource Allocation: Auctions

is independent of how many other users clicked earlier), at least when advertisers
do not face budget constraints. The perfect-information assumption makes sense
because search engines allow bidders either to observe other bids or to figure them
out by probing the mechanism.

We now give a formal model. As before, letN be the set of bidders (advertisers),
and let vi be i’s (commonly known) valuation for getting a click. Letbi ∈ R+

denotei’s bid, and letb(j) denote thejth-highest bid, or 0 if there are fewer than
j bids. LetG = {1, . . . ,m} denote the set of goods (slots), and letαj denote
the expected number of clicks (theclick-through rate) that an ad will receive if it isclick-through

rate listed in theith slot. Observe that we assume thatα does not depend on the bidder’s
identity.

The generalized first-price auction was the first position auction to be used by
search engine companies.

Definition 11.2.7 (Generalized first-price auction)Thegeneralized first-price auc-
tion (GFP) awards the bidder with thejth-highest bid thejth slot. If bidder i’s adgeneralized

first-price
auction (GFP)

receives a click, he pays the auctioneerbi.

Unfortunately, these auctions do not always have pure-strategy equilibria, even
in the unrepeated, perfect-information case. For example, consider three bidders
1, 2, and3 who value clicks at$10, $4, and$2 respectively, participating in an
auction for two slots, where the probability of a click for the two slots isα1 = 0.5
andα2 = 0.25, respectively. Bidder2 needs to bid at least$2 to get a slot; suppose
he bids$2.01. Then bidder1 can win the top slot for a bid of$2.02. But bidder
2 could get the top slot for$2.03, increasing his expected utility. If the agents bid
by best responding to each other—as has indeed been observed in practice—their
bids will increase all the way up to bidder2’s valuation, at which point bidder2
will drop out, bidder1 will reduce his bid to bidder3’s valuation, and the cycle
will begin again.

The instability of bidding behavior under the GFP led to the introduction of the
generalized second-price auction, which is currently the dominant mechanism in
practice.

Definition 11.2.8 (Generalized second-price auction)Thegeneralized second-price
auction(GSP) awards the bidder with thejth-highest bid thejth slot. If bidder i’sgeneralized

second-price
auction (GSP)

ad is ranked in slotj and receives a click, he pays the auctioneerb(j+1).

The GSP is more stable than the GFP. Continuing the example from above, if all
bidders bid truthfully, then bidder1 would pay$4 per click for the first slot, bidder
2 would pay$2 per click for the second slot, and bidder3 would lose. Bidder1’s
expected utility would be0.5($10 − $4) = $3; if he bid less than$4 but more
than$2 he would pay$2 per click for the second slot and achieve expected utility
of 0.25($10 − $2) = $2, and if he bid even less then his expected utility would
be zero. Thus bidder1 prefers to bid truthfully in this example. If bidder2 bid
more than$10 then he would win the top slot for$10, and would achieve negative
utility; thus in this example bidder2 also prefers honest bidding.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 361

This example suggests a connection between the GSP and the VCG mecha-
nism. However, these two mechanisms are actually quite different, as becomes
clear when we apply the VCG formula to the position auction setting.

Definition 11.2.9 (VCG) In the position auction setting, theVCG mechanismawards
the bidder with thejth-highest bid thejth slot. If bidder i’s ad is ranked in slotj
and receives a click, he pays the auctioneer1

αj

∑m+1

k=j+1 b(k)(αk−1 − αk).

Intuitively, the key difference between the GSP and VCG is that the former does
not charge an agent his social cost, which depends on the differences between
click-through rates that other agents would receive with and without his presence.
Indeed, truthful bidding is not always a good idea under the GSP. Consider the
same bidders as in our running example, but change the click-through rate of slot
2 to α2 = 0.4. When all bidders bid truthfully we have already shown that bid-
der1 would achieve expected utility of$3 (this argument did not depend onα2).
However, if bidder1 changed his bid to$3, he would be awarded the second slot
and would achieve expected utility of0.4($10− $2) = $3.2. Thus the GSP is not
even truthful in equilibrium, let alone in dominant strategies.

Whatcanbe said about the equilibria of the GSP? Briefly, it can be shown that in
the perfect-information setting the GSP has many equilibria. The dynamic nature
of the setting suggests that the most stable configurations will belocally envy free:locally envy free
no bidder will wish that he could switch places with the bidder who won the slot
directly above his. There exists a locally envy-free equilibrium of the GSP that
achieves exactly the VCG allocations and payments. Furthermore, all other locally
envy-free equilibria lead to higher revenues for the seller, and hence are worse for
the bidders.

What about relaxing the perfect information assumption? Here, it is possible to
construct a generalizedEnglishauction that corresponds to the GSP, and to show
that this English auction has a unique equilibrium with various desirable proper-
ties. In particular, the payoffs under this equilibrium are again the same as the
VCG payoffs, and the equilibrium isex post(see Section 6.3.4), meaning that it is
independent of the underlying valuation distribution.

11.3 Combinatorial auctions

We now consider an even broader auction setting, in which a whole variety of dif-
ferent goods are available in the same market. This differs from the multiunit set-
ting because we no longer assume that goods are interchangeable. Switching to a
multigoodauction model is important when bidders’ valuations depend strongly on
which set of goods they receive. Some widely studied practical examples include
governmental auctions for the electromagnetic spectrum, energy auctions, corpo-
rate procurement auctions, and auctions for paths (e.g., shipping rights; bandwidth)
in a network.

More formally, let us consider a setting with a set of biddersN = {1, . . . , n} (as
before) and a set of goodsG = {1, . . . ,m}. Let v = (v1, . . . , vn) denote the true

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

362 11 Protocols for Multiagent Resource Allocation: Auctions

valuation functionsof the different bidders, where for eachi ∈ N , vi : 2G 7→ R.valuation
function There is a substantive assumption buried inside this definition: that there areno

externalities. (Indeed, we have been making this assumption almost continuouslyno externalities
since introducing quasilinear utilities in the previous chapter; however, this is a
good time to remind the reader of it.) Specifically, we have asserted that a bidder’s
valuation depends only on the set of goods he wins. This assumption is quite
standard; however, it does not allow us to model a bidder who also cares about the
allocations and payments of the other agents.

We will usually be interested in settings where bidders havenonadditive valu-
ation functions, for example valuing bundles of goods more than the sum of thenonadditive

valuation
functions

values for single goods. We identify two important kinds of nonadditivity. First,
when two items arepartial substitutesfor each other (e.g., a Sony TV and a Toshiba

partial
substitutes

TV, or, more partially, a CD player and an MP3 player), their combined value is
less than the sum of their individual values. Strengthening this condition, when
two items arestrict substitutestheir combined value is the same as the value for

strict substitutes either one of the goods. For example, consider two nontransferable tickets for seats
on the same plane. Sets of strictly substitutable goods can also be seen as multiple
units of a single good.

Definition 11.3.1 (Substitutability) Bidderi’s valuationvi exhibitssubstitutabil-
ity if there exist two sets of goodsG1, G2 ⊆ G, such thatG1 ∩ G2 = ∅ andsubstitutability
v(G1 ∪G2) < v(G1) + v(G2). When this condition holds, we say that the valua-
tion functionvi is subadditive.

The second form of nonadditivity we will consider iscomplementarity. This con-
dition is effectively the opposite of substitutability: the combined value of goods
is greater than the sum of their individual values. For example, consider a left shoe
and a right shoe, or two adjacent pieces of real estate.

Definition 11.3.2 (Complementarity) Bidderi’s valuationvi exhibitscomplemen-
tarity if there exist two sets of goodsG1, G2 ⊆ G, such thatG1 ∩ G2 = ∅ andcomplementarity
v(G1 ∪G2) > v(G1) + v(G2). When this condition holds, we say that the valua-
tion functionvi is superadditive.

How should an auctioneer sell goods when faced with such bidders? One ap-
proach is simply to sell the goods individually, ignoring the bidders’ valuations.
This is easy for the seller, but it makes things difficult for the bidders. In particu-
lar, it presents them with what is called theexposure problem: a bidder might bidexposure

problem aggressively for a set of goods in the hopes of winning a bundle, but succeed in
winning only a subset of the goods and therefore pay too much. This problem is
especially likely to arise in settings where bidders’ valuations exhibit strong com-
plementarities, because in these cases bidders might be willing to pay substantially
more for bundles of goods than they would pay if the goods were sold separately.

The next-simplest method is to run essentially separate auctions for the different
goods, but to connect them in certain ways. For example, one could hold a multi-
round (e.g., Japanese) auction, but synchronize the rounds in the different auctions

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 363

so that as a bidder bids in one auction he has a reasonably good indication of what is
transpiring in the other auctions of interest. This approach can be made more effec-
tive through the establishment of constraints on bidding that span all the auctions
(so-called activity rules). For example, bidders might be allowed to increase their
aggregate bid amount by only a certain percentage from one round to the next, thus
providing a disincentive for bidders to fail to participate in early rounds of the auc-
tion and thus improving the information transfer between auctions. Bidders might
also be subject to other constraints: for example a budget constraint could require
that a bidder not exceed a certain total commitment across all auctions. Both of
these ideas can be seen in some government auctions for electromagnetic spectrum
(where the so-calledsimultaneous ascending auctionwas used) as well as in somesimultaneous

ascending
auction

energy auctions. Despite some successes in practice, however, this approach has
the drawback that it only mitigates the exposure problem rather than eliminating it
entirely.

A third approach ties goods together in a more straightforward way: the auc-
tioneer sells all goods in a single auction, and allows bidders to bid directly on
bundles of goods. Such mechanisms are calledcombinatorial auctions. This ap-combinatorial

auction proach eliminates the exposure problem because bidders are guaranteed that their
bids will be satisfied “all or nothing.” For example a bidder may be permitted to
offer $100 for the pair (TV, DVD player), or to make a disjunctive offer “either
$100 for TV1 or $90 for TV2, but not both.” However, we will see that while com-
binatorial auctions resolve the exposure problem they raise many other questions.
Indeed, these auctions have been the subject of considerable recent study in both
economics and computer science, some of which we will describe in the remainder
of this section.

11.3.1 Simple combinatorial auction mechanisms

The simplest reasonable combinatorial auction mechanism isprobably the one in
which the auctioneer computes the allocation that maximizes the social welfare of
the declared valuations (i.e.,x = maxx∈X

∑
i∈N v̂i(x)), and charges the winners

their bids (i.e., for alli ∈ N , ℘i = v̂i). This is a direct generalization of the first-
price sealed-bid auction, and like it this naive auction is not incentive compatible.
Consider the following simple valuations in a combinatorial auction setting.

Bidder 1 Bidder 2 Bidder 3

v1(x, y) = 100 v2(x) = 75 v3(y) = 40
v1(x) = v1(y) = 0 v2(x, y) = v2(y) = 0 v3(x, y) = v3(x) = 0

This example makes it easy to show that the auction is not incentive compatible:
for example, if agents 1 and 2 bid truthfully, agent 3 is better off declaring, for
example,v3(y) = 26. Unfortunately, it is not apparent how to characterize the
equilibria of this auction using the techniques that worked in the single-good case:
we do not have a simple analytic expression that describes when a bidder wins the
auction, and we also lack a revenue equivalence theorem.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

364 11 Protocols for Multiagent Resource Allocation: Auctions

An obvious alternative is the method we applied most broadly in the multigood
case: VCG. In the example above, VCG would awardx to 2 andy to 3. Bidder 2
would pay 60; without him in the auction bidder 1 would have gotten both goods,
gaining 100 in value, while with bidder 2 in the auction the other bids only net a
total value of 40 (from goodx assigned to 3). Similarly, bidder 3 would pay 25;
the difference between 100 and 75. The reader can verify that no bidder can gain
by unilaterally deviating from truthful bidding, and that bidders strictly lose from
some deviations.

As in the multiunit case, VCG has some attractive properties when applied to
combinatorial auctions. Specifically, it is dominant-strategy truthful, efficient,ex
postindividual rational and weakly budget balanced (the latter by Theorems 10.4.8
and 10.4.10). The VCG combinatorial auction mechanism is not without shortcom-
ings, however, as we already discussed in Section 10.4.5. (Indeed, though we did
not discuss them above, most of these shortcomings also affect the use of VCG
in the multiunit case, and some even impact second-price single-good auctions.)
For example, a bidder who declares his valuation truthfully has two main reasons
to worry—one is that the seller will examine his bid before the auction clears and
submit a fake bid just below, thus increasing the amount that the agent would have
to pay if he wins. (This is a so-calledshill bid.) Another possibility is both hisshill bid
competitors and the seller will learn his true valuation and will be able to exploit
this information in a future transaction. Indeed, these two reasons are often cited as
reasons why VCG auctions are rarely seen in practice. Other issues include the fact
that VCG is vulnerable to collusion among bidders, and, conversely, to one bidder
masquerading as several different ones (so-calledpseudonymous biddingor false-pseudonymous

bidding name bidding). Perhaps the biggest potential hurdle, however, is computational,

false-name
bidding

and it is not specific to VCG. This is the subject of the next section.

11.3.2 The winner determination problem

Both our naive first-price combinatorial auction and the moresophisticated VCG
version share an element in common: given the agents’ individual declarations
v̂, they must determine the allocation of goods to agents that maximizes social
welfare. That is, we must computemaxx∈X

∑
i∈N v̂i(x). In single-good and

single-unit demand multiunit auctions this was simple—we just had to satisfy the
agent(s) with the highest valuation(s). In combinatorial auctions, as in the general
multiunit auctions we considered in Section 11.2.3, determining the winners is a
more challenging computational problem.

Definition 11.3.3 (Winner determination problem (WDP)) Thewinner determi-
nation problem(WDP) for a combinatorial auction, given the agents’ declared val-winner

determination
problem,
combinatorial
auction

uationsv̂, is to find the social-welfare-maximizing allocation of goods to agents.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 365

This problem can be expressed as the following integer program.

maximize
∑

i∈N

∑

S⊆G

v̂i(S)xS,i (11.15)

subject to
∑

S∋j

∑

i∈N

xS,i ≤ 1 ∀j ∈ G (11.16)

∑

S⊆G

xS,i ≤ 1 ∀i ∈ N (11.17)

xS,i = {0, 1} ∀S ⊆ G, i ∈ N (11.18)

In this integer programming formulation, the valuationsv̂i(S) are constants and
the variables arexS,i. These variables are boolean, indicating whether bundleS is
allocated to agenti. The objective function (11.15) states that we want to maximize
the sum of the agents’ declared valuations for the goods they are allocated. Con-
straint (11.16) ensures that no overlapping bundles of goods are allocated, and con-
straint (11.17) ensures that no agent receives more than one bundle. (This makes
sense since bidders explicitly assign a valuation toeverysubset of the goods.) Fi-
nally, constraint (11.18) is what makes this aninteger program11 rather than a linear
program: no subset can be partially assigned to an agent.

The fact that the WDP is an integer program rather than a linear program is bad
news, since only the latter are known to admit a polynomial-time solution. Indeed,
a reader familiar with algorithms and complexity may recognize the combinatorial
auction allocation problem as aset packing problem(SPP). Unfortunately, it isset packing

problem well known that the SPP is NP-complete. This means that it is not likely that
a polynomial-time algorithm exists for the problem. Worse, it so happens this
problem cannot even be approximated uniformly, meaning that there does not exist
a polynomial-time algorithm and a fixed constantk > 0 such that for all inputs the
algorithm returns a solution that is at least1

k
s∗, wheres∗ is the value of the optimal

solution for the given input.
There are two primary approaches to getting around the computational problem.

First, we can restrict ourselves to a special class of problems for which there is
guaranteed to exist a polynomial-time solution. Second, we can resort to heuristic
methods that give up the guarantee of polynomial running time, optimality of so-
lution, or both. In both cases,relaxation methodsare a common approach. Onerelaxation

method instance of the first approach is to relax the integrality constraint, thereby trans-
forming the problem into a linear program, which is solvable by known methods
in polynomial time. In general the solution results in “fractional” allocations, in
which fractions of goods are allocated to different bidders. If we are lucky, how-
ever, our solution to the LP will just happen to be integral.

11. Integer programs and linear programs are defined in Appendix B.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

366 11 Protocols for Multiagent Resource Allocation: Auctions

A B C D E

���������

@
@

@
@R

HHHHHHHHj

@
@

@I 6

�
�

��

Legal bundle:{A, B, C}

Illegal bundle:{A, D, E}

Figure 11.2: Example of legal and illegal bundles for contiguous pieces of lands
when we demand thecontiguous ones property.

Polynomial methods

There are several sets of conditions under which such luck is assured. The most
common of these is calledtotal unimodularity(TU). In general terms, a constrainttotal

unimodularity matrixA (see Appendix B) is TU if the determinant of every square submatrix is
0, 1, or−1. In the case of the combinatorial auction WDP, this condition(via con-
straint (11.16)) amounts to a restriction on the subsets that bidders are permitted to
bid on. How do we find out if a particular matrix is TU? There are many ways. First,
there exists a polynomial-time algorithm to decide whether an arbitrary matrix is
TU. Second, we can characterize important subclasses of TU matrices. While many
of these subclasses defy an intuitive interpretation, in the following discussion we
will present a few special cases that are relevant to combinatorial auctions.

One important subclass of TU matrices is the class of0–1 matrices with the
consecutive ones property. In this subclass, all nonzero entries in each column mustconsecutive ones

property appear consecutively. This corresponds roughly to contiguous single-dimensional
goods, such as time intervals or parcels of land along a shoreline (as shown in
Figure 11.2), where bids can only be made on bundles of contiguous goods.

Another subclass of auction problems that have integral polyhedra, and thus can
be easily solved using linear programming, corresponds to the set ofbalanced
matrices. A 0–1 matrix is balanced if it has no square submatrix of odd order withbalanced matrix
exactly two 1’s in each row and column. One class of auction problems that is
known to have a balanced matrix are those that allow onlytree-structured bids, astree-structured

bid illustrated in Figure 11.3. Consider that the set of goods for sale are the vertices of
a tree, connected by some set of edges. All bids must be on bundles of the form
(j, r), which represents the set of vertices that are within distancer of item j. The
constraint matrix for this set of possible bundles is indeed balanced, and so the
corresponding polyhedron is integral, and the solution can be found using linear
programming.

Yet another subclass that can be solved efficiently restricts the bids to be on bun-
dles of no more than two items. The technique here uses dynamic programming,

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 367

m m m m

m m m

m

�
�
�
�
�

A
A

A
A

A

�
�
�
�
�

A
A

A
A

A

���������

HHHHHHHHH

B C D E

A

Illegal bundle: {A, C}

Legal bundle: {B, C}

Figure 11.3: Example of a tree-structured bid.

and the algorithm runs in cubic time. Finally, there are a number of positive results
covering cases where bidders’ valuation functions are subadditive.

Heuristic methods

In many cases the solutions to the associated linear program will not be integral.
In these cases we must resort to usingheuristic methodsto find solutions to the
auction problem.

Heuristic methods come in two broad varieties. The first iscompleteheuristic
methods, which are guaranteed to find an optimal solution if one exists. Despite
their discouraging worst-case guarantees, in practice complete heuristic methods
are able to solve many interesting problems within reasonable amounts of time.
This makes such algorithms the tool of choice for many practical combinatorial
auctions. One drawback is that it can be difficult to anticipate how long such
algorithms will require to solve novel problem instances, as in the end their per-
formance depends on a problem instance’s combinatorial structure rather than on
easily-measured parameters like the number of goods or bids. Complete heuris-
tic algorithms tend to perform tree search (to guarantee completeness) along with
some sort of pruning technique to reduce the amount of search required (the heuris-
tic).

The second flavor of heuristic algorithm isincompletemethods, which are not
guaranteed to find optimal solutions. Indeed, as was mentioned earlier, in general
there does not even exist a tractable algorithm that can guarantee that you will
reach an approximate solution that is within afixed fractionof the optimal solution,
no matter how small the fraction. However, methods do exist that can guarantee
a solution that is within1/

√
k of the optimal solution, wherek is the number of

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

368 11 Protocols for Multiagent Resource Allocation: Auctions

goods. More importantly, like their complete cousins, incomplete heuristic algo-
rithms often perform very well in practice despite these theoretical caveats. One
example of an incomplete heuristic method is a greedy algorithm, a technique that
builds up an allocation by adding one bid at a time, and never reconsidering a bid
once it has been allocated. Another example is a local search algorithm, in which
states in the search space are complete—but possibly infeasible—allocations, and
in which the search progresses by modifying these allocations either randomly or
greedily.

11.3.3 Expressing a bid: bidding languages

We have so far assumed that bidders will specify a valuation for every subset of
the goods at auction. Since there are an exponential number of such subsets, this
will quickly become impossible as the number of goods grows. If we are to have
any hope of finding tractable mechanisms for general combinatorial auctions, we
must first find a way for bidders to express their bids in a more succinct manner. In
this section we present a number of bidding languages that have been proposed for
encoding bids.

As we will see, these languages differ in the ways that they express different
classes of bids. We can state some desirable properties that we might like to have
in a bidding language. First, we want our language to beexpressiveenough to rep-
resent all possible valuation functions. Second, we want our language to beconcise,
so that expressing commonly-used bids does not take space that is exponential in
the number of goods. Third, we want our language to benatural for humans to
both understand and create; thus the structure of the bids should reflect the way in
which we think about them. Finally, we want our language to betractablefor the
auctioneer’s algorithms to process when computing an allocation.

In the discussion that follows, for convenience we will often speak about bids as
valuation functions. Indeed, in the most general case a bid will contain a valuation
for every possible combination of goods. However, be aware that the bid valuations
may or may not reflect the players’ true underlying valuations. We also limit the
scope of our discussion to valuation functions in which the following properties
hold.

• Free disposal.Goods have nonnegative value, so that ifS ⊆ T thenvi(S) ≤
vi(T).

• Nothing-for-nothing. vi(∅) = 0 (In other words, a bidder who gets no goods
also gets no utility.)

We already discussed multiunit valuations in Section 11.2.3 (additive; single
item; fixed budget; majority; general). Combinatorial auctions are different, how-
ever, because bidders are expected to value the different goods asymmetrically. For
example, there may be different classes of goods, and valuations for sets of goods
may be a function of the classes of goods in the set. Imagine that our setG con-
sists of two classes of goods: some red items and some green items, and the bidder

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 369

requires only items of the same color. Alternatively, it could be the case that the
bidder wants exactly one item from each class.

Atomic bids

Let us begin to build up some languages for expressing such bids. Perhaps the most
basic bid requests just one particular subset of the goods. We call such a bid an
atomic bid. An atomic bid is a pair(S, p) that indicates that the agent is willing toatomic bid
pay a price ofp for the subset of goodsS; we denote this value byv(S) = p. Note
that an atomic bid implicitly represents an AND operator between the different
goods in the bundle. We stated an atomic bid above when we wanted to bid on the
TV and the DVD player for $100.

OR bids

Of course, many simple bids cannot be expressed as an atomic bid; for example,
it is easy to verify that an atomic bid cannot represent even the additive valuation
defined earlier. In order to represent this valuation, we will need to be able to bid
on disjunctions of atomic valuations. AnOR bid is a disjunction of atomic bidsOR bid
(S1, p1)∨ (S2, p2)∨ · · · ∨ (Sk, pk) that indicates that the agent is willing to pay a
price of p1 for the subset of goodsS1, or a price ofp2 for the subset of goodsS2,
etc.

To define the semantics of an OR bid precisely, we interpret OR as an opera-
tor for combining valuation functions. LetV be the space of possible valuation
functions, andv1, v2 ∈ V be arbitrary valuation functions. Then we have that

(v1 ∨ v2)(S) = max
R,T⊆S,R∩T=∅

(v1(R) + v2(T)).

It is easy to verify that an OR bid can express the additive valuation. As the follow-
ing result shows, its power is still quite limited; for example, it cannot express the
single item valuation described earlier.

Theorem 11.3.4OR bids can express all valuation functions that exhibit no sub-
stitutability, and only these.

For example, in the consumer auction setting described earlier, we may have
wanted to bid on either the TV and the DVD player for $100, or the TV and the
satellite dish for $150, but not both. It is not possible for us to express this using
OR bids.

XOR bids

XOR bidsdo not have this limitation. An XOR bid is an exclusive OR of atomicXOR bid
bids(S1, p1)⊕ (S2, p2)⊕ · · · ⊕ (Sk, pk) that indicates that the agent is willing to
accept one but no more than one of the atomic bids.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

370 11 Protocols for Multiagent Resource Allocation: Auctions

Once again, the XOR operator is actually defined on the space of valuation func-
tions. We can define its semantics precisely as follows. LetV be the space of pos-
sible valuation functions, andv1, v2 ∈ V be arbitrary valuation functions. Then
we have that

(v1 ⊕ v2)(S) = max(v1(S), v2(S)).

We can use XOR bids to express our example from above:

({TV,DVD}, 100) ⊕ ({TV,Dish}, 150).

It is easy to see that XOR bids have unlimited representational power, since it is
possible to construct a bid for an arbitrary valuation using an XOR of the atomic
valuations for every possible subsetS ⊆ G.

Theorem 11.3.5XOR bids can represent all possible valuation functions.

However, this does not imply that XOR bids represent every valuation function
efficiently. In fact, as the following result states, there are simple valuations that
can be represented by short OR bids but that require XOR bids of exponential size.

Theorem 11.3.6Additive valuations can be represented by OR bids in linear space,
but require exponential space if represented by XOR bids.

Note that for the purposes of the present discussion, we consider the size of a
bid to be the number of atomic formulas that it contains.

Combining the OR and XOR operators

We can also create bidding languages by combining the OR and XOR operators on
valuation functions. Consider a language that allows bids that are of the form of an
OR of XOR of atomic bids. We call these bidsOR-of-XOR bids. An OR-of-XOR
bid is a set of XOR bids, as defined above, such that the bidder is willing to obtainOR-of-XOR bid
any number of these bids.

Like XOR bids, OR-of-XOR bids have unlimited representational power. How-
ever, unlike XOR bids, they can specialize to plain OR bids, which affords greater
simplicity of expression, as we have seen above. As a specific example, OR-of-
XOR bids can express any downward sloping symmetric valuation onm items in
size of onlym2. However, this language’s compactness is still limited. For ex-
ample, even simple asymmetric valuations can require size of at least2m/2+1 to
express in the OR-of-XOR language.

It is also possible to define a language of XOR-of-OR bids, and even a language
allowing arbitrary nesting of OR and XOR statements here (we refer to the latter
as generalized OR/XOR bids). These languages vary in their compactness.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 371

The OR* bidding language

Now we turn to a slightly different sort of bidding language that is powerful enough
to simulate all of the preceding languages with a relatively succinct representation.
This language results from the insight that it is possible to simulate the effect of an
XOR by allowing bids to includedummy(or phantom) items. The only difference
between an OR and an XOR is that the latter is exclusive; we can enforce this
exclusivity in the OR by ensuring that all of the sets in the disjunction share a
common item. We call this languageOR*.

Definition 11.3.7 (OR* bid) Given a set of dummy itemsGi for each agenti ∈ N ,
an OR* bid is a disjunction of atomic bids(S1, p1) ∨ (S2, p2) ∨ · · · ∨ (Sk, pk),OR* bid
where for eachl = 1, . . . , k, the agent is willing to pay a price ofpl for the set of
itemsSl ⊆ G ∪Gi.

An example will help make this clearer. If we wanted to express our TV bid from
above using dummy items, we would create a single dummy item D, and express
the bid as follows.

({TV,DVD,D}, 100) ∨ ({TV,Dish,D}, 150)

Any auction procedure that does not award one good to two people will select at
most one of these disjuncts. The following results show us that the OR* language
is surprisingly expressive and simple.

Theorem 11.3.8Any valuation that can be represented by OR-of-XOR bids of size
s can also be represented by OR* bids of sizes, using at mosts dummy items.

Theorem 11.3.9Any valuation that can be represented by OR/XOR bids of sizes
can also be represented by OR* bids of sizes, using at mosts2 dummy items.

By the definition of OR/XOR bids, we have the following corollary.

Corollary 11.3.10 Any valuation that can be represented by XOR-of-OR bids of
sizes can also be represented by OR* bids of sizes, using at mosts2 dummy
items.

Let us briefly review the properties of the languages we have discussed. The
XOR, OR-of-XORs, XOR-of-OR and OR* languages are all powerful enough to
express all valuations. Second, the efficiencies of the OR-of-XOR and XOR-of-
OR languages are incomparable: there are bids that can be expressed succinctly
in one but not the other, and vice-versa. Third, the OR* language is strictly more
compact than both the OR-of-XOR and XOR-of-OR languages: it can efficiently
simulate both languages, and can succinctly express some valuations that require
exponential size in each of them. These properties are summarized in Figure 11.4.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

372 11 Protocols for Multiagent Resource Allocation: Auctions

Atomic OR XOR

OR-of-XOR XOR-of-OR

OR/XOR; OR*
More expressive than

More compact than

Figure 11.4: Relationships between different bidding languages.

Interpretation and verification complexity

Recall that in the auction setting these languages are used for communicating bids
to the auctioneer. It is the auctioneer’s job to first interpret these bids, and then
calculate an allocation of goods to agents. Thus it is natural to be concerned about
the computational complexity of a given bidding language. In particular, we may
want to know how difficult it is to take an arbitrary bid in some language and
compute the valuation of some arbitrary subset of goods according to that bid. We
call this theinterpretation complexity. The interpretation complexity of a biddinginterpretation

complexity language is the minimum time required to compute the valuationv(S), given input
of an arbitrary subsetS ⊆ G and arbitrary bidv in the language.

Not surprisingly, the atomic bidding language has interpretation complexity that
is polynomial in the size of the bid. To compute the valuation of some arbitrary sub-
setS, one need only check whether all members ofS are in the atomic bid. If they
are, the valuation ofS is just that given in the bid (because of free disposal); and if
they are not, then the valuation ofS is 0. The XOR bidding language also has inter-
pretation complexity that is polynomial in the size of the bid; just perform the above
procedure for each of the atomic bids in turn. However, all of the other bidding lan-
guages mentioned above have interpretation complexity that is exponential in the
size of the bid. For example, given the OR bid(S1, p1)∨ (S2, p2)∨ · · · ∨ (Sk, pk),
computing the valuation ofS requires checking all possible combinations of the
atomic bids, and there are2k such possible combinations.

One might ask why we even consider bidding languages that have exponential
interpretation complexity. Simply stated, the answer is that languages with only
polynomial interpretation complexity are either not expressive enough or not com-
pact enough. This brings us to a more relaxed criterion. It may be sufficient to
require that a given claim about a bid’s valuation for a set isverifiable in poly-
nomial time. We define theverification complexityof a bidding language as theverification

complexity minimum time required to verify the valuationv(S), given input of an arbitrary

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 373

subsetS ⊆ G, an arbitrary bidv in the language, and a proof of the proposed valu-
ation v(S). All of the languages we have presented in this section have polynomial
verification complexity.

11.3.4 Iterative mechanisms

We have argued that in a combinatorial auction setting, agents’ valuations can be
so complex that they cannot be tractably communicated. The idea behind bidding
languages (Section 11.3.3) is that this communication limitation can be overcome
if an agent’s valuation can be succinctly represented. In this section we consider
another, somewhat independent idea: replacing the sealed-bid mechanism we have
discussed so far with an indirect mechanism that probes agents’ valuations only as
necessary.

Intuitively, the use of indirect mechanisms in combinatorial auctions offers the
possibility of several benefits. Most fundamentally, allowing the mechanism to
query bidders selectively can reduce communication. For example, if the mecha-
nism arrived at the desired outcome (say the VCG allocation and payments) after a
small number of queries, other agents could realize that they were unable to make
a bid that would improve the allocation, and could thus quit the auction without
communicating any more information to the auctioneer. This sort of reduction in
communication is still useful even if the auction is small enough that agents’ full
valuationscouldbe tractably conveyed. First, reducing communication can benefit
bidders who want to reveal as little as possible about their valuations to their com-
petitors and/or to the auctioneer. Second, iterative mechanisms can help in cases
where it is difficult for bidders to determine their own valuations. For example,
in a logistics domain a bidder might have to solve a traveling salesman problem
to determine his valuation for a given bundle and thus could face a computational
barrier to determining his whole valuation function.

Indirect mechanisms also have benefits that go beyond reducing communication.
First, they can be easier for bidders to understand than complex direct mechanisms
like VCG, and so can be seen as more transparent. This matters, for example, in
government auctions of public assets like radio spectrum, where taxpayers want to
be assured that the auction was conducted fairly. Finally, while no general result
shows this formally, experience with single-good auctions in the common and af-
filiated values case (Section 11.1.10) suggests that allowing bidders to iteratively
exchange partial information about their valuations may lead to improvements in
both revenue and efficiency.

Of course, considering iterative mechanisms also invites new challenges. Most
of all, such mechanisms are tremendously complicated, and hence can require ex-
tensive effort to design. Furthermore, small flaws in this design can lead to huge
problems. For example, iterative mechanisms can give rise to considerably richer
strategy spaces than direct mechanisms do: an agent can condition his actions on
everything he has learned about the actions taken previously by other agents. Be-
yond potentially making things complicated for the agents, this strategic flexibility

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

374 11 Protocols for Multiagent Resource Allocation: Auctions

can also facilitate undesirable behavior. For example, agents can bid insincerely
in order to signal each other (e.g., “do not bid on my bundle and I will not bid on
yours”), and thus collude against the seller. Another problem is that agents can
often gain by waiting for others to reveal information, especially in settings where
determining one’s own valuation is costly. The auction must therefore be designed
in a way that gives agents some reason to bid early. One approach is to establish
activity rules that restrict an agent’s future participation in the auction if he does
not remain sufficiently active. This idea was already discussed at the beginning of
Section 11.3 in the context of decoupled auctions for combinatorial settings such
as the simultaneous ascending auction.

Because iterative mechanisms can become quite complex, we will not formally
describe any of them here. (As always, interested readers should consult the ref-
erences cited at the end of the chapter.) However, we will note some of the main
questions addressed in this literature, and some of the general trends in the an-
swers to these questions. The first question is what social choice functions to im-
plement, and thus what payments to impose. Here a popular choice is to design
mechanisms that converge to an efficient allocation, and that elicit enough infor-
mation to guarantee that agents pay the same amounts that they would under VCG.
Even if an indirect mechanism mimics VCG, it does not automatically inherit its
equilibrium properties—the revelation principle only covers the transformation of
indirect mechanismsinto direct mechanisms. Indeed, under indirect mechanisms
that mimic VCG, answering queries honestly is no longer a dominant strategy. For
example, if agenti knows that agentj will overbid, agentimay also want to do so,
as dishonest declarations byj can affect the queries thati will receive in the future.
Nevertheless, it can be shown that it is anex postequilibrium (see Section 6.3.4)
for agents to cooperate with any indirect mechanism that achieves the same alloca-
tion and payment as VCG when all bidders but some bidderi bid truthfully andi
bids arbitrarily. In some cases mechanism designers have considered mechanisms
that donotalways converge to VCG payments. Here they usually also assume that
agents will bid “straightforwardly”—that is, that they will answer queries truth-
fully even if it is not in their interest to do. This assumption is typically justified by
demonstrations that agents can gain very little by deviations even in the worst case
(i.e., straightforward bidding is anǫ-equilibrium for smallǫ), claims that determin-
ing a profitable deviation would be computationally intractable, and/or an appeal
to a complete-information Nash analysis. As long as bidders do behave in a way
consistent with this assumption, these iterative mechanisms are able to avoid some
of the undesirable properties of VCG discussed in Section 10.4.5.

A second question is what sorts of queries the indirect mechanisms should ask.
The most popular are probablyvalue queriesanddemand queries. A mechanismvalue query

demand query
asks a value query when it suggests a bundle and asks how much it is worth to a
bidder. Demand queries are in some sense the reverse: the mechanism asks which
bundle the bidder would prefer at given prices. Demand queries come in various
different forms: the simplest have prices only on single goods and offer the same
prices to all bidders, while the most complicated attach bidder-specific prices to

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.3 Combinatorial auctions 375

bundles. When only demand queries are used and prices (of whatever form) are
guaranteed to rise as the auction progresses, we call the auction anascending com-
binatorial auction. (Observe that a Japanese auction is a single-good special caseascending

combinatorial
auction

of such an auction.) Of course, all sorts of other query families are also possible.
For example, bidders can be askedorder queries(state which of two bundles is

order query preferred) andbounding queries(answer whether a given bundle is worth more or

bounding query
less than a given amount). Some mechanisms even allowpush-pull queries: bid-
ders can answer questions they weren’t asked, and can decline to answer questions
they were asked.

The final general lesson to convey from the literature on iterative combinato-
rial auctions is that in the worst case, any mechanism that achieves an efficient
or approximately efficient12 allocation in equilibrium must receive an amount of
information equal in size to a single agent’s complete valuation. Since the size
of an agent’s valuation is exponential in the number of goods, this is discourag-
ing. However, this result speaks only about the worst case and only about bid-
ders with unrestricted valuations. Researchers have managed to show theoretically
that worst-case communication requirements are polynomial under some restricted
classes of valuations or when the query complexity is parameterized by the mini-
mal representation size in a given bidding language, and to demonstrate empirically
that iterative mechanisms can terminate after reasonable amounts of communica-
tion when used with real bidders.

11.3.5 A tractable mechanism

Recall that atractablemechanism is one that can determine the allocation and pay-tractability
ments using only polynomial-time computation (Definition 10.3.10). We have seen
that such a mechanism can easily be achieved by restricting bidders to expressing
valuations from a set that makes the winner determination problem tractable (as dis-
cussed in Section 11.3.2), and then using VCG. Here we look beyond such bidding
restrictions, seeking more general mechanisms that nevertheless remain computa-
tionally feasible. The idea here is to build a mechanism around an optimization
algorithm that is guaranteed to run in polynomial time regardless of its inputs.

We will give one example of such a mechanism: a dominant-strategy truthful
mechanism for combinatorial auctions that is built around a greedy algorithm. This
mechanism only works for bidders with a restricted class of valuations, calledsin-
gle minded.

Definition 11.3.11 (Single-minded bidder)A bidder issingle-mindedif he hassingle-minded
the valuation function:

∀s ∈ 2G, vi(s) =

{
vi > 0 if s ⊇ bi;

0 otherwise.

12. Formally, this result holds for any auction that always finds allocations that achieve more than a1
n

-
fraction of the optimal social welfare.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

376 11 Protocols for Multiagent Resource Allocation: Auctions

Intuitively, a bidder is single-minded if he is only interested in a single bundle;
he values this bundle and all supersets of it13 at the same amount,vi, and values
all other bundles at zero. Although this is a severe restriction on agents’ valuations,
it does not make the winner determination problem any easier. Intuitively, this is
because agents remain free to chooseanybundles from the set of possible bundles
2G, and so the auctioneer can receive bids on any set of bundles.

In a direct mechanism for single-minded bidders, every bidderi places a bid
bi = (ŝi, v̂i) indicating a bundle of interest̂si and an amount̂vi. (Observe that
we have assumed that the auctioneer does not know bidderi’s bundle of interest
si; this is why i’s bid must have two parts.) Letapgi = v̂i/|ŝi| denote bidder
i’s declared amount per good, and as before letn be the number of bidders. Now
consider the following greedy algorithm.

Definition 11.3.12 (Greedy allocation scheme)Thegreedy allocation schemeisgreedy
allocation
scheme

defined as follows.

store the bidders’ bids in a listL, sorted in decreasing order ofapg
letL(j) denote thejth element ofL
a← ∅
j ← 1
while j ≤ n do

if a ∩ ŝj = ∅ then
bid bj wins
a← a ∪ ŝj

foreachwinning bidder ido
look for a bidderinext, the first bidder whose bid followsi’s in L, whose
bid does not win, and whose bid does win if the greedy allocation scheme
is run again withi’s bid omitted
if a bidderinext existsthen

bidderi’s payment ispi ← |ŝi|·v̂inext

|ŝinext|

else
pi ← 0

foreach losing bidderi do
pi =← 0

Intuitively, the greedy allocation scheme ranks all bids in decreasing order of
apg, and then greedily allocates bids starting from the top ofL. The payment of
a winning bidderi is theapg of the highest-ranked bidder that would have won
but for i’s participation, multiplied by the number of goods allocated to i. Bidderi
pays zero if he does not win or if there is no bidderinext.

13. Implicitly, this amounts to an assumption of free disposal, as defined in Section 11.3.3.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.4 Exchanges 377

Theorem 11.3.13When bidders are single minded, the greedy allocation scheme
is dominant-strategy truthful.

We leave the proof of this theorem as an exercise; however, it is not hard. Ob-
serve that, because it is based on a greedy algorithm, this mechanism does not
select an efficient allocation. It is natural to wonder whether this mechanism can
come close. It turns out that the best that can be achieved comes from modifying
the algorithm, replacingapgi with the ratiov̂i/

√
|ŝi|. This can be shown to pre-

serve dominant-strategy truthfulness, and to achieve the1/
√
k-bound on efficiency

discussed above.

11.4 Exchanges

So far, we have surveyed single-good, multiunit, and combinatorial auctions. De-
spite the wide variety within these families, we have not yet exhausted the space of
auctions. We now briefly discuss one last, important category of auctions. These
areexchanges: auctions in which agents are able to act as both buyers and sellers.exchange
We discuss two varieties, which differ more in their purposes than in their mechan-
ics. The first is intended to allocate goods; the second is designed to aggregate
information.

11.4.1 Two-sided auctions

In two-sided auctions, otherwise known asdouble auctions, there are many buyerstwo-sided
auction

double auction

and sellers. A typical example is the stock market, where many people are inter-
ested in buying or selling any given stock. It is important to distinguish this setting
from certain marketplaces (such as popular consumer auction sites) in which there
are multiple separate single-sided auctions. We will not have much to say about
double auctions, in part because the relative dearth of theoretical results about them.
However, let us mention two primary models of single-dimensional double mar-
kets, that is, markets in which there are many potential buyers and sellers of many
units of the same good (e.g., the shares of a given company). We distinguish here
between two kinds of markets, thecontinuous double auction(CDA) and theperi-continuous

double auction
(CDA)

odic double auction(otherwise known as thecall market).

periodic double
auction

call market

In both the CDA and the call market agents bid at their own pace and as many
times as they want. Each bid consists of a price and quantity, where the quantity
is either positive (signifying a “buy” order) or negative (signifying a “sell” order).
There are no constraints on what the price or quantity might be. Also in both cases,
the bids received are put in a central repository, theorder book. Where the CDA

order book and call market diverge is on the question of when a trade occurs. In the CDA, as
soon as the bid is received, an attempt is made to match it with one or more bids
on the order book; for example, a new sell order for 10 units may be matched with
one existing buy bid for 4 units and another buy bid for 6 units, so long as both
the buy-bid prices are higher than the sell price. In cases of partial matches, the

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

378 11 Protocols for Multiagent Resource Allocation: Auctions

remaining units (either of the new bid or of one of order-book bids) is put back on
the order book. For example, if the new sell order is for 13 units and the only buy
bids on the order book with a higher price are the ones described (one buy bid for
4 units and another buy bid for 6 units), two trades are arranged—one for 4 units,
and one for 6—and the remaining 3 units of the new bid are put on the order book
as a sell order. (We have not mentioned the price of the trades arranged; obviously,
they must lie in the interval between the price in the buy bid and the price in the
sell bid—the so called bid-ask spread—but are unconstrained otherwise. Indeed,
the amount paid to the seller could be less than the amount charged to the buyer,
allowing a commission for the exchange or broker.)

In contrast, when a bid arrives in the call market, it is simply placed in the order
book. No trade is attempted. Then, at some predetermined time, an attempt is
made to arrange the maximal amount of trade possible (called clearing the market).
In this case this is done simply by ranking the sell bids in ascending order, the
buy bids in descending order, and finding the point at which supply meets demand.
Figure 11.5 depicts a typical call market. In this example 14 units are traded when
the market clears, after the remaining bids are left on the order book awaiting the
next market clear.

before
Sell: 5@$1 3@$2 6@$4 2@$6 4@$9
Buy: 6@$9 4@$5 6@$4 3@$3 5@$2 2@$1

⇓
after

Sell: 2@$6 4@$9
Buy: 2@$4 3@$3 5@$2 2@$1

Figure 11.5: A call-market order book, before and after market clears.

11.4.2 Prediction markets

A prediction market, also called aninformation market, is a double-sided auctionprediction
market

information
market

that is used to aggregate agents’ beliefs rather than allocating goods. For example,
such a market could be used to assess different candidates’ chances in an upcoming
presidential election. To set up a prediction market, the market designer establishes
contracts(c1, . . . , ck), where each contractci is a commitment to pay the bearer
$1 if candidatei wins the election, and $0 otherwise. However, the market de-
signer does not actually sell such contracts himself. Instead, he simply opens up
his market, and allows interested agents to both buy and sell contracts with each
other. The reason that such a market is interesting is that a risk-neutral bidder
should value a contractci at exactly the probability thati will win the election. If a
bidder believes that he has information about the election that other bidders do not
have, and consequently believes that the probability ofiwinning is greater than the
current asking price for contractci theni will want to buy contracts. Conversely, if
a bidder believes the true probability ofi winning is less than the current price, he

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.4 Exchanges 379

will want to sell contracts. In equilibrium, prices reflect bidders’ aggregate beliefs.
This is similar to the idea that price of a company’s stock in a stock market will
reflect the market’s belief about the company’s future profitability. Indeed, an even
tighter collection is to futures markets, in which traders can purchase delivery of a
commodity (e.g., oil) at a future date; prices in these markets are commonly treated
as forecasts about future commodity prices. The key distinction is that a prediction
market is designed primarily to elicit such information, rather than doing so as a
side effect of solving an allocation problem. On the other hand, futures markets
are used primarily for hedging risk (e.g., an airline company might buy oil futures
in order to defend itself against the risk that oil prices will rise, causing it to lose
money on tickets it has already sold).

Prediction markets have been used in practice for a wide variety of belief ag-
gregation tasks, including political polling, forecasting the outcomes of sporting
events, and predicting the box office returns of new movies. Of course, there are
other methods that can be used for all of these tasks. In particular, opinion polls
and surveys of experts are common approaches. However, there is mounting empir-
ical evidence that prediction markets can outperform both of these methods. This
is interesting because prediction markets do not need to work with unbiased sam-
ples of the population: bidders are not asked whattheythink, but what they think
the whole populationthinks, and they are given an economic incentive to answer
correctly. Similarly, prediction markets do not need to explicitly identify or score
experts: participants are self-selecting, and weight their input themselves by the
size of the position they take in the market. Finally, prediction markets are able
to update their forecasts in real time, for example, immediately updating prices to
reflect the consequences of a political scandal on an election.

A variety of different mechanisms can be used to implement prediction markets.
One straightforward approach is to use continuous double auctions or call markets,
as described in the previous section. These mechanisms have the drawback that
they can suffer from a lack of liquidity: trades can occur only when agents want
contracts on both sides of the market at the same time. Liquidity can be introduced
by a market maker. However, such a market maker therefore assumes financial
risk, which means the mechanism is not budget balanced. Another approach is
a parimutuel market: bidders place money on different outcomes, and when the
true outcome is observed, the winning bidders split the pot in proportion to the
amount each one gambled. These markets are budget balanced and do not suffer
from illiquidity; however, agents have no incentive to place bets before the last mo-
ment, and so the market loses the property of aggregating beliefs in real time. Yet
more complicated mechanisms, such as dynamic parimutuel markets and market
scoring rules, are able to achieve real-time belief aggregation, bound the market-
maker’s worst-case loss, and still provide substantial liquidity. These markets are
too involved to describe briefly here; the reader is referred to the references for
details.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

380 11 Protocols for Multiagent Resource Allocation: Auctions

11.5 History and references

Krishna [2002] is an excellent book that provides a formal introduction to auction
theory. Klemperer [1999b] is a large edited collection of many of the most impor-
tant papers on the theory of auctions, preceded by a thorough survey by the editor;
this survey is reproduced in Klemperer [1999a]. Earlier surveys include Cassady
[1967], Wilson [1987a], and McAfee and MacMillan [1987]. These texts cover
most of the canonical single-good and multi-unit auction types we discuss in the
chapter. (One exception is the elimination auction, which we gave as an example
of the diversity of auction types; it was introduced by Fujishima et al. [1999b].)

Vickrey’s seminal contribution [Vickrey, 1961] is still recommended reading for
anyone interested in auctions. In it Vickrey introduced the second-price auction
and argued that bidders in such an auction do best when they bid sincerely. He also
provided the analysis of the first-price auction under the independent private value
model with the uniform distribution described in the chapter. He even proved an
early version of the revenue-equivalence theorem (Theorem 11.1.4), namely that
in the independent private value case, the English, Dutch, first-price, and second-
price auctions all produce the same expected revenue for the seller. For his work,
Vickrey received a Nobel Prize in 1996.

The more general form of the revenue-equivalence theorem, Theorem 11.1.4, is
due to Myerson [1981] and Riley and Samuelson [1981], who also investigated
optimal (i.e., revenue-maximizing) auctions. Our proof of the theorem follows
Klemperer [1999a]. The “auctions as structured negotiations” point of view was
advanced by Wurman et al. [2001]. McAfee and McMillan [1987] introduced the
notion of auctions with an uncertain number of bidders, and Harstad et al. [1990]
analyzed its equilibrium. The so-called Wilson doctrine was articulated in Wilson
[1987b]. The result that one additional bidder yields more revenue than an optimal
reserve price is due to Bulow and Klemperer [1996]. The most influential theo-
retical studies of collusion were by Graham and Marshall [1987] for second-price
auctions and McAfee and McMillan [1992] for first-price auctions. Early impor-
tant results on the common-value (CV) model include Wilson [1969] and Milgrom
[1981]. The former showed that when bidders are uncertain about their values their
bids are not truthful, but rather are lower that their assessment of that value. Mil-
grom [1981] analyzed the symmetric equilibrium for second-price auctions under
common values. The affiliated value model was introduced by Milgrom and Weber
[1982].

The equilibrium analysis of sequential auctions is due to Milgrom and Weber
[2000], from a seminal paper written in 1982 but only published recently. The
random sampling optimal price auction and the first proof that this auction achieves
a constant fraction of optimal fixed-price revenue is due to Goldberg et al. [2006];
the 1

4.68
bound on revenue is due to [Alaei et al., 2008]. Our discussion of position

auctions generally follows Edelman et al. [2007]; see also Varian [2007].
Combinatorial auctions are covered in depth in the edited collection Cramton

et al. [2006], which probably provides the best single-source overview of the area.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

11.5 History and references 381

Several chapters of this book are especially worthy of note here. The computational
complexity of the WDP is discussed in a chapter by Lehmann et al.. Algorithms
for the WDP have an involved history, and are reprised in chapters by Müller and
Sandholm. A detailed discussion of bidding languages can be found in a chapter
by Nisan; the OR* language is due to Fujishima et al. [1999a]. Iterative mecha-
nisms are covered in chapters by Parkes, Ausubel and Milgrom, and Sandholm and
Boutilier; the worst-case communication complexity analysis appears in a chapter
by Segal. Finally, the tractable greedy mechanism is due to Lehmann et al. [2002].

There is a great deal of empirical evidence that prediction markets can effectively
aggregate beliefs; two prominent examples of this literature consider election re-
sults [Berg et al., 2001] and movie box office revenues [Spann and Skiera, 2003].
Dynamic parimutuel markets are due to Pennock [2004], and the market scoring
rule is described by Hanson [2003].

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

12
Teams of Selfish Agents: An
Introduction to Coalitional Game
Theory

In Chapters 1 and 2 we looked at how teams of cooperative agents can accomplish
more together than they can achieve in isolation. Then, in Chapter 3 and many
of the chapters that followed, we looked at how self-interested agents make indi-
vidual choices. In this chapter we interpolate between these two extremes, asking
how self-interested agents can combine to form effective teams. As the title of the
chapter suggests, this chapter is essentially a crash course incoalitional game the-
ory, also known ascooperative game theory. As was mentioned at the beginning
of Chapter 3, when we introduced noncooperative game theory, the term “coop-
erative” can be misleading. It does not mean that, as in Chapters 1 and 2, each
agent is agreeable and will follow arbitrary instructions. Rather, it means that the
basic modeling unit is the group rather than the individual agent. More precisely,
in coalitional game theory we still model the individual preference of agents, but
not their possible actions. Instead, we have a coarser model of the capabilities of
different groups.

We proceed as follows. First, we define the most widely studied model of coali-
tional games, give examples of situations that can be modeled in this way, and
discuss a series of refinements to the model. Then we consider how such games
can be analyzed. The main solution concepts we discuss here are theShapley
value, thecore, and thenucleolus. Finally, we consider compact representations of
coalitional games and their computational implications. We conclude by surveying
further directions that have been explored in the literature.

12.1 Coalitional games with transferable utility

In coalitional game theory our focus is on what groups of agents, rather than indi-
vidual agents, can achieve. Given a set of agents, a coalitional game defines how
well each group (orcoalition) of agents can do for itself. We are not concerned with
how the agents make individual choices within a coalition, how they coordinate, or

384 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

any other such detail; we simply take the payoff1 to a coalition as given.

12.1.1 Definition

For most of this chapter we will make thetransferable utility assumption—that the
payoffs to a coalition may be freely redistributed among its members. This assump-
tion is satisfied whenever there is a universalcurrencythat is used for exchange in
the system. When this assumption holds, each coalition can be assigned a single
value as its payoff.

Definition 12.1.1 (Coalitional game with transferable utility) Acoalitional gamecoalitional game
with transferable
utility

with transferable utilityis a pair (N, v), where

• N is a finite2 set of players, indexed byi; and

• v : 2N 7→ R associates with each coalitionS ⊆ N a real-valued payoffv(S)
that the coalition’s members can distribute among themselves. The functionv
is also called thecharacteristic function, and a coalition’s payoff is also calledcharacteristic

function its worth. We assume thatv(∅) = 0.

Most of the time, coalitional game theory is used to answer two fundamental
questions:

1. Which coalition will form?

2. How should that coalition divide its payoff among its members?

It turns out that the answer to (1) is often “the grand coalition”—the name given
to the coalition of all the agents inN—though this answer can depend on having
made the right choice about (2). Before we go any further in answering these ques-
tions, however, we provide several examples of coalitional games to help motivate
the model.

12.1.2 Examples

Coalitional games can be used to describe problems arising ina wide variety of
different contexts. To emphasize the relevance of coalitional game theory to other
topics covered in this book, we give examples motivated by problems from social
choice (Chapter 9), mechanism design (Chapter 10), and auctions (Chapter 11).
We will also use these examples to highlight some important classes of coalitional
games in Section 12.1.3. We note that here we donot describe how payments
could or should be divided among the agents; we defer such discussion to Sec-
tion 12.2. Our first example draws on social choice, in the vein of the discussion in
Section 9.3.

1. Alternatively, one might assigncostsinstead of payoffs to coalitions. Throughout this chapter, we will
focus on the case of payoffs; the concepts defined herein can be extended analogously to the case of costs.
2. Observe that we consider only finite coalitional games. The infinite case is also considered in the litera-
ture; many but not all of the results from this chapter also hold in this case.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.1 Coalitional games with transferable utility 385

Example 12.1.2 (Voting game)A parliament is made up of four political parties,
A,B,C, andD, which have 45, 25, 15, and 15 representatives, respectively. They
are to vote on whether to pass a $100 million spending bill and how much of this
amount should be controlled by each of the parties. A majority vote, that is, a
minimum of 51 votes, is required in order to pass any legislation, and if the bill
does not pass then every party gets zero to spend.

More generally, in a voting game, there is a set of agentsN and a set of coali-
tionsW ⊆ 2N that arewinningcoalitions, that is, coalitions that are sufficient for
the passage of the bill if all its members choose to do so. To each coalitionS ∈ W,
we assignv(S) = 1, and to the others we assignv(S) = 0.

Many voting games that arise in practice can be represented succinctly asweighted
majority or weighted votinggames. We discuss these representations in Section
12.3.1.

Our next example concerns sharing the cost of a public good, along the lines of
the road-building referendum example given in Section 10.4.

Example 12.1.3 (Airport game) A number of cities need airport capacity. If a
new regional airport is built the cities will have to share its cost, which will depend
on the largest aircraft that the runway can accommodate. Otherwise each city will
have to build its own airport.

This situation can be modeled as a coalitional game(N, v), whereN is the set
of cities, andv(S) is the sum of the costs of building runways for each city inS
minus the cost of the largest runway required by any city inS.

Next, we consider a situation in which agents need to getconnectedto the public
good in order to enjoy its benefit. One such setting is the problem of multicast cost
sharing that we previously examined in Section 10.6.3.

Example 12.1.4 (Minimum spanning tree game)A group of customers must be
connected to a critical service provided by some central facility, such as a power
plant or an emergency switchboard. In order to be served, a customer must either
be directly connected to the facility or be connected to some other connected cus-
tomer. Let us model the customers and the facility as nodes on a graph, and the
possible connections as edges with associated costs.

This situation can be modeled as a coalitional game(N, v). N is the set of
customers, andv(S) is the cost of connecting all customers inS directly to the
facility minus the cost of the minimum spanning tree that spans both the customers
in S and the facility.

Finally, we consider a coalitional game in an auction setting.

Example 12.1.5 (Auction game)Consider an auction mechanism in which the al-
location rule is efficient (i.e., social welfare maximizing). Our analysis in Chap-
ter 11 treated the set of participating agents as given. We might instead want to

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

386 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

determine whether the seller would prefer to exclude some interested agents to ob-
tain higher payments. (Indeed, it turns out that this can occur; see Section 12.2.2.)
To find out, we can model the auction as a coalitional game.

LetNB be the set of bidders, and let0 be the seller. The agents in the coalitional
game areN = NB ∪ {0}. Choosing a coalition means running the auction with
the appropriate set of agents. The value of a coalitionS is the sum of agents’
utilities for the efficient allocation when the set of participating agents is restricted
to S.3A coalition that does not include the seller has value 0, because in this case
a trade cannot occur.

12.1.3 Classes of coalitional games

In this section we will define a few important classes of coalitional games, which
have interesting applications as well as useful formal properties. We start with the
notion of superadditivity, a property often assumed for coalitional games.

Definition 12.1.6 (Superadditive game)A gameG = (N, v) is superadditiveifsuperadditive
game for all S, T ⊂ N , if S ∩ T = ∅, thenv(S ∪ T) ≥ v(S) + v(T).

Superadditivity is justified when coalitions can always work without interfering
with one another; hence, the value of two coalitions will be no less than the sum
of their individual values. Note that superadditivity implies that the value of the
entire set of players (the “grand coalition”) is no less than the sum of the value of
any nonoverlapping set of coalitions. In other words, the grand coalition has the
highest payoff among all coalitional structures. All of the examples we gave earlier
describe superadditive games.

Taking noninterference across coalitions to the extreme, when coalitions can
never affect one another, either positively or negatively, then we haveadditive(or
inessential) games.

Definition 12.1.7 (Additive game)A gameG = (N, v) is additive (or inessen-additive game
tial) if for all S, T ⊂ N , if S ∩ T = ∅, thenv(S ∪ T) = v(S) + v(T).

A related class of games is that of constant-sum games.

Definition 12.1.8 (Constant-sum game)A gameG = (N, v) is constant sumifconstant-sum
game for all S ⊂ N , v(S) + v(N \ S) = v(N).

Note that every additive game is necessarily constant sum, but not vice versa. As
in noncooperative game theory, the most commonly studied constant-sum games
arezero-sum games.zero-sum game

An important subclass of superadditive games are convex games.

Definition 12.1.9 (Convex game)A gameG = (N, v) is convexif for all S, T ⊂convex game

3. The value of a coalition can be understood as the sum of the agents’ utilities for the auction’s outcome
(their valuations for bundles received minus payments) plus the seller’s utility (the sum of payments received).
Note that because payments are transfers between members of the coalition they cancel out and do not affect
the coalition’s value.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.2 Analyzing coalitional games 387

N , v(S ∪ T) ≥ v(S) + v(T)− v(S ∩ T).

Clearly, convexity is a stronger condition than superadditivity. While convex
games may therefore appear to be a very specialized class of coalitional games,
these games are actually not so rare in practice. For example, the Airport game as
described in Example 12.1.3 is convex. Convex games have a number of useful
properties, as we will discuss in the next section.

Finally, we present a class of coalitional games with restrictions on the values
that payoffs are allowed to take.

Definition 12.1.10 (Simple game)A gameG = (N, v) is simple if for all S ⊂ N ,simple game
v(S) ∈ {0, 1}.

Simple games are useful for modeling voting situations, such as those described in
Example 12.1.2. In simple games we often add the requirement that if a coalition
wins, then all larger sets are also winning coalitions (i.e., ifv(S) = 1, then for all
T ⊃ S, v(T) = 1). This condition might seem to imply superadditivity, but it
does not quite. For example, the condition is met by a voting game in which only
50% of the votes are required to pass a bill, but such a game is not superadditive.
Consider two disjoint winning coalitionsS andT ; when they join to form the
coalitionS ∪ T they do not achieve at least the sum of the values that they achieve
separately as superadditivity requires.

When simple games are also constant sum, they are calledproper simple games.proper simple
game In this case, ifS is a winning coalition, thenN \ S is a losing coalition.

Figure 12.1 graphically depicts the relationship between the different classes of
games that we have discussed in this section.

Superadditive Convex
Additive

Constant sum

Simple
Proper simple

⊃ ⊃

⊃

⊃⊃

Figure 12.1: A hierarchy of coalitional game classes;X ⊃ Y means that classX
is a superclass of classY .

12.2 Analyzing coalitional games

The central question in coalitional game theory is the division of the payoff to the
grand coalition among the agents. This focus on the grand coalition is justified in
two ways. First, since many of the most widely studied games are superadditive,
the grand coalition will be the coalition that achieves the highest payoff over all
coalitional structures, and hence we can expect it to form. Second, there may be no
choice for the agents but to form the grand coalition; for example, public projects
are often legally bound to include all participants.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

388 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

If it is easy to decide to concentrate on the grand coalition, however, it is less easy
to decide how this coalition should divide its payoffs. In this section we explore a
variety of solution concepts that propose different ways of performing this division.

Before presenting the solution concepts, it is helpful to introduce some terminol-
ogy. First, letψ : N × R

2|N| 7→ R
|N | denote a mapping from a coalitional game

(that is, a set of agentsN and a value functionv) to a vector of|N | real values, and
letψi(N, v) denote theith such real value. Denote such a vector of|N | real values
asx ∈ R

|N |. Eachxi denotes the share of the grand coalition’s payoff that agent
i ∈ N receives. When the coalitional game(N, v) is understood from context, we
write x as a shorthand forψ(N, v).

Now we can give some basic definitions about payoff division. Each has an
analogue in the properties we required of quasilinear mechanisms in Section 10.3.2,
which we name as we come to each definition.

Definition 12.2.1 (Feasible payoff)Given a coalitional game(N, v), thefeasible
payoff setis defined as{x ∈ R

N | ∑i∈N xi ≤ v(N)}.feasible payoff

In other words, the feasible payoff set contains all payoff vectors that do not
distribute more than the worth of the grand coalition. We can view this as requiring
the payoffs to beweakly budget balanced.

Definition 12.2.2 (Pre-imputation) Given a coalitional game(N, v), thepre-imputation
set, denotedP, is defined as{x ∈ R

N | ∑i∈N xi = v(N)}.pre-imputation

We can view the pre-imputation set as the set of feasible payoffs that areefficient,
that is, they distribute the entire worth of the grand coalition. Looked at another
way, the pre-imputation set is the set of feasible payoffs that arestrictly budget
balanced. (In this setting these two concepts are equivalent; do you see why?)

Definition 12.2.3 (Imputation) Given a coalitional game(N, v), the imputation
set, I , is defined as{x ∈ P | ∀i ∈ N,xi ≥ v(i)}.imputation

Imputations are payoff vectors that are not only efficient butindividually rational.
That is, each agent is guaranteed a payoff of at least the amount that he could
achieve by forming a singleton coalition.

Now we are ready to delve into different solution concepts for coalitional games.

12.2.1 The Shapley value

Perhaps the most straightforward answer to the question of how payoffs should be
divided is that the division should befair. As we did in Section 9.4.1, let us begin
by laying down axioms that describe what fairness means in our context.

First, say that agentsi andj are interchangeableif they always contribute theinterchangeable
agents same amount to every coalition of the other agents. That is, for allS that contains

neitheri nor j, v(S ∪ {i}) = v(S ∪ {j}). Thesymmetryaxiom states that such
agents should receive the same payments.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.2 Analyzing coalitional games 389

Axiom 12.2.4 (Symmetry) For anyv, if i andj are interchangeable thenψi(N, v) =
ψj(N, v).

Second, say that an agenti is a dummy playerif the amount thati contributesdummy player
to any coalition is exactly the amount thati is able to achieve alone. That is, for
all S such thati 6∈ S, v(S ∪ {i}) − v(S) = v({i}). Thedummy playeraxiom
states that dummy players should receive a payment equal to exactly the amount
that they achieve on their own.

Axiom 12.2.5 (Dummy player) For anyv, if i is a dummy player thenψi(N, v) =
v({i}).

Finally, consider two different coalitional game theory problems, defined by two
different characteristic functionsv1 and v2, involving the same set of agents. The
additivity axiom states that if we re-model the setting as a single game in which
each coalitionS achieves a payoff ofv1(S)+ v2(S), the agents’ payments in each
coalition should be the sum of the payments they would have achieved for that
coalition under the two separate games.

Axiom 12.2.6 (Additivity) For any twov1 and v2, we have for any playeri that
ψi(N, v1 +v2) = ψi(N, v1)+ψi(N, v2), where the game(N, v1 +v2) is defined
by (v1 + v2)(S) = v1(S) + v2(S) for every coalitionS.

If we accept these three axioms, we are led to a strong result: there is always
exactly one pre-imputation that satisfies them.

Theorem 12.2.7Given a coalitional game(N, v), there is a unique pre-imputation
φ(N, v) = φ(N, v) that satisfies the Symmetry, Dummy player, Additivity axioms.

Note that our requirement thatφ(N, v) be a pre-imputation implies that the pay-
off division be feasible and efficient (or strictly budget balanced). Because we do
not insist on an imputation, individual rationality is not required to hold, though of
course it still may.

What is this unique payoff divisionφ(N, v)? It is called theShapley value, and
it is defined as follows.

Definition 12.2.8 (Shapley value)Given a coalitional game(N, v), theShapley
valueof playeri is given byShapley value

φi(N, v) =
1

|N |!
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
[
v(S ∪ {i})− v(S)

]
.

This expression can be viewed as capturing the “average marginal contribution”
of agenti, where we average over all the different sequences accordingto which
the grand coalition could be built up from the empty coalition. More specifically,
imagine that the coalition is assembled by starting with the empty set and adding

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

390 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

one agent at a time, with the agent to be added chosen uniformly at random. Within
any such sequence of additions, look at agenti′s marginal contribution at the time
he is added. If he is added to the setS, his contribution is[v(S ∪ {i}) − v(S)].
Now multiply this quantity by the|S|! different ways the setS could have been
formed prior to agenti’s addition and by the(|N | − |S| − 1)! different ways the
remaining agents could be added afterward. Finally, sum over all possible setsS
and obtain an average by dividing by|N |!, the number of possible orderings of all
the agents.

For a concrete example of the Shapley value in action, consider the voting game
given in Example 12.1.2. Recall that the four political partiesA, B, C, andD
have 45, 25, 15, and 15 representatives, respectively, and a simple majority (51
votes) is required to pass the $100 million spending bill. If we want to analyze
how much money it is fair for each party to demand, we can calculate the Shapley
values of the game. Note that every coalition with 51 or more members has a value
of $100 million,4 and others have $0. In this game, therefore, the partiesB,C, and
D are interchangeable, since they add the same value to any coalition. (They add
$100 million to the coalitions{B,C}, {C,D} , {B,D} that do not include them
already and to{A}; they add $0 to all other coalitions.) The Shapley value ofA is
given by:

φA =
1

4!
[3!0!(100 − 100) + 3 · 2!1!(100 − 0) + 3 · 1!2!(100 − 0)

+ 0!3!(0 − 0)]

=
1

24
[0 + 600 + 600 + 0] = $50 million.

The Shapley value forB (and, by symmetry, also forC andD) is given by:

φB =
1

4!
[3!0!(100 − 100) + 2 · 2!1!(100 − 100) + 2!1!(100 − 0)

+ 1!2!(100 − 0) + 2 · 1!2!(0 − 0) + 0!3!(0 − 0)]

=
1

24
[0 + 0 + 200 + 200 + 0 + 0] = $16.67 million.

Thus the Shapley values are(50, 16.67, 16.67, 16.67), which add up to the en-
tire $100 million.

To continue with an example mentioned earlier, in Section 10.6.3 we discussed
theShapley mechanismfor sharing the cost of multicast transmissions. Now that
we have learned about the Shapley value—what is the connection? It turns out
to depend on a probabilistic interpretation of the Shapley value. Suppose that the
agents to be served arrive in a random order in the fixed multicast tree, and that
each agent is responsible for the cost of the remaining edges needed to be built for
him to get connected. The Shapley mechanism charges the agents their expected

4. Notice that for these calculations we scale the value function to 100 for winning coalitions and 0 for losing
coalitions in order to make it align more tightly with our example.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.2 Analyzing coalitional games 391

connection costs in such a model, averaging over all orders chosen uniformly at
random.

12.2.2 The core

The Shapley value defined a fair way of dividing the grand coalition’s payment
among its members. However, this analysis ignored questions of stability. We can
also ask: would the agents bewilling to form the grand coalition given the way
it will divide payments, or would some of them prefer to form smaller coalitions?
Unfortunately, sometimes smaller coalitions can be more attractive for subsets of
the agents, even if they lead to lower value overall. Considering the majority voting
example, whileA does not have a unilateral motivation to vote for a different split,
A andB have incentive to defect and divide the$100 million between themselves
(e.g., dividing it(75, 25)).

This leads to the question of what payment divisions would make the agents
want to form the grand coalition. The answer is that they would want to do so
if and only if the payment profile is drawn from a set called thecore, defined as
follows.

Definition 12.2.9 (Core) A payoff vectorx is in the core of a coalitional gamecore
(N, v) if and only if

∀S ⊆ N,
∑

i∈S

xi ≥ v(S).

Thus, a payoff is in the core if and only if no sub-coalition hasan incentive
to break away from the grand coalition and share the payoff it is able to obtain
independently. That is, it requires that the sum of payoffs to any group of agents
S ⊆ N must be at least as large as the amount that these agents could share among
themselves if they formed a coalition on their own. Notice that Definition 12.2.9
implies that payoff vectors in the core must always be imputations: that is, they
must always be strictly budget balanced and individually rational.

Since the core provides a concept of stability for coalitional games we can see it
as an analog of the Nash equilibrium from noncooperative games. However, it is
actually a stronger notion: Nash equilibrium describes stability only with respect to
deviation by a single agent. Instead, the core is an analog of the concept ofstrong
equilibrium (discussed in Section 10.7.3), which requires stability with respect to
deviations by arbitrary coalitions of agents.

How can the core be computed? The answer is conceptually straightforward and
is given by the linear feasibility problem5 that follows.

∑

i∈S

xi ≥ v(S) ∀S ⊆ N (12.1)

5. Linear feasibility problems are linear programs with only constraints but no objective function. Linear
programs are defined in Appendix B.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

392 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

As a notion of stability for coalitional games, the core is appealing. However, the
alert reader might have two lingering doubts, arising due to its implicit definition
through inequalities:

1. Is the core always nonempty?

2. Is the core always unique?

Unfortunately, the answer to both questions is no. Let us consider again the
Parliament example with the four political parties. The set of minimal coalitions
that meet the required51 votes is{A,B}, {A,C}, {A,D}, and{B,C,D}. We
can see that if the sum of the payoffs to partiesB, C, andD is less than $100
million, then this set of agents has incentive to deviate. On the other hand, ifB,C,
andD get the entire payoff of $100 million, thenA will receive $0 and will have
incentive to form a coalition with whichever ofB,C, andD obtained the smallest
payoff. Thus, the core is empty for this game.

On the other hand, when the core is nonempty it may not define a unique payoff
vector either. Consider changing our example so that instead of a simple majority,
an 80% majority is required for the bill to pass. The minimal winning coalitions
are now{A,B,C} and{A,B,D}. Any complete distribution of the $100 million
among partiesA andB now belongs to the core, since all winning coalitions must
have both the support of these two parties.

These examples call into question the universality of the core as a solution con-
cept for coalitional games. We already saw in the context of noncooperative game
theory that solution concepts—notably, the Nash equilibrium—do not yield unique
solutions in general. Here we are in an arguably worse situation, in that the solution
concept may yield no solution at all.

Can we characterize when a coalitional game has a nonempty core? Fortunately,
that at least is possible. To do so, we first need to define a concept known as
balancedness.

Definition 12.2.10 (Balanced weights)A set of nonnegative weights (over2N), λ,
is balancedifbalanced set

∀i ∈ N,
∑

S:i∈S

λ(S) = 1.

Intuitively, the weights on the coalitions involving any given agenti can be in-
terpreted as the conditional probabilities that these coalitions will form, given that
i will belong to a coalition.

Theorem 12.2.11 (Bondereva–Shapley)A coalitional game(N, v) has a nonempty
core if and only if for all balanced sets of weightsλ,

v(N) ≥
∑

S⊆N

λ(S)v(S). (12.2)

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.2 Analyzing coalitional games 393

Proof. Consider the linear feasibility problem used to compute the core, given
in Equation (12.1). We can construct the following linear program:

minimize
∑

i∈N

xi

subject to
∑

i∈S

xi ≥ v(S) ∀S ⊆ N

Note that when the value of this program is no bigger thanv(N), then the
payoff vectorx is feasible, and belongs to the core. Indeed, the value of the
program is equal tov(N) if and only if the core is nonempty. Now consider
this linear program’s dual.

maximize
∑

S⊆N

λ(S)v(S)

subject to
∑

S⊆N

λ(S) = 1 ∀i ∈ N

λ(S) ≥ 0 ∀S ⊆ N

Note that the linear constraints in the dual ensure thatλ is balanced. By weak
duality, the optimal value of the dual is at most the optimal value of the primal,
and hence the core is nonempty if and only if the optimal value of the dual is
no greater thanv(N).

While the Bondereva–Shapley theorem completely characterizes when a coali-
tional game has a nonempty core, it is not always easy or feasible to check that
a game satisfies Equation (12.2) for all balanced sets of weights. Luckily, there
exist several results that allow us to predict the emptiness or nonemptiness of the
core based on a coalitional game’s membership in one of the classes we defined in
Section 12.1.3.

Theorem 12.2.12Every constant-sum game that is not additive has an empty core.

We say that a playeri is aveto playerif v(N \ {i}) = 0.veto player

Theorem 12.2.13In a simple game the core is empty iff there is no veto player. If
there are veto players, the core consists of all payoff vectors in which the nonveto
players get zero.

Theorem 12.2.14Every convex game has a nonempty core.

A final question we consider regards the relationship between the core and the
Shapley value. We know that the core may be empty, but if it is not, is the Shapley
value guaranteed to lie in the core? The answer in general is no, but the following
theorem gives us a sufficient condition for this property to hold. We already know

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

394 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

from Theorem 12.2.14 that the core of convex games is nonempty. The following
theorem further tells us that for such games the Shapley value belongs to that set.

Theorem 12.2.15In every convex game, the Shapley value is in the core.

We now consider an application of the core to our Auction game (Example 12.1.5).
Earlier we asked whether any coalition (consisting of bidders and the seller) could
do better than the payoffs they receive when everyone participates in the mecha-
nism. Now that we have defined the core, we can see that the question can be
rephrased as asking whether the seller’s and the agents’ payoffs from the auction
are in the core.

First, let us consider the case of single-item, second-price auctions. If the bidders
follow their weakly dominant strategy of truthful reporting, it turns out that the
payoffs are always in the core. This is because the seller receives revenue equal
to or greater than the valuations of all the losing bidders (specifically, equal to the
second-highest valuation), and hence cannot entice any of the losing bidders to pay
him more.

Now let us consider the case of the VCG mechanism applied to combinatorial
auctions. Interestingly, though this mechanism generalizes the second-price auc-
tion discussed earlier, it doesnot guarantee payoffs from the core. For example,
consider an auction with three bidders and two goodsx andy, with the following
valuations.

Bidder 1 Bidder 2 Bidder 3

v1(x, y) = 90 v2(x) = v2(x, y) = 100 v3(y) = v3(x, y) = 100
v1(x) = v1(y) = 0 v2(y) = 0 v3(x) = 0

The efficient allocation awardsx to bidder 2 andy to bidder 3. Neither bidder
is pivotal, so both pay 0. However, both bidder 1 and the seller would benefit from
forming a coalition in which bidder 1 wins the bundlex, y and pays any amount
0 < p1 < 90. Thus in a combinatorial auction the VCG payoffs are not guaranteed
to belong to the core.

12.2.3 Refining the core:ǫ-core, least core, and nucleolus

We now consider some refinements of the core that address its possible nonexis-
tence and nonuniqueness.

We first define a concept analogous toǫ-equilibrium (defined in Section 3.4.7).

Definition 12.2.16 (ǫ-core) A payoff vectorx is in theǫ-coreof a coalitional gameǫ-core
(N, v) if and only if

∀S ⊂ N,
∑

i∈S

xi ≥ v(S) − ǫ. (12.3)

One interpretation of theǫ in Equation (12.3) is that there is anǫ cost for deviat-
ing from the grand coalition. As a result, even if the payoffs to agents in coalition

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.2 Analyzing coalitional games 395

S are less than their worth,v(S), as long as the difference is less thanǫ, the payoff
vector is still stable.

Mathematically speaking, there is no requirement thatǫ has to be nonnegative;
whenǫ is negative,−ǫ can be seen as a “bonus” for forming a new coalition. Thus,
whenǫ is negative, a payoff vector that is in theǫ-core ismorestable than a vector
that is only in the core. Note that in Equation (12.3), constraints are quantified
only over coalitions that are strict subsets ofN . Since payoff vectors are efficient,∑

i∈N xi = v(N) is always true. Thus, adding a constraint forN is unnecessary:
it would be trivially satisfied whenǫ is nonnegative and violated whenǫ is negative,
and would shed no light on whether the grand coalition would form.

Note that just like the core, for a givenǫ, theǫ-core of a game may be empty.
On the other hand, it is easy to see that given a game, there always exists some
ǫ that is sufficiently large to ensure that theǫ-core of the game is nonempty. A
natural problem, therefore, is to find the smallestǫ for which theǫ-core of a game
is nonempty. This leads to a solution concept called theleast core.

Definition 12.2.17 (Least core)A payoff vectorx is in the least coreof a coali-least core
tional game(N, v) if and only ifx is the solution to the following linear program.

minimize ǫ

subject to
∑

i∈S

xi ≥ v(S)− ǫ ∀S ⊂ N

The objective function in the linear program given in Definition 12.2.17 is non-
positive if and only if the core of the game is nonempty. As explained, for suffi-
ciently largeǫ, the constraints in the linear program can always be satisfied; hence,
the least core of a game is never empty. Thus the least core can be considered a
generalization of the core. On the other hand, the least core does not contain every
payoff vector in the core when the core is nonempty; rather, it consists only of
payoff vectors that will give all coalitions as little incentive to deviate as possible.
In this sense, the least core is also a refinement of the core.

Although it refines the core, the least core does not uniquely determine a payoff
vector to a game: it can still return a set of payoff vectors. The intuition is that
beyond those coalitions for which the constraints in the linear program are tight
(i.e., are realized as equality), there are extra degrees of freedom available for dis-
tributing the payoffs to agents in the other coalitions. Based on this intuition, it is
easy to construct counterexamples to the uniqueness of the least core. (Can you
find one?)

It seems that we could further strengthen the least core by requiring that coali-
tions whose constraints are slack (i.e., not tight) in the linear program must be as
stable as possible. To formalize this idea, letǫ1 be the objective value of the linear
program, and letS1 be the set of coalitions corresponding to the set of constraints

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

396 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

that are tight in the optimal solution. We now optimize.

minimize ǫ

subject to
∑

i∈S

xi = v(S)− ǫ1 ∀S ∈ S1

∑

i∈S

xi ≥ v(S)− ǫ ∀S ∈ 2N \ S1

But what if some constraints remain slack even in the solution to the new opti-
mization problem? We can simply solve yet another optimization problem to make
the remaining coalitions as stable as possible. Repeating this procedure, the payoff
vector gets progressively tightened. Since at each step, at least one more constraint
will be made tight, this process must terminate. Indeed, a careful argument that
counts the number of dimensions shows that in fact the process must terminate af-
ter at most|N | steps. At the end of this process, we reach a unique payoff vector,
known as thenucleolus.

Definition 12.2.18 (Nucleolus)A payoff vectorx is in the nucleolusof a coali-nucleolus
tional game(N, v) if it is the solution to the series of optimization programs
O1, O2, . . . , O|N |, where these programs are defined recursively as follows.

(O1)






minimize ǫ

subject to
∑

i∈S

xi ≥ v(S) − ǫ ∀S ⊂ N

(Oi)






minimize ǫ

subject to
∑

i∈S

xi = v(S)− ǫ0 ∀S ∈ S1

...
∑

i∈S

xi = v(S)− ǫi−1 ∀S ∈ Si−1 \ Si−2

∑

i∈S

xi ≥ v(S)− ǫ ∀S ∈ 2N \ Si−1

ǫi−1 is the optimal objective value to programOi−1 and Si−1 is the set of coali-
tions for which in the optimal solution toOi−1, the constraints are realized as
equalities.6

Unlike the core, theǫ-core, and the least core, the nucleolus possesses the desir-
able property that it is unique, regardless of the game.

6. We have to be careful and terminate before the|N |-th program ifSi = 2N for somei < |N |.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.3 Compact representations of coalitional games 397

Theorem 12.2.19For any coalitional game(N, v), the nucleolus of the game al-
ways exists and is unique.

Proof Sketch. For existence of the nucleolus, one can solve the series of op-
timization programs as defined in Definition 12.2.18 and end up with some
assignment of values to the variablesx that corresponds to some payoff vector.
These programs are linear programs with finitely many constraints; hence, they
can always be solved.

For uniqueness, first observe that the earlier optimization problems can only
influence the later ones through the values. Therefore, the set of programs will
always yield the same set of solutions{ǫ1, . . . , ǫ|N |}. After |N | optimization,
we are left with a system of2|N | equations over|N | variables. This system is
of rank at most|N |, and therefore if a solution exists, it must be unique.

The nucleolus has an alternate definition in terms ofexcess, which we define
next. This definition is worth understanding because it provides additional intuition
about the meaning of the nucleolus.

Definition 12.2.20 (Excess of a coalition)The excess of a coalitionS in gameexcess of a
coalition (N, v) with respect to a payoff vectorx, e(S, x, v), is defined asv(S)−∑i∈S xi,

that is, the amount a coalition gain by deviating, as compared to that coalition’s
payoff as part of the grand coalition.

Given a coalitional game(N, v) and a payoff vectorx, compute the excesses of
all coalitions except coalitionN and∅; we call this(2|N | − 2)-dimensional vector
theraw excess vector. When this vector is sorted in decreasing order of excess, we
call it thesorted excess vectorand denote it asev(x, v).

Given two payoff vectorsx andy, we say the excesses due tox are lexicograph-
ically smaller than those due toy, writtenx ≺e(v) y, if for the smallest index such
thatev(x, v) andev(y, v) differ, ev(x, v) < ev(y, v). The nucleolus can then be
defined as the payoff vector that is smallest according to the≺e(v) relation.

Definition 12.2.21 (Nucleolus, alternate definition)Given a coalitional game(N, v),
thenucleolusis the payoff vectorx such that for all other payoff vectorsy, y ≻e(v)

x, that is,x lexicographically minimizes the excesses of all coalitionsexceptN
and∅.

12.3 Compact representations of coalitional games

Our focus so far has been on analyzing coalitional games. Now that we have some
solution concepts under our belts, a natural question is whether and how we can
efficiently compute these solution concepts. However, we immediately run into the
problem that a straightforward representation of coalitional games by enumeration
requires space exponential in the number of agents. This has the odd side-effect

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

398 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

that simple brute-force approaches appear to have “good” (i.e., low-order polyno-
mial) complexity, since complexity measures express the amount of time it will
take to solve a problem as a function of the input size. Nevertheless, applying
these algorithms to the straightforward representation will only allow us to com-
pute solution concepts for problems with very few agents.

In order to ask more interesting questions we must first find a game representa-
tion that is more compact. In general one cannot compress the representation, but
many natural settings contain inherent symmetries and independencies that do give
rise to more compact representations. Conceptually, this section mirrors the discus-
sion in Section 6.5, which considered compact representations of noncooperative
games.

In the following, we discuss a number of compactly-represented coalitional games.
These games can be roughly categorized into two types. First, we look at games
that arise from specific applications, such as weighted voting games and weighted
graph games. We then look at “languages” designed to represent coalitional games.
This includes the synergy representation for superadditive games and the multi-
issue and marginal contribution nets representations for general games.

12.3.1 Weighted majority games and weighted voting games

The weighted majority game representation is a compact way ofencoding voting
situations. Its definition is straightforward.

Definition 12.3.1 (Weighted majority game)Aweighted majority gameis definedweighted
majority game by weightswi assigned to each playeri ∈ N . LetW be

∑
i∈N w(i). The value of

a coalition is1 if
∑

i∈S w(i) > W
2

and0 otherwise.

Since this game is simple (in the sense of Definition 12.1.10), testing the nonempti-
ness of the core is equivalent to testing the existence of a veto player, which can be
done quickly. However, it is not so easy to compute the Shapley value.

Theorem 12.3.2Computing the Shapley value in weighted majority games is #P-
complete.7

This can be proved by a reduction from the counting version of KNAPSACK.
Weighted voting gamesare natural generalization of weighted majority games.weighted voting

games Instead of stipulating that all coalitions with more than half the votes win, an ex-
plicit minimum number of votes, known as thethreshold, is specified. This repre-
sentation can be used to represent voting situations in which the number of votes
required for the selection of a candidate is not a simple majority.

7. Recall that #P consists of the counting versions of the deterministic polynomial-time decision problems;
for example, not simply deciding whether a Boolean formula is satisfiable, but rather counting the number
of truth assignments that satisfy the formula.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.3 Compact representations of coalitional games 399

12.3.2 Weighted graph games

A weighted graph game (WGG) is a coalitional game defined by an undirected
weighted graph (i.e., a set of nodes and a real-valued weight associated with every
unordered pair of nodes). Intuitively, the nodes in the graph represent the play-
ers, and the value of a coalition is obtained by summing the weights of the edges
that connect pairs of vertices corresponding to members of the coalition. WGGs
thus explicitly model pairwise synergies among players and assume that all such
synergies increase the coalition’s value additively. In exchange for this reduced ex-
pressiveness we gain a much more compact representation: a game withn agents
is represented by onlyn(n−1)

2
weights.

Definition 12.3.3 (Weighted graph game)Let(V,W) denote an undirected weighted
graph, whereV is the set of vertices andW ∈ R

V ×V is the set of edge weights;
denote the weight of the edge between the verticesi andj asw(i, j). This graph
defines aweighted graph game(WGG), where the coalitional game is constructedweighted graph

game as follows:

• N = V ;

• v(S) =
∑

i,j∈S w(i, j).

An example that WGGs model well is the Revenue Sharing game.

Example 12.3.4 (Revenue Sharing game)Consider the problem of dividing the
revenues from toll highways between the cities that the highways connect. The
pair of cities connected by a highway get to share in the revenues only when they
form an agreement on revenue splitting; otherwise, the tolls go to the state. This
problem can be represented as a weighted graph game(V,W), where the nodesV
represent the cities, each edge represents a highway betweena pair of cities, and
the weightw(i, j) of a given edge indicates that highway’s toll revenues.

The following is a direct consequence of the definitions.

Proposition 12.3.5 If all the weights are nonnegative then the game is convex.

Thus we know that in this case WGGs have a nonempty core and, furthermore,
that the core contains the Shapley value. But the core may contain additional payoff
vectors, and it is natural to ask whether testing membership is easy or hard. The
answer is given by the following proposition.

Proposition 12.3.6 If all the weights are nonnegative then membership of a payoff
vector in the core can be tested in polynomial time.

The proof is achieved by providing a maxflow-type algorithm.
The Shapley value is also easy to compute, even when we lift our restriction that

the weights must be nonnegative.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

400 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

Theorem 12.3.7The Shapley value of the coalitional game(N, v) induced by a
weighted graph game(V,W) is

φi(N, v) =
1

2

∑

j 6=i

w(i, j).

Proof. Consider the contribution of the edge(i, j) to φi(N, v). For every
subsetS containing it, it contributes(n−|S|)!(|S|−1)!

n!
w(i, j). There are

(
n−2
k−2

)

subsets of sizek that contain bothi andj. So all subsets of sizek contribute(
n−2
k−2

)
(n−|S|)!(|S|−1)!

n!
w(i, j) = (k−1)

n(n−1)
w(i, j). And by summing overk =

2, . . . , n we obtain the result.

It follows that we can compute the Shapley value inO(n2) time.
Answering questions regarding the core of WGGs is more complex. Recall that

a cut in a graph is a set of edges that divide the nodes into two disjoint sets, the
weight of a cut is the sum of its weights, and a negative cut is a cut whose weight
is negative. We begin by noting the following proposition.

Proposition 12.3.8The Shapley value is in the core of a weighted graph game if
and only if there is no negative cut in the weighted graph.

Proof. Note that while the value of a coalitionS is the sum of the weights
within S, the Shapley values in the same coalition is the same sum plus half
the total weights of edges betweenS andN \S. But the edges betweenS and
N \ S form a cut. Clearly, if that cut is negative, the Shapley valuecannot be
in the core, and since this holds for all setsS, the converse is also true.

And so we get as a consequence that if the weighted graph contains no negative
cuts, the core cannot be empty. The next theorem turns this into a necessary and
sufficient condition.

Theorem 12.3.9The core of a weighted graph game is nonempty if and only if
there is no negative cut in the weighted graph.

Proof. The if part follows from the preceding proposition.
For the only-if part, suppose we have a negative cut in the graph betweenS

andN \ S. By virtue of being a cut, we have

∑

i∈S

φi(N, v)−v(S) =
∑

i∈(N\S)

φi(N, v)−v(N\S) =

∑
i∈S,j∈(N\S)w(i, j)

2
< 0.

For any payoff vectorx, we have

v(N) =
∑

i∈N

xi =
∑

i∈S

xi +
∑

i∈(N\S)

xi

=
∑

i∈N

φi(N, v) =
∑

i∈S

φi(N, v) +
∑

i∈(N\S)

φi(N, v).

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.3 Compact representations of coalitional games 401

Combining the two, and summing up,
(
∑

i∈S

xi − v(S)

)
+

(
∑

i∈(N\S)

xi − v(N \ S)

)
< 0.

Hence, either the first or the second term (possibly both) has to be negative.
The payoff vecorx is not in the core. Sincex is an arbitrary payoff vector, the
core is empty.

These theorems suggest that one test for nonemptiness of the core is to check
whether the Shapley solution lies in the core. However, despite all these promising
indications, testing membership in WGGs remains elusive in general.

Theorem 12.3.10Testing the nonemptiness of the core of a general WGG is NP-
complete.

The proof is based on a reduction from MAXCUT, a well-known NP-complete
problem.

12.3.3 Capturing synergies: a representation for superadditive games

So far, we have looked at compact representations of coalitional games that can
express only very restricted classes of games, but that are extremely compact for
those classes. We now switch gears to consider compact representations that are
designed with the intent to represent more diverse families of coalitional games.

The first one we will examine can be used to represent any superadditive game.
As mentioned earlier in the chapter, superadditivity is sometimes assumed for coali-
tional games and is justified when coalitions do not exert negative externalities on
each other.

Definition 12.3.11 (Synergy representation)Thesynergy representationof super-synergy
representation additive games is given by the pair(N, s), whereN is the set of agents ands is

a set function that maps each coalition to a value interpreted as thesynergythe
coalition generates when the agents of the coalition work together. Only coalitions
with strictly positive synergies will be included in the specification of the game.

The underlying coalitional game(N, v) under representation(N, s) is given by

v(S) =

(
max

{S1,S2,...,Sk}∈π(S)

k∑

i=1

v(Si)

)
+ s(S),

whereπ(S) denotes the set of all partitions ofS.

Note that for some superadditive games, the representation may still require
space exponential in the number of agents. This is unavoidable as the space of

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

402 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

coalitional games ofn agents, when treated as a vector space, is of2n − 1 dimen-
sions. However, for many games, the space required is much less.

We can evaluate the usefulness of a representation based on a number of criteria.
One criterion is whether the representation exposes the structure of the underlying
game to facilitate efficient computation. For example, is it easy to find out the
value of a given coalition? Unfortunately, the answer is negative for the synergy
representation.

Proposition 12.3.12It is NP-complete to determine the value of some coalitions
for a coalitional game specified with the synergy representation. In particular, it is
NP-complete to determine the value of the grand coalition.

Intuitively, the reason why it is hard to determine the value of a coalition under
the synergy representation is that we need to pick the best partitioning for a coali-
tion, for which there is a number of choices exponential in the size of the coalition.
As a result, it is (co)NP-hard to determine whether a given payoff vector is in the
core, and it is NP-hard to compute the Shapley value of the game, as solution to
either problem can be used to compute the value of the grand coalition. It is also
(co)NP-hard to determine whether the core is empty or not, which follows from a
reduction from Exact Cover by 3 Sets.

Interestingly, if the value of the grand coalition is given as part of the input of
the problem, then the emptiness of the core can be determined efficiently.

Theorem 12.3.13Given a superadditive coalitional game specified with the syn-
ergy representation and the value of the grand coalition, we can determine in poly-
nomial time whether the core of the game is empty or not.

The proof is achieved by showing that a payoff in the core can be found by
solving a linear program.

12.3.4 A decomposition approach: multi-issue representation

The central idea behind the multi-issue representation, a representation based on
game decomposition, is that ofadditionof games (in the sense of Axiom 12.2.6
(Additivity) in the axiomatization of the Shapley value). Formally, the multi-issue
representation is given as follows.

Definition 12.3.14 (Multi-issue representation)Amulti-issue representationis com-multi-issue
representation posed of a collection of coalitional games, each known as an issue,(N1, v1),

(N2, v2), . . ., (Nk, vk), which together constitute the coalitional game(N, v),
where

• N = N1 ∪N2 ∪ · · · ∪Nk; and

• For each coalitionS ⊆ N , v(S) =
∑k

i=1 vi(S ∩Ni).

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.3 Compact representations of coalitional games 403

Intuitively, each issue of the game involves some set of agents, which may be
partially or completely overlapping with the set of agents for another issue. The
value of a coalition in the game is the sum of the values achieved by the coalition in
each issue. For example, consider a robotics domain where there are certain tasks
to be performed, each of which can be performed by a certain subset of a group of
robots. We can then treat each of these tasks as an issue and model the system as a
coalitional game where the value of any group of robots is the sum of the values of
the tasks the group can perform.

Clearly, the multi-issue representation can be used to represent any coalitional
game, as we can always choose to treat the coalitional game as a single big issue.

From the computational standpoint, due to its close relationship to the additivity
axiom, it is perhaps not surprising that the Shapley value of a coalitional game
specified in the multi-issue representation can be found efficiently.

Proposition 12.3.15The Shapley value of a coalitional game specified with the
multi-issue representation can be computed in time linear in the size of the input.

This is not hard to see. First, note that the Shapley value of a game can be
computed in linear time when the input is given by the enumeration of the value
function. This is because the direct approach of computing the Shapley value re-
quires summing over each coalition once, and so the total number of operations is
linear in the size of the enumeration. Observe that the factorials can be computed
quickly to any desired accuracy using the Stirling approximation. Then, to prove
the proposition, we must simply use the fact that the Shapley value satisfies the
additivity axiom.

On the other hand, the multi-issue representation does not help with computa-
tional questions about the core. For example, it is coNP-hard to determine if a
given payoff vector belongs to the core when the game is specified with the multi-
issue representation.

12.3.5 A logical approach: marginal contribution nets

Marginal contribution nets (MC-nets) contstitute a representation scheme for coali-
tional games that attempts to harness the power of boolean logic to reduce the
space required for specifying a coalitional game. The basic idea is to treat each
agent in a game as a boolean variable and to treat the (binary) characteristic vector
of a coalition as a truth assignment. This truth assignment can be used to evaluate
whether a boolean formula is satisfied, which can in turn be used to determine the
value of a coalition.

Definition 12.3.16 (MC-net representation)AnMC-netconsists of a set of rules.marginal
contribution net
(MC-net)

Each rule has the syntactic form(Pattern, weight), where the pattern is given by a
boolean formula and the weight is a real value.

The MC-net(p1, w1), (p2, w2), . . . , (pk, wk) specifies a coalitional game(N, v),
whereN is the set of propositions that appear in the patterns and the value function

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

404 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

is given by

v(S) =

k∑

i=1

pi(e
S)wi,

wherepi(e
S) evaluates to1 if the boolean formulapi evaluates to true for the truth

assignmenteS and0 otherwise.

As an example, consider an MC-net with two rules:(a ∧ b, 5), (b, 2). The
coalitional game represented has two agents,a and b, and the following value
function.

v(∅) = 0 v({a}) = 0

v({b}) = 2 v({a, b}) = 5 + 2 = 7

An alternative interpretation of MC-nets is a graphical representation. We can
treat the agents as nodes on a graph, and for each pattern, a clique is drawn on the
graph for the agents that appear in the same pattern. The weight of a rule is the
weight associated with the corresponding clique.

A natural question for a representation language is whether there is a limit on
the class of objects it can represent.

Proposition 12.3.17MC-nets can represent any game when negative literals are
allowed in the patterns or when the weights can be negative. When the patterns
are limited to conjunctive formula over positive literals and the weights are non-
negative, MC-nets can represent all and only convex games.

Intuitively, when negative literals are allowed, we can specify the value of each
coalitionS directly by having a boolean formula that can be satisfied if and only
if the truth assignment corresponds to the characteristic vector ofS, and hence
arbitrary games can be represented.

Another question is how a language relates to other representation languages.
We can show that MC-nets generalize two of the previously discussed represen-
tations: WGGs and the multi-issue representation. First, MC-nets can be viewed
as a generalization of WGGs that assigns weights to hyper-edges rather than to
simple edges. A pattern in this case specifies the agents that share the same edge.
However, since MC-nets can represent any coalitional games, MC-nets constitute a
strict generalization of WGGs. Second, MC-nets generalize the multi-issue repre-
sentation. Each issue is represented by patterns that only involve agents relevant to
the issue. Comparing the two representations, MC-nets require at mostO(n) more
space than the multi-issue representation; however, there exist coalitional games
for which MC-nets are exponentially more succinct (in the number of agents) than
the multi-issue representation.

From a computational standpoint, when only limited to conjunctions in the Boolean
formula, MC-nets still make the Shapley value just as easy to compute as did the
multi-issue representation.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.4 Further directions 405

Theorem 12.3.18Given a coalitional game specified with an MC-net limited to
conjunctive patterns, the Shapley value can be computed in time linear in the size
of the input.

However, when other logical connectives are allowed, there is no known algo-
rithm for finding the Shapley value efficiently. Essentially, finding the Shapley
value involves summing factors of hypergeometric distributed variables, a problem
for which there is no known closed-form solution.

Since MC-nets generalize WGGs, the problems of determining whether the core
is empty and whether a payoff vector belongs to the core are both coNP-hard. How-
ever, there exists an algorithm that can solve both problems in time exponential
only in the tree-width of the graphical representation of the MC-net.

12.4 Further directions

Before we conclude the chapter, we briefly survey some more advanced topics in
coalitional game theory.

12.4.1 Alternative coalitional game models

Let us first revisit the transferable utility assumption thatwe made at the beginning
of the chapter. In some situations, this assumption is not reasonable, for exam-
ple, due to legal reasons (agents cannot engage in side payments), or because the
agents do not have access to a common currency. Such settings are described as
nontransferable utility (NTU) games.

Definition 12.4.1 (Coalitional game with nontransferable utility) A coalitional
game (with nontransferable utility)is a pair (N, v), wherecoalitional game

with
nontransferable
utility

• N is a finite set of players, indexed byi; and

• v : 2N 7→ 2R
|S|

associates each coalitionS ⊆ N with a set of value vectors
v(S) ⊆ R

|S|, which can be interpreted as the different sets of payoffs thatS is
able to achieve for each of its members.

Note that the functionv returnssetsof value vectors rather than single real num-
bers, as in the case of coalitional games with transferable utility. Thus, rather than
giving the total amount of utility and allowing agents to divide it arbitrarily among
themselves, coalitional games with nontransferable utility explicitly list all the di-
visions that are possible and prohibit the rest.

It might seem that there is no problem left to be solved in the case of NTU
games—after all, earlier we largely focused on payoff division, and in these games
payoffs cannot be divided at all. However, in these games it is interesting to study
which coalitions form.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

406 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

For example, consider the matching problem we introduced in Section 10.6.4,
pairing graduate students with advisors. This setting can be modeled as a coali-
tional game with nontransferable utility as follows. LetN = A ∪ S be the set of
players in the game. LetΛ be the set of all possible matchings, and letµ(i) denote
the agent matched with agenti, whereµ ∈ Λ. For each coalitionT , the payoffs
achievable by its members,A′ ∪ S′, are the preferences induced by all possible
matchings among the group’s members. As a concrete example, suppose each stu-
dent inS achieves a payoff of|A| by being matched to his most preferred advisor,
|A| − 1 for being matched to his second most preferred advisor, and soon, with
a payoff of0 for not being matched. In general, writeus(µ) to denote students’s
payoff for matchingµ. Similarly, let there be such a payoff function over students
for each advisor. For each coalitionT ⊆ N , each different matching within the
group gives rise to different payoff vectors for its members.

A matchingµ is in the core if there is no coalition of advisors and studentswhere
all members of the coalition are weakly better off matching only among themselves,
and at least one member is strictly better off. Mathematically,µ is in the core if
and only if there is no matchingµ′ and setS ⊆ N such that

1. ∀i ∈ S, µ′(i) ∈ S;

2. ∀i ∈ S, ui(µ
′) ≥ ui(µ); and

3. ∃i ∈ S, ui(µ
′) > ui(µ).

As it turns out, the core of the matching game is always nonempty.
Another commonly-made assumption is that the value (or in the case of NTU

games, the set of achievable payoff vectors) of a coalition is independent of the
other coalitions. This is at best an approximation for many situations. If the value
of a coalition can depend meaningfully on what other coalitions form, one has to
take into account the wholecoalitional structurewhen assigning payoffs to the
coalitions.

Definition 12.4.2 (Coalitional game in partition form) Acoalitional game in par-
tition form is a pair (N, p), wherecoalitional game

in partition form
• N is a finite set of players, indexed byi; and

• p associates each partitionπ ofN (also known as acoalitional structure) andcoalitional
structure a coalitionS ∈ π with p(π, S) ⊆ R

S, to be interpreted as the set of payoffs
thatS can achieve for its members under partitionπ.

Yet another important direction is the incorporation of uncertainties into coali-
tional game models. Unlike incomplete-information games in noncooperative game
theory, where a well-developed theory exists, a universally-accepted theory of
coalitional games with uncertainty has yet to emerge. Such a theory would be
useful. In many situations, it is natural to suppose that the values to coalitions
are not known with certainty. It is also reasonable to assume that the payoffs to

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

12.5 History and references 407

a coalition could depend on private information held by the agents, about which
other agents have only probabilistic information. Some efforts toward modeling
coalitional games under uncertainty have been made in the work cited at the end of
the chapter; yet more work is still needed to create a fully complete theory.

12.4.2 Advanced solution concepts

There are a number of other solution concepts that we have not discussed in this
chapter. One interesting phenomenon in the analysis of coalitional games is that
researchers seem to have quite diverse opinions as to which solution concepts make
the most sense. This is perhaps natural since different conflicts call for different
notions of stability and fairness. Some other important solution concepts in the
literature includestable sets, thebargaining set, and thekernel. Some of these,
for example, attempt to capture the intuition that should a coalition deviate due to
the violation of some stability property, that it should deviate to a stable coalition
itself.

However, interestingly, most solution concepts to date focus on dividing the pay-
off of the grand coalition. While this appears quite reasonable when the core of
the game is nonempty, when the core is empty, one might expect coalitions other
than the grand coalition to form. This problem is worse when the game is not su-
peradditive; in this case, it is possible that some partitioning of the coalitions could
achieve strictly higher total payoffs than the grand coalition. It is therefore impor-
tant to consider solution concepts that allow payoffs to depend on the coalitional
structure.

Finally, computing the agents’ payoffs is often only part of the problem. It can
also be important to find out what coalitions would and should form, and how
agents should coordinate their actions. This has been an area traditionally ignored
in the literature, perhaps due to a focus on the abstract properties of coalitional
games. For certain applications, the coalitional formation process cannot be ig-
nored. Indeed, much work in artificial intelligence has been devoted to analyzing
the process of coalition formation. By applying coalitional game theory to analyze
such process, it may be possible to learn more about the strategic properties of
different coordination mechanisms in the presence of selfish agents.

12.5 History and references

In the early days of game theory research, coalitional game theory was a major fo-
cus, particularly of economists. This is partly because the theory is closely related
to equilibrium analysis and seemingly bridges a gap between game theory and eco-
nomics. Von Neumann and Morgenstern, for example, devoted more than half of
their classic text,Theory of Games and Economic Behavior[von Neumann and
Morgenstern, 1944], to an analysis of coalitional games. A large body of theoret-
ical work on coalitional game theory has focused on the development of solution
concepts, possibly in an attempt to explain the behavior of large systems such as

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

408 12 Teams of Selfish Agents: An Introduction to Coalitional Game Theory

markets. Solid explanations of the many solution concepts and their properties are
given by Osborne and Rubinstein [1994] and Peleg and Sudhölter [2003].

Some examples used in this chapter have appeared in other contexts. The connec-
tion between matching and coalitional game theory has been explored by a number
of economists and surveyed in the works of Al Roth (see e.g., Roth and Sotomayor
[1990]). The airport game and the minimum spanning tree game appeared in Peleg
and Sudhölter [2003]. The connection between auctions and core was explored,
for example, by Day and Milgrom [2008].

The first systematic investigation of the computational complexity of solution
concepts in coalitional game theory were carried out in Deng and Papadimitriou
[1994]. This paper defined weighted graph games and studied the complexity of
computing the core and the Shapley value, as well as a few of the other solution
concepts we mentioned. For weighted voting games, a systematic study of the
computational complexity of the various solution concepts have appeared in Elkind
et al. [2007]. Languages for succinct representation of coalitional games have
been developed mostly in the AI community. The superadditive representation
was developed by Conitzer and Sandholm [2003a]; it also naturally extends to
representing superadditive games with nontransferable utilities. The multi-issue
representation was also developed by Conitzer and Sandholm [2004]. The marginal
contribution nets representation was first proposed in Ieong and Shoham [2005],
and later generalized in Ieong and Shoham [2006].

Work on coalitional games under uncertainty includes Suijs et al. [1999], Chalki-
adakis and Boutilier [2004], Myerson [2007], and Ieong and Shoham [2008]; as
mentioned earlier, many open problems remain.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13 Logics of Knowledge and Belief

In this chapter we look at how one might represent statements such as “John knows
that it is raining,” “John believes that it will rain tomorrow,” “Mary knows that John
believes that it will rain tomorrow” and “It is common knowledge between Mary
and John that it is raining.”

13.1 The partition model of knowledge

Consider a distributed system, in which multiple processors autonomously perform
some joint computation. Of course, the joint nature of the computation means that
the processors need to communicate with one another. One set of problems comes
about when the communication is error-prone. In this case the system analyst may
find himself saying something like the following: “Processor A sent the message
to processor B. The message may not arrive, and processor A knows this. Further-
more, this is common knowledge, so processor A knows that processor B knows
that it (A) knows that if a message was sent it may not arrive.” The topic of this
chapter is how to make such reasoning precise.

13.1.1 Muddy children and warring generals

Often the modeling is done in the context of some stylized problem, with an associ-
ated entertaining story. Thus, for example, when we return to the distributed com-
puting application in Section 13.4, rather than speak about computer processors,
we will tell the story of two generals who attempt to coordinate among themselves
to gang up on a third. For now, however, consider the following less violent story.

A group ofn children enters their house after having played in the
mud outside. They are greeted in the hallway by their father, who
notices thatk of the children have mud on their foreheads. He makes
the following announcement, “At least one of you has mud on his
forehead.” The children can all see each other’s foreheads, but not
their own. The father then says, “Do any of you know that you have
mud on your forehead? If you do, raise your hand now.” No one

410 13 Logics of Knowledge and Belief

raises his hand. The father repeats the question, and again no one
moves. The father does not give up and keeps repeating the question.
After exactlyk rounds, all the children with muddy foreheads raise
their hands simultaneously.

How can this be? On the face of it only the father’s initial statement conveyed
new information to the children, and his subsequent questions add nothing. If a
child did not have information at the beginning, how could he later on?

Here is an informal argument. Let us start with the simple case in whichk = 1.
In this case the single muddy child knows that all the others are clean, and when
the father announces that at least one child is dirty he can conclude that he himself
is that child. Note that none of theother children know at this point whether or
not they are muddy. (After the muddy child raises his hand, however, they do; see
next.) Now considerk = 2. Imagine that you are one of the two muddy children.
After the father’s first announcement, you look around the room and see that there
is a muddy child other than you. Thus after the father’s announcement you do not
have enough information to know whether you are muddy (you might be, but it
could also be that the other child is the only muddy one). But you note that after
the father’s first question the other muddy child does not raise his hand. You then
realize that you yourself must be muddy as well, or else—based on the reasoning
in thek = 1 case—that child would have raised his hand. So you raise your hand.
Of course, so does the other muddy child.

You could extend this argument tok = 3, 4, . . ., showing in each case that all
of thek muddy children raise their hands together after thekth time that the father
asks the question. But of course, you would rather have a general theorem that
applies to allk. In particular, you might want to prove by induction that after
rounds1, 2, . . . , k − 1, none of the children know whether they are dirty, but after
the next round exactly the muddy children do. However, for this we will need a
formal model of “know” that applies in this example.

13.1.2 Formalizing intuitions about the partition model

Definition 13.1.1 (Partition model) An (n-agent) partition modelover a languagepartition model
Σ is a tupleA = (W,π, I1, . . . , In), where

• W is a set of possible worlds;

• π : Σ 7→ 2W is an interpretation function that determines which sentences in
the languages are true in which worlds; and

• eachIi denotes a set of possible worlds that are equivalent from the point of
view of agenti. Formally,Ii is a partition ofW ; that is,Ii = (Wi1 , . . . ,Wir

)
such thatWij

∩Wik
= ∅ for all j 6= k, and∪1≤j≤rWij

= W . We also use
the following notation:Ii(w) = {w′ | w ∈Wij

andw′ ∈Wij
}; that is,Ii(w)

includes all the worlds in the partition of worldw, according to agenti.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.1 The partition model of knowledge 411

Thus each possible world completely specifies the concrete state of affairs, at
least insofar as the languageΣ can describe it. For example, in the context of the
Muddy Children Puzzle, each possible world will specify precisely which of the
children are muddy. The choice ofΣ is not critical for current purposes, but for
concreteness we will take it to be the languages of propositional logic over some
set of primitive propositional symbols.1 For example, in the context of the muddy
children we will assume the primitive propositional symbolsmuddy1, muddy2,
. . . ,muddyn.

We will use the notationKi(ϕ) (or simplyKiϕ, when no confusion arises)
as “agenti knows thatϕ.”2 The following defines when a statement is true in a
partition model.

Definition 13.1.2 (Logical entailment for partition models) LetA = (W,π, I1, . . . , In)
be a partition model overΣ, andw ∈ W . Then we define the|= (logical entail-
ment) relation as follows:

• For anyϕ ∈ Σ, we say thatA,w |= ϕ if and only ifw ∈ π(ϕ)

• A,w |= Kiϕ if and only if for all worldsw′, if w′ ∈ Ii(w) thenA,w′ |= ϕ.

The first part of the definition gives the intended meaning to the interpretation
functionπ from Definition 13.1.1. The second part states that we can onlycon-
clude that agenti knowsϕ whenϕ is true in all possible worlds thati considers
indistinguishable from the true world.

Let us apply this modeling to the Muddy Children story. Consider the following
instance ofn = k = 2 (i.e., the instance with two children, both muddy). There
are four possible worlds, corresponding to each of the children being muddy or not.
There are two equivalence relationsI1 andI2, which allow us to express each of the
children’s perspectives about which possible worlds can be distinguished. There
are two primitive propositional symbols—muddy1 andmuddy2. At the outset,
before the children see or hear anything, all four worlds form one big equivalence
class for each child.

After the children see each other (and can tell apart worlds in whichotherchil-
dren’s state of cleanliness is different) but before the father speaks, the state of
knowledge is as illustrated in Figure 13.1. The ovals illustrate the four possible
worlds, with the dark oval indicating the true state of the world. The solid boxes in-
dicate the equivalence classes inI1, and the dashed boxes indicate the equivalence
classes inI2.

1. See Appendix D for a review of propositional logic.
2. The reader familiar with modal logic will note that a partition model is nothing but a special case of a
propositional Kripke model withn modalities, in which each of then accessibility relations is an equivalence
relation (i.e., a binary relation that is reflexive, transitive, and symmetric). What is remarkable is that the
modalities defined by these accessibility relations correspond well to the notion of knowledge that we have
been discussing. This is why we use the modal operatorKi rather than the generic necessity operator
2i. (The reader unfamiliar with modal logic should ignore this remark; we review modal logic in the next
section.)

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

412 13 Logics of Knowledge and Belief

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�muddy1

muddy2

�
�

�
�muddy1

¬muddy2

�
�

�
�¬muddy1

¬muddy2

�
�

�
�¬muddy1

muddy2

I1

I2

Figure 13.1: Partition model after the children see each other.

Note that in this state of knowledge, in the real world both the sentencesK1muddy2
andK2muddy1 are true (along with, for example,K1¬K2muddy2). However,
neitherK1muddy1 norK2muddy2 is true in the real world.

Once the father announces publicly that at least one child is dirty, the world
in which neither child is muddy is ruled out. This world then becomes its own
partition, leaving the state of knowledge as shown in Figure 13.2.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�muddy1

muddy2

�
�

�
�muddy1

¬muddy2

�
�

�
�¬muddy1

¬muddy2

�
�

�
�¬muddy1

muddy2

I1

I2

Figure 13.2: Partition model after the father’s announcement.

Thus, were it the case that only one of the children were dirty, at this point he
would be able to uniquely identify the real world (and in particular the fact that he
was dirty). However, in the real world (where both children are dirty) it is still the
case that in this world neitherK1muddy1 norK2muddy2 holds. However, once
the children each observe that the other child does not know his state of cleanliness,
the state of knowledge becomes as shown in Figure 13.3.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.2 A detour to modal logic 413

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�muddy1

muddy2

�
�

�
�muddy1

¬muddy2

�
�

�
�¬muddy1

¬muddy2

�
�

�
�¬muddy1

muddy2

I1

I2

Figure 13.3: Final partition model.

And now indeed bothK1muddy1 andK2muddy2 hold.
Thus, we can reason about knowledge rigorously in terms of partition models.

This is a big advance over the previous informal reasoning. But it is also quite
cumbersome, especially as these models get larger. Fortunately, we can sometimes
reason about such models more concisely using an axiomatic system, which pro-
vides a complementary perspective on the same notion of knowledge.

13.2 A detour to modal logic

In order to reason about the partition model of knowledge and later about models
of belief and other concepts, we must briefly discuss modal logic. This discussion
presupposes familiarity with classical logic. For the most part we will consider
propositional logic, but we will also make some comments about first-order logic.
Both are reviewed in Appendix D.

From the syntactic point of view, modal logic augments classical logic with one
or more (usually, unary)modal operators, and a modal logic is a logic that includesmodal operator
one or more modal operators. The classical notation for a modal operator is2,
often pronounced “necessarily” (and thus2ϕ is read as “ϕ is necessarily true”).
The dual modal operator is3, often pronounced “possibly,” and is typically related
to the necessity operator by the formula3ϕ ≡ ¬2¬ϕ.

What does a modal operator represent, and how is it different from a classical
connective such as negation? In general, a modality represents a particular type of
judgment regarding a sentence. The default type of judgment, captured in classical
logic and not requiring an explicit modal operator, is whether the sentence is true
or false. But one might want to capture other sorts of judgments. The original
motivation within philosophy for introducing the modal operator is to distinguish
between different “strengths of truth." In particular, the wish was to distinguish
between accidental truths such as “it is sunny in Palo Alto” (represented, say, by
the propositional symbolp), necessary truths such as “either it is sunny in Palo Alto

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

414 13 Logics of Knowledge and Belief

or it is not” (2(p∨¬p)), and possible truths as captured by “it may be sunny in Palo
Alto" (3p). A natural hierarchy exists among these three attitudes, with necessary
truth implying accidental truth and both implying possible truth. However, the
formal machinery has since been used for a variety of other purposes. For example,
some logics interpret the modality as quantifying over certain contexts. A case in
point are tense logics, or modal temporal logics, in which the context is time. In
particular, in some tense logics2ϕ is read as “ϕ is true now and will always be true
in the future.” We will encounter a similar temporal operator later in the chapter
when we discuss robot motion planning. Logics of knowledge and belief read2

yet differently, as “ϕ is known” or “ϕ is believed.” These inherently relate the
sentence to anagent, who is doing the knowing or believing. Indeed, in these
logics that interpret the modality in a rather specific way, the2 notation is usually
replaced by other notation that is more indicative of the intended interpretation, but
in this section we stick to the generic notation.

Of course, the different interpretations of2 suggest that there are different modal
logics, each endowing2 with different properties. This indeed is the case. In
this section we briefly present the generic framework of modal logic, and in later
sections we specialize it to model knowledge, belief, and related notions.

As with any logic, in order to discuss modal logic we need to discuss in turn syn-
tax, semantics, and axiomatics (or proof theory). We concentrate on propositional
modal logic, but make some remarks about first-order modal logic at the end.

13.2.1 Syntax

The set of sentences in the modal logic with propositional symbolsP is the smallest
setL containingP such that ifϕ,ψ ∈ L then also¬ϕ ∈ L, ϕ ∧ ψ ∈ L, and
2ϕ ∈ L. As usual, other connectives such as∨,→ and≡ can be defined in terms
of ∧ and¬. In addition, it is common to define thedual operator to 2, oftendual operator
denoted3, and pronounced “possibly.” It is defined by3ϕ ≡ ¬2¬ϕ, which can
be read as “the statement thatϕ is possibly true is equivalent to the statement that
notϕ is not necessarily true.”

13.2.2 Semantics

The semantics are defined in terms ofpossible-worlds structures, also calledKripke
structures. A (single-modality) Kripke structure is a pair(W,R), whereW is aKripke structure
collection of (not necessarily distinct) classical propositional models (i.e., models
that give a truth value to all sentences that do not contain2), andR is binary re-
lation on these models. Eachw ∈ W is called apossible world. R is called thepossible world
accessibility relation, and sometimes also thereachability relationor alternative-

accessibility
relation

reachability
relation

ness relation. It is convenient to think of Kripke structures as directed graphs, with

alternativeness
relation

the nodes being the classical models and the arcs representing accessibility.
This is where the discussion can start to be related back to the partition model of

knowledge. The partition is of course nothing but a binary relation, albeit one with

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.2 A detour to modal logic 415

special properties. We will return to these special properties in the next section, but
for now let us continue with the generic treatment of modal logic, one that allows
for arbitrary accessibility relations.

A truth of a modal sentence is evaluated relative to a particular possible worldw
in a particular Kripke structure(W,R). (The pair is called aKripke model.) TheKripke model
satisfaction relation is defined recursively as follows:

• M,w |= p if p is true inw, for any primitive propositionp;

• M,w |= ϕ ∧ ψ iff M,w |= ϕ andM,w |= ψ;

• M,w |= ¬ϕ iff it is not the case thatM,w |= ϕ;

• M,w |= 2ϕ iff, for any w′ ∈ W such thatR(w,w′), it is the case that
M,w′ |= ϕ.

As in classical logic, we overload the|= symbol. In addition to denoting the
satisfaction relation, it is used to denotevalidity. |= ϕ means thatϕ is true in allvalidity
Kripke models, and, given a class of Kripke modelsM , |=M ϕ means thatϕ is
true in all Kripke models withinM .

13.2.3 Axiomatics

Now that we have a well-defined notion of validity, we can ask whether there exists
an axiom system that allows us to derive precisely all the valid sentences, or the
valid sentences within a given class. Here we discuss the first question of capturing
the sentences that are valid in all Kripke structures; in future sections we discuss
specific classes of models of particular interest.

Consider the following axiom system, called the axiom systemK.

Axiom 13.2.1 (Classical)All propositional tautologies are valid.

Axiom 13.2.2 (K) (2ϕ ∧2(ϕ→ ψ))→ 2ψ is valid.

Rule 13.2.3 (Modus Ponens)If bothϕ andϕ→ ψ are valid, infer the validity of
ψ.

Rule 13.2.4 (Necessitation)From the validity ofϕ infer the validity of2ϕ.

It is not hard to see that this axiom system issound; all the sentences pronounced
valid by these axioms and inference rules are indeed true in every Kripke model.
What is less obvious, but nonetheless true, is that this is also acompletesystem for
the class of all Kripke models; there do not exist additional sentences that are true
in all Kripke models. Thus we have the followingrepresentation theorem:representation

theorem
Theorem 13.2.5The systemK is sound and complete for the class of all Kripke
models.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

416 13 Logics of Knowledge and Belief

13.2.4 Modal logics with multiple modal operators

We have so far discussed a single modal operator and a single accessibility rela-
tion corresponding to it. But it is easy to generalize the formulation to include
multiple of each. Rather than have a single modal operator2 we have operators
21,22, . . . ,2n. The set of possible worlds is unchanged, but now we haven ac-
cessibility relations:R1, R2, . . . , Rn. The last semantic truth condition is changed
to:

• For anyi = 1, . . . , n, M,w |= 2iϕ iff, for any w′ ∈ W such thatRi(w,w
′),

it is the case thatM,w′ |= ϕ.

Finally, by making similar substitutions in the axiom systemK, we get a sound
and complete axiomatization for modal logic withnmodalities. We sometimes de-
note the systemK

n
to emphasize the fact that it containsn modalities. Again, we

emphasize that this is soundness and completeness for the class of alln-modality
Kripke models. The system remains sound if we restrict the class of Kripke mod-
els under consideration. In general, it is no longer complete, but often we can add
axioms and/or inference rules and recapture completeness.

13.2.5 Remarks about first-order modal logic

We have so far discussed propositional model logic, that is, modal logic in which
the underlying classical logic is propositional. But we can also look at the case
in which the underlying logic is a richer first-order language. In such a first-order
modal logic we can express sentences such as2∀x∃yFather(y, x) (read “neces-
sarily, everyone has a father”). We will not discuss first-order in detail, since it will
not play a role in what follows. And in fact the technical development is for the
most part unremarkable, and it simply mirrors the additional richness of first-order
logic as compared to the propositional calculus.

There are however some interesting subtleties, which we point out briefly here.
The first has to do with the question of whether the so-calledBarcan formulaisBarcan formula
valid.

∀x2R(x)→ 2∀xR(x)

For example, when we interpret2 as “know,” we might ask whether, if for every
person it is known individually that the person is honest, it follows that it is known
that all people are honest. One can imagine some settings in which the intuitive
answer is yes, and others in which it is no. From the technical point of view, the
answer depends on the domains of the various models. In first-order modal logic,
possible worlds are first-order models. This means in particular that each possible
world has a domain, or a set of individuals to which terms in the language are
mapped. It is not hard to see that the Barcan formula is valid in the class of first-
order Kripke models in which all possible worlds have the same domain, but not in
general.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.3 S5: An axiomatic theory of the partition model 417

A similar problem has to do with the interaction between modality and equality.
If a = b, then is it always the case that2(a = b)? Again, for intuition, consider
the knowledge interpretation of2 and the following famous philosophical example.
Suppose there are two objects, the “morning star” and the “evening star.” These
are two stars that are observed regularly, one in the evening and one in the morning.
It so happens these are the same object, namely, the planet Venus. Does it follow
that one knows that they are the same object? Intuitively, the answer is no. From
the technical point of view, this is because, even if the domains of all possible
worlds are the same, the interpretation function which maps language terms to
objects might be different in the different worlds. For similar reasons, in general
one cannot infer that the world’s greatest jazz soprano saxophonist was born in
1897 based on the fact that Sidney Bechet was born that year, since one may not
know that Sidney Bechet was indeed the best soprano sax player that ever graced
this planet.

13.3 S5: An axiomatic theory of the partition model

We have seen that the axiom systemK precisely captures the sentences that are
valid in the class of all Kripke models. We now return to the partition model of
knowledge, and search for an axiom system that is sound and complete for this
more restricted class of Kripke models. Since it is a smaller class, it reasonable to
expect that it will be captured by an expanded set of axioms. This is indeed the
case.

We start with systemK, but now use theKi to denote the modal operators rather
than2i, representing the interpretation we have in mind.3

Axiom 13.3.1 (Classical)All propositional tautologies are valid.

Axiom 13.3.2 (K) (Kiϕ ∧Ki(ϕ→ ψ))→ Kiψ

Rule 13.3.3 (Modus Ponens)Fromϕ andϕ→ ψ inferψ.

Rule 13.3.4 (Necessitation)Fromϕ inferKiϕ.

Note that the generic axiomK takes on a special meaning under this interpre-
tation of the modal operator—it states that an agent knows all of the tautological
consequences of that knowledge. Thus, if you know that it is after midnight, and
if you know that the president is always asleep after midnight, then you know that
the president is asleep. Less plausibly, if you know the Peano axioms, you know
all the theorems of arithmetic. For this reason, this property is sometimes called
logical omniscience. One could argue that this property is too strong, that it is toological

omniscience
3. We stick to this notation for historical accuracy, but the reader should not be confused by it. The axiomatic
systemK and the axiomK that gives rise to the name have nothing to do with the syntactic symbolKi we
use to describe the knowledge of an agent.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

418 13 Logics of Knowledge and Belief

much to expect of an agent. After all, humans do not seem to know the full con-
sequences of all of their knowledge. Similar criticisms can be levied also against
the other axioms we discuss below. This is an important topic, and we returned to
it later. However, it is a fact that the idealized notion of “knowledge” defined by
the partition model has the property of logical omniscience. So to the extent that
the partition model is useful (and it is, as we discuss later in the chapter), one must
learn to live with some of the strong properties it induces on “knowledge.”

Other properties of knowledge do not hold for general Kripke structures, and are
thus not derivable in theK axiom system. One of these properties isconsistency,consistency
which states that an agent cannot know a contradiction. The following axiom,
called axiomD for historical reasons, captures this property:

Axiom 13.3.5 (D) ¬Ki(p ∧ ¬p).

Note that this axiom cannot be inferred from the axiom systemK and is thus
not valid in the class of alln-Kripke structures. It is, however, valid in the more
restricted class ofserial models, in which each accessibility is serial. (A binaryserial

accessibility
relation

relationX over domainY is serial if and only if∀y ∈ Y ∃y′ ∈ Y such that
(y, y′) ∈ X.) Indeed, as we shall see, it is not only sound but also complete. The
axiom system obtained by adding axiomD to the axiom systemK is called axiom
systemKD.

Another property that holds for our current notion of knowledge is that ofverid-
ity; it is impossible for an agent to know something that is not actually true. Indeed,veridity
this is often taken to be the property that distinguishes knowledge from other infor-
mational attitudes, such as belief. We can express this property with the so-called
axiomT:

Axiom 13.3.6 (T) Kiϕ→ ϕ.

This axiom also cannot be inferred from the axiom systemKD. Again, the
class of Kripke structures for which axiomT is sound and complete can be de-
fined succinctly —it consists of the Kripke structures in which each accessibility
relation isreflexive. (A binary relationX over domainY is reflexive if and onlyreflexive

accessibility
relation

if ∀y ∈ Y, (y, y) ∈ X. Note thaty = y′ is allowed.) By adding axiomT to the
systemKD we get the axiom systemKDT. However, in this system the axioms
are no longer independent; the axiom systemKDT is equivalent to the axiom
systemKT, since the axiomD can be derived from the remaining axioms and the
inference rules. Indeed, this follows easily from the completeness properties of the
individual axioms; every reflexive relation is trivially also serial.

There are two additional properties of knowledge induced by the partition model
which are not captured by the axioms discussed thus far. They both have to do
with the introspective capabilities of a given agent, or the nesting of the knowledge
operation. We first considerpositive introspection, the property that, when an agentpositive

introspection knows something, he knows that he knows it. It is expressed by the following
axiom, historically called axiom4:

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.3 S5: An axiomatic theory of the partition model 419

Axiom 13.3.7 (4) Kiϕ→ KiKiϕ.

Again, it does not follow from the other axioms discussed so far. The class of
Kripke structures for which axiom4 is sound and complete consists of the struc-
tures in which each accessibility relation is transitive. (A binary relationX is
transitive if and only if for ally, y′, y′′ ∈ Y it is the case that if(y, y′) ∈ X and
(y′, y′′) ∈ X then(y, y′′) ∈ X.)

The last property of knowledge we will consider isnegative introspection. Thisnegative
introspection is quite similar to positive introspection, but here we are concerned that if an agent

does not know something, then he knows that he does not know it. We express this
with the following axiom, called axiom5:

Axiom 13.3.8 (5) ¬Kiϕ→ Ki¬Kiϕ.

Again, it does not follow from the other axioms. Consider now the class of
Kripke structures in which axiom5 is sound and complete. Informally speaking,
we want to ensure that if two worlds are accessible from the current world, then
they are also accessible from each other. Formally, we say that the accessibility
relation must beEuclidean. (A binary relationX over domainY is Euclidean ifEuclidean

accessibility
relation

and only if for ally, y′, y′′ ∈ Y it is the case that if(y, y′) ∈ X and(y, y′′) ∈ X
then(y′, y′′) ∈ Y .)

At this point the reader may feel confused. After all, we started with a very
simple class of Kripke structures—partition models—in which each accessibility
relation is a simple equivalence relation. Then, in our pursuit of axioms that capture
the notion of knowledge defined in partition models, we have looked at increasingly
baroque properties of accessibility relations and associated axioms, as summarized
in Table 13.1.

Name Axiom Accessibility Relation

Axiom K (Ki(ϕ) ∧Ki(ϕ → ψ)) → Ki(ψ) NA
Axiom D ¬Ki(p ∧ ¬p) Serial
Axiom T Kiϕ→ ϕ Reflexive
Axiom 4 Kiϕ→ KiKiϕ Transitive
Axiom 5 ¬Kiϕ → Ki¬Kiϕ Euclidean

Table 13.1: Axioms and corresponding constraints on the accessibility relation.

What do these complicated properties have to do with the simple partition mod-
els that started this discussion? The answer lies in the following observation.

Proposition 13.3.9A binary relation is an equivalence relation if and only if it is
reflexive, transitive, and Euclidean.

Indeed, the systemKT45 (which results from adding to the axiom systemK all
the axiomsT, 4, and5), exactly captures the properties of knowledge as defined

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

420 13 Logics of Knowledge and Belief

by the partition model. SystemKT45 is also known by another, more common
name—theS5 axiom system.S5 is both sound and complete for the class of all
partition models. However, we are able to state an even more general theorem,
which will serve us well later when we discuss moving from knowledge to belief.

Theorem 13.3.10LetX be a subset of{D,T,4,5} and letX be the correspond-
ing subset of {serial, reflexive, transitive, Euclidean}. ThenK ∪X (which is the
basic axiom systemK with the appropriate subset of axioms added) is a sound and
complete axiomatization ofKi for the class of Kripke structures whose accessibil-
ity relations satisfyX .

13.4 Common knowledge, and an application to distributed systems

Earlier we discussed the domain of distributed systems. The following example
illustrates the sort of reasoning one would like to perform in that context. (In case
this problem does not sound like distributed computing to you, imagine that the
generals are computer processes, which are trying to communicate reliably over a
faulty communication line.)

Two generals standing on opposing hilltops are trying to communi-
cate in order to coordinate an attack on a third general, whose army
sits in the valley between them. The two generals are communicating
via messengers who must travel across enemy lines to deliver their
messages. Any messenger carries the risk of being caught, in which
case the message is lost. (Alas, the fate of the messenger is of no
concern in this story.) Each of the two generals wants to attack, but
only if the other does; if they both attack they will win, but either one
will lose if he attacks alone. Given this context, what protocol can the
generals establish that will ensure that they attack simultaneously?

You might imagine the following naive communication protocol. The protocol
for the first general,S, is to send an “attack tomorrow” message to generalR and
to keep sending this message repeatedly until he receives an acknowledgment that
the message was received. The protocol for the second general,R, is to do nothing
until he receives the message fromS, and then send a single acknowledgment
message back to generalS. The question is whether the agents can have a plan of
attack based on this protocol, which always guarantees—or, less ambitiously, can
sometimes guarantee—that they attack simultaneously. And if not, can a different
protocol achieve this guarantee?

Clearly, it would be useful to reason about this scenario rigorously. It seems in-
tuitive that the formal notion of “knowledge” should apply here, but the question is
precisely how. In particular, what is the knowledge condition that must be attained
in order to ensure a coordinated attack?

To apply the partition model of knowledge we need to first define the possible
worlds. We will do this by first defining thelocal stateof each agent (i.e., each

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.4 Common knowledge, and an application to distributed systems 421

general); together the two local states will form aglobal state. To reason about
the naive protocol, we will have the local state forS represent two binary pieces
of information: whether or not an “attack” message was sent and whether or not
an acknowledgment was received. The local state forR will also represent two
binary pieces of information: whether or not an “attack” message was received
and whether or not an acknowledgment message was sent. Thus we end up with
the four possible local states for each general—(0, 0), (0, 1), (1, 0), and(1, 1)—
and thus sixteen possible global states.

We are now ready to define the possible worlds of our model. The initial global
state is well defined—by convention, we call it〈(0, 0), (0, 0)〉. It will then evolve
based on two factors—the dictates of the protocol, and the nondeterministic effect
of nature (which decides whether a message is received or not). Thus, among
all the possible sequences of global states, only some are legal according to the
protocol. We will call any finite prefix of such a legal sequence of global states a
history. These histories will be the possible worlds in our model.history

For example, consider the following possible sequence of events, given the naive
protocol:S sends an “attack” message toR,R receives the message and sends an
acknowledgment toS, andS receives the acknowledgment. The history corre-
sponding to this scenario is

〈(0, 0), (0, 0)〉, 〈(1, 0), (1, 0)〉, 〈(1, 1), (1, 1)〉

.
The structure of our possible worlds suggests a natural definition of the partition

associated with each of the agents. We will say that two histories are in the same
equivalence class of agenti (i ∈ {S,R}) if their respective final global states have
identical local state for agenti. That is, history

〈(0, 0), (0, 0)〉, 〈xS,1 , xR,1〉, . . . , 〈xS,k, xR,k〉

is indistinguishable in the eyes of agenti from history

〈(0, 0), (0, 0)〉, 〈yS,1 , yR,1〉, . . . , 〈yS,l, yR,l〉

if and only if xi,k = yi,l. Note a very satisfying aspect of this definition; the
accessibility relation, which in general is thought of as an abstract notion, is given
here a concrete interpretation in terms of local and global states.

We can now reason formally about the naive protocol. Consider again the possi-
ble history mentioned above:

〈(0, 0), (0, 0)〉, 〈(1, 0), (1, 0)〉, 〈(1, 1), (1, 1)〉.

The reader can verify that in this possible world the following sentences are true:
KSattack,KRattack,KSKRattack. However, it is also the case that this
world satisfies¬KRKSKRattack. Intuitively speaking,R does not know thatS

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

422 13 Logics of Knowledge and Belief

knows thatR knows thatS intends to attack, since for allR knows its acknowl-
edgment could have been lost. ThusR cannot proceed to attack; he reasons that if
indeed the acknowledgement was lost thenS will not dare attack.

This of course suggests a fix—haveS acknowledgeR’s acknowledgement. To
accommodate this we would need to augment each of the local states with another
binary variable, representing forS whether the second acknowledgement was sent
and forR whether it was received. However it is not hard to see that thisalso has a
flaw; assumingS’s second acknowledgement indeed goes through, in the resulting
history we will haveKRKSKRattack hold, but notKSKRKSKRattack. Can
this be fixed, and what is the general knowledge condition we must aim for?

It turns out that the required condition is what is known ascommon knowledge.common
knowledge This is a very intuitive notion, and we define it in two steps. We first define what

it means thateverybody knowsa particular sentence to be true. To represent this
we use the symbolEG, whereG is a particular group of agents. The “everybody
knows” operator has the same syntactic rules as the knowledge operator. As one
might expect, the semantics can be defined easily in terms of the basic knowledge
operator. We define the semantics as follows.

Definition 13.4.1 (“Everyone knows”) LetM be a Kripke structure,w be a pos-
sible world inM ,G be a group of agents, andϕ be a sentence of modal logic. Then
M,w |= EGϕ if and only ifM,w′ |= ϕ for all w′ ∈ ∪i∈GIi(w). (Equivalently,
we can require that∀i ∈ G it is the case thatM,w |= Kiϕ.)

In other words, everybody knows a sentence when the sentence is true in all of
the worlds that are considered possible in the current world by any agent in the
group.

Using this concept we can define the notion ofcommon knowledge, or, as it
is sometimes called lightheartedly, “what any fool knows.” If “any fool” knows
something, then we can assume that everybody knows it, and everybody knows
that everybody knows it, and so on. An example from the real world might be
the assumption we use when driving a car that all of the other drivers on the road
also know the rules of the road, and that they know that we know the rules of the
road, and that they know that we know that they know them, and so on. We require
an infinite series of “everybody knows” in order to capture this intuition. For this
reason we use the following recursive definition.

Definition 13.4.2 (Common knowledge)Let M be a Kripke structure,w be a
possible world inM ,G be a group of agents, andϕ be a sentence of modal logic.
ThenM,w |= CGϕ if and only ifM,w |= EG(ϕ ∧CGϕ)

In other words, a sentence is common knowledge if everybody knows it and
knows that it is common knowledge. This formula is called thefixed-point ax-
iom, sinceCGϕ can be viewed as the fixed-point solution of the equationf(x) =fixed-point

axiom EG(ϕ ∧ f(x)). Fixed-point definitions are notoriously hard to understandintu-
itively. Fortunately, we can give alternative characterizations ofCG. First,we can
give a direct semantic definition.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.5 Doing time, and an application to robotics 423

Theorem 13.4.3LetM be a Kripke structure,w be a possible world inM ,G be
a group of agents, andϕ be a sentence of modal logic. ThenM,w |= CGϕ if and
only ifM,w′ |= ϕ for every sequence of possible worlds(w = w0, w1, . . . , wn =
w′) for which the following holds: for every0 ≤ i < n there exists an agent
j ∈ G such thatwi+1 ∈ Ij(wi).

Second, it is worth noting that ourS5 axiomatic system can also be enriched
to provide a sound and complete axiomatization ofCG. It turns out that what are
needed are two additional axioms and one new inference rule.

Axiom 13.4.4 (A3) EGϕ↔
∧

i∈GKiϕ

Axiom 13.4.5 (A4) CGϕ→ EG(ϕ ∧ CGϕ)

Rule 13.4.6 (R3)Fromϕ→ EG(ψ ∧ ϕ) inferϕ→ CGψ

This last inference rule is a form of aninduction rule.
Armed with this notion of common knowledge, we return to our warring gener-

als. It turns out that, in a precise sense, whenever any communication protocol guar-
antees a coordinated attack in a particular history, in that history it must achieve
common knowledge between the two generals that an attack is about to happen. It
is not hard to see that no finite exchange of acknowledgments will ever lead to such
common knowledge. And thus it follows that there isno communication protocol
that solves the Coordinated Attack problem, at least not as the problem is stated
here.

13.5 Doing time, and an application to robotics

We now move to another application of reasoning about knowledge, in robotics.
The domain of robotics is characterized byuncertainty; a robot receives uncertain
readings from its input devices, and its motor controls produce imprecise motion.
Such uncertainty is not necessarily the end of the world, so long as its magnitude is
not too large for the task at hand, and that the robot can reason about it effectively.
We will explicitly consider the task of robot motion planning under uncertainty,
and in particular the question of how a robot knows to stop despite having an
imprecise sensor and perhaps also motion controller. We first discuss the single-
robot case, where we see the power of the knowledge abstraction. We then move
to the multiagent case, where we show the importance of each agent being able to
model the other agents in the system.

13.5.1 Termination conditions for motion planning

Imagine a point robot moving in one dimension along the positive reals from the
origin to the right, with the intention of reaching the interval[2, 4], the goal region
(see Figure 13.4). The robot is moving at a fixed finite velocity, so there is no

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

424 13 Logics of Knowledge and Belief

question about whether it will reach the destination; the question is whether the
robot will know when to stop. Assume the robot has a position sensor that is in-
accurate; if the true position is L, the sensor will return any value in the interval
[L−1, L+1]. We assume that time is continuous and that the sensor provides read-
ings continuously, but that the reading values are not necessarily continuous. We
are looking for a termination condition—a predicate on the readings such that as
soon as it evaluates to “true” the robot will stop. What is a reasonable termination
condition?

0 3 51 2 4 6

Goal Area

Initial State

Figure 13.4: A one-dimensional robot motion problem

Consider the termination condition “R = 3” whereR is the current reading.
This is a “safe” condition, in the sense that if that is the reading then the robot is
guaranteed to be in the goal region. The problem is that, because of the discon-
tinuity of reading values, the robot may never get that reading. In other words,
this termination condition is sound but not complete. Conversely, the condition
“2 ≤ R ≤ 4” is complete but not sound. Is there a sound and complete termina-
tion condition?

On reflection it is not hard to see that “R ≥ 3” is such a condition. Although
there are locations outside the goal region that can give rise to readings that satisfy
the predicate (e.g., in location 10 the reading necessarily does), what matters is
the first time the robot encounters that reading. Given its starting location and its
motion trajectory, the first time can be no earlier than 2 and no later than 4.

Let us now turn to a slightly more complex, two-dimensional robotic motion
planning problem, depicted in Figure 13.5. A point robot is given a command to
move in a certain direction, and its goal is to arrive at the depicted rectangular goal
region. As in the previous example, its sensor is error prone; it returns a reading
that is withinρ from the true location (i.e., the uncertainty is captured by adisk
of radiusρ). Unlike the previous example, the robot’s motion is also subject to
error; given a command to move in a certain direction, the robot’s actual motion
can deviate up to∆ degrees from the prescribed direction. It is again assumed
that when the robot is given the command “Go in direction D” it moves at some
finite velocity, always moving within∆ degrees from that direction, but that the
deviation is not consistent and can change arbitrarily within the tolerance∆. It
is not hard to see that the space of locations reachable by the robot is described
by a cone whose angle is 2∆, as depicted in Figure 13.5. Again we ask, what is
a good termination condition for the robot? One candidate is a rectangle inside

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.5 Doing time, and an application to robotics 425

Cone of possible
 positions

D

G

G− the goal

D

− max. deviation in readings

− the motion direction

II initial state

− max. angle of deviation

Figure 13.5: A two-dimensional robot motion problem

the goal region whose sides are∆ away from the corresponding side of the goal
rectangle. Clearly this is a sound condition, but not a complete one. Figure 13.6
depicts another candidate, termed the “naive termination condition”—all the sensor
readings in the region with the dashed boundary. Although it is now less obvious,
this termination condition is also sound—but, again, not complete. In contrast,
Figure 13.7 shows a termination condition that is both sound and complete.

Consider now the two sound and complete termination conditions identified for
the two problems, the one-dimensional one and the two-dimensional. Geometri-
cally, they seem to bear no similarity, and yet one’s intuition might be that they
embody the same principle. Can one articulate this principle, and thus perhaps
later on apply it to yet other problems? To do so we abstract to what is sometimes
called the knowledge level. Rather than speak about the particular geometry of the
situation, let us reason more abstractly about the knowledge available to the robot.
Not surprisingly, we choose to do it using possible-worlds semantics and specifi-
cally the S5 model of knowledge. Define a history of the robot as a mapping from
time to both location and sensor reading. That is, a history tells us where the robot
has been at any point in time and its sensor reading at that time. Clearly, every
motion planning problem—including both the ones presented here—defines a set
of legal histories. For every motion planning problem, our set of possible worlds
will consist of pairs(h, t), whereh is a legal history andt is a time point. We will
say that(h, t) is accessible from(h′, t′) if the sensor reading inh at t is identical
to the sensor reading inh′ at t′. Clearly, this defines an equivalence relation. We
now need a language to speak about such possible-worlds structures. As usual, we

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

426 13 Logics of Knowledge and Belief

D

D

G

The Naive Termination

 Condition

I

r

 r

1

2

A

B

Uncertainty
 disk

Goal boundary (G)

Boundary of the naive
 termination condition

Cone of possible
 positions

reachable positions
that do not correspond to
possible readings in E

Figure 13.6: A sound but incomplete termination condition for the two-
dimensional robot motion problem.

G

I

The termination
condition

Figure 13.7: A sound and complete termination condition for the two-dimensional
robot motion problem.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.5 Doing time, and an application to robotics 427

will use the K operator to denote knowledge, that is, truth in all accessible worlds.
We will also use a temporal operator3 whose meaning will be “sometime in the
past.” Specifically,h, t |= 3ϕ holds ath, t just in case there exists at′ ≤ t such
thath, t′ |= ϕ.4 Armed with this, we are ready to provide a knowledge–level con-
dition that captures both the specific geometric ones given earlier. It is deceptively
simple. Letg be the formula meaning “I am in the goal region” (which is of course
instantiated differently in the two examples). Then the sound and complete termi-
nation condition is simplyK3g, reading informally “I know that either I am in the
goal region now, or else sometime in the past I was.” It turns out that this simple
termination condition is not only sound and complete for these two examples, but
is so also in a much larger set of examples, and is furthermore optimal: it causes
the robot to stop no later than any other sound and complete termination condition.

13.5.2 Coordinating robots

We now extend this discussion to a multiagent setting. Add to the first example
a second robot that must coordinate with the first robot (number the robots 1 and
2). Specifically, robot 2 must take an action at the exact time (and never before)
robot 1 stops in the goal area. For concreteness, think of the robots as teammates in
the annual robotic competition, where robotic soccer teams compete against each
other. Robot 2 needs to pass the ball to robot 1 in front of the opposing goal. Robot
1 must be stopped to receive the pass, but the pass must be completed as soon it
stops, or else the defense will have time to react. The robots must coordinate on
the pass without the help of communication. Instead, we provide robot 2 with a
sensor of robot 1’s position. LetR1 be the sensor reading of the first robot,R2 be
that of the second, andp the true position of robot 1.

The sound and complete termination condition that we seek in this setting is
actually a conjunction of termination conditions for the two robots. Soundness
means that robot 1 never stops outside the goal area and robot 2 never takes its ac-
tion when robot 1 is not stopped in the goal area. Completeness obviously means
that the robots eventually coordinate on their respective actions. As in the exam-
ple of the warring generals, the two robots need common knowledge in order to
coordinate. For example, if both robots know that robot 1 is in the goal but robot
1 does not know that robot 2 knows this, then robot 1 cannot stop, because robot 2
may not know to pass the ball at that point in time. Thus, the sound and complete
termination condition ofK(3g) in the single robot setting becomesC1,2(3g) in
the current setting, whereg now means “Robot 1 is in the goal.” That is, when this
fact becomes common knowledge for the first time, the robots take their respective
actions.

So far, we have left the sensor of robot 2 unspecified. In the first instance we
analyze, let robot 2 be equipped with a sensor identical to robot 1’s. That is, the
sensor returns the position of robot 1 within the interval[L − 1, L + 1], and the

4. This operator is taken from the realm of temporal logic, where it usually appears in conjunction of other
modalities; however, those are not required for our example.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

428 13 Logics of Knowledge and Belief

noise of the sensor is deterministic so that this value is exactly equal to the value
observed by robot 1. Further, assume that this setting is common knowledge be-
tween the two robots. We can formalize the setting as a partition model in which
a possible world (which was(h, t) above) is a tuple〈p,R1, R2〉. The partitions of
the two robots define equivalence classes based on the sensor of that agent. That
is, Pi(〈p,R1, R2〉) = {〈p′, R′

1, R
′
2〉|(Ri = R′

i)}, for i = 1, 2. The common
knowledge of the properties of the sensors reduces the space of possible worlds to
all 〈p,R1, R2〉 such that|p − R1| ≤ 1 andR1 = R2. The latter property implies
that the partition structures for the two agents are identical.

We can now analyze this partition model to find our answer. From the single
robot case, we know thatR1 ≥ 3→ K1(3g). This statement can be verified eas-
ily using the partition structure. Recall the semantic definition of common knowl-
edge: the proposition must be true in the last world of every sequence of possible
worlds that starts at the current world and only transitions to a world that is in the
partition of an agent. Because the partition structures are identical, starting from a
world in whichR1 ≥ 3, we cannot transition out of the identical partition we are
in for both agents, and thusC1,2(3g) holds. Therefore, the robots can coordinate
by using the same rule as the previous section: robot 1 stops whenR1 ≥ 3 is first
true, and robot 2 takes its action whenR2 ≥ 3 is first true. Since any lower sensor
reading does not permit either robot to know3g, it is also the case that this rule is
optimal.

One year later, we are preparing for the next robotic competition. We have
received enough funding to purchase a perfect sensor (one that always returns the
true position of robot 1). We replace the sensor for robot 2 with this sensor, but
we do not have enough money left over to buy either a new sensor for robot 1 or
a means of communication between the two robots. Still, we are optimistic that
our improved equipment will allow us to fare better this year by improving the
termination condition so that the pass can be completed earlier. Since we have
different common knowledge about the sensors, we have a different set of possible
worlds. In this instance, each possible world〈p,R1, R2〉 must satisfyp = R2

instead ofR1 = R2 while also satisfying|p − R1| ≤ 1 as before. This change
causes the robots to no longer have identical partition structures. Analyzing the
new structure, we quickly realize that not only can we not improve the termination
condition, but also that our old rule no longer works. As soon asR2 ≥ 3 becomes
true, we have bothK1(3g) andK2(3g). However, in the partition for robot 2 in
whichR2 = 3, we find possible worlds in whichR1 < 3. In these worlds, robot 1
does not know that it is in the goal. Thus, we have¬K2(K1(3g)), which means
that robot 2 cannot take the action because robot 1 might not stop to receive the
pass.

Suppose we try to salvage the situation by implementing a later termination
condition. This idea obviously fails, because if robot 2 instead waits forR2 to
be a value greater than 3, then robot 1 may have already stopped. However, our
problems run deeper. Even if we only require that the robots coordinate at some
time after robot 1 enters the goal area (implicitly extending the goal to the range

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.6 From knowledge to belief 429

[2,∞]), we can never find a sound and complete termination condition. Common
knowledge of3g is impossible to achieve, because, from any state of the world
〈p,R1, R2〉, we can follow a path of possible worlds (alternating betweenthe robot
whose partition we transition in) until we get to a world in which robot 1 is not in
the goal. For example, consider the world〈5, 6, 5〉. Robot 2 considers it possible
that robot 1 observes a value of 4 (in world〈5, 4, 5〉). In that world, robot 1 would
consider it possible that the true world is 3 (in world〈3, 4, 3〉). We can then make
two more transitions to〈3, 2, 3〉 and then to〈1, 2, 1〉, in which robot 1 is not in
the goal. Thus, we have¬K2(K1(K2(K1(3g)))). Since we can obviously make
a similar argument for any world with a finite value forp, there does not exist a
world that impliesC1,2(3g).

This example illustrates how, when coordination is necessary, knowledge of the
knowledge of the other agents can be more important than objective knowledge of
state of the world. In fact, in many cases it takes common knowledge to achieve
common knowledge. When robot 2 had the flawed sensor, we needed common
knowledge of the fact that the sensors are identically flawed (which was encoded in
the space of possible worlds) in order for the robots to achieve common knowledge
of 3g. Also, the fact that the agents have to coordinate is a key restriction in this
setting. If instead, we only needed robot 1 to stop in the goal and robot 2 to take
its action at some point after robot 1 stopped, then all we need isK1(3g) and
K2(K1(3g)). This is achieved by the termination conditions ofR1 ≥ 3 for robot
1 andR2 ≥ 4 for robot 2.

13.6 From knowledge to belief

We have so far discussed a particular informational attitude, namely “knowledge,”
but there are others. In this section we discuss “belief,” and in the next section we
will mention a third—“certainty.”

Like knowledge, belief is a mental attitude, and concerns an agent’s view of
different state of affairs. Indeed, we will model belief using Kripke structures (i.e.,
possible worlds with binary relations defined on them). However, intuition tells us
that belief has different properties from those of knowledge, which suggests that
these Kripke structures should be different from the partition models capturing
knowledge.

We will return to the semantic model of belief shortly, but it is perhaps easiest
to make the transition from knowledge to belief via the axiomatic system. Recall
that in the case of knowledge we had the veridity axiom,T: Kiϕ → ϕ. Suppose
we take theS5 system and simply drop this axiom—what do we get? Hidden in
this simple question is a subtlety, it turns out. Recall thatS5 was shorthand for the
systemKDT45. Recall also thatKDT45 was logically equivalent toKT45.
However,KD45 is not logically equivalent toK45; axiomD is not derivable
without axiomT (why?). It turns out that bothKD45 andK45 have been put
forward as a logic of idealized belief, and in fact both have been calledweakS5.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

430 13 Logics of Knowledge and Belief

There are good reasons, however, to stick toKD45, which we will do henceforth.
The standard logic of beliefKD45 therefore consists of the following axioms;

note that we change the notationKi toBi to reflect the fact that we are modeling
belief rather than knowledge.

Axiom 13.6.1 (K) (Biϕ ∧Bi(ϕ→ ψ))→ Biψ

Axiom 13.6.2 (D) ¬Bi(p ∧ ¬p)

Axiom 13.6.3 (4) Biϕ→ BiBiϕ

Axiom 13.6.4 (5) ¬Biϕ→ Bi¬Biϕ

These axioms—logical omniscience, consistency, positive and negative introspection—
play the same roles as in the logic of knowledge, as do the two inference rules,
Modus PonensandNecessitation.Modus Ponens

Necessitation
The next natural question is whether we can complement this axiomatic theory

of belief with a semantic one. That is, is there a class of Kripke structures for which
this axiomatization is sound and complete, just asS5 is sound and complete for
the class of partition models? The theorem in Section 13.3 has already provided us
the answer; it is the class of Kripke structures in which the accessibility relations
are serial, transitive, and Euclidean. Just as in the case of knowledge, there is a
relatively simple way to understand this class, although it is not as simple as the
class of partitions. As shown in Figure 13.8, we can envision such a structure as
composed of several clusters of worlds, each of which is completely connected
internally. In addition there are possibly some singleton worlds, each of which is
connected only to all the worlds within exactly one cluster. We call such a model a
quasi-partition.quasi-partition

'
&

$
%

'

&

$

%s s
s ss

s s

s
s-

@@R ?

@I

��)

s
s

s s
s

s s
s

@R

��
A

AK

�

Figure 13.8: Graphical depiction of a quasi-partition structure.

We saw that it was useful to define the notion of common knowledge. Can we
similarly definecommon belief, and would it be a useful one? The answers are yes,common belief
and maybe. We can certainly define common belief by mirroring the definitions for

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.7 Combining knowledge and belief (and revisiting knowledge) 431

knowledge. However, the resulting notion will necessarily be weaker. In particular,
it is not hard to verify the validity of the following sentence:

KiCGϕ ≡ CGϕ.

This equivalence breaks down in the case of belief and common belief.

13.7 Combining knowledge and belief (and revisiting knowledge)

Up until this point we have discussed how to model knowledge and belief sepa-
rately from each other. But of course we may well want to combine the two, so
that we can formalize sentences such as “if Bob knows that Alice believes it is rain-
ing, then Alice knows that Bob knows it.” Indeed, it is easy enough to just merge
the languages of knowledge and belief, so as to allow the sentence:

KBBArain→ KAKBBArain.

Furthermore, there is no difficulty in merging the semantic structures and having
two sets of accessibility relations over the possible worlds—partition models repre-
senting the knowledge of the agents and quasi-partition models representing their
beliefs. Finally, we can merge the axiom systems of knowledge and belief and
obtain a sound and complete axiomatization of merged structures.

However, doing just these merges, while preserving the individual properties of
knowledge and belief, will not capture any interaction between them. And we do
have some strong intuitions about such interactions. For example, according to the
intuition of most people, knowledge implies belief. That is, the following sentence
ought to be valid:

Kiϕ→ Biϕ.

This sentence is not valid in the class of all merged Kripke structures defined earlier.
This means that we must introduce further restrictions on these models in order to
capture this property, and any other property about the interaction between knowl-
edge and belief that we care about.

We will introduce a particular way of tying the two notions together, which has
several conceptual and technical advantages. It will force us, however, to recon-
sider some of the assumptions we have made about knowledge and belief thus far,
and to enter into philosophical discussion more deeply than we have heretofore.

To begin, we should distinguish two types of belief. Both of them are distin-
guished from knowledge in that they aredefeasible; the agent may believe some-defeasible
thing false. However, in one version of belief the believing agent is aware of this
defeasibility, while in the other it is not. We will call the first type of belief “mere
belief” (or sometimes “belief” for short) and the second type of belief “certainty.”
An agent who is certain of a fact will not admit that he might be wrong; to him, his
beliefs look like knowledge. It is onlyanotheragent who might label his beliefs as
only that and deny them the status of knowledge. Imagine that John is certain that

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

432 13 Logics of Knowledge and Belief

the bank is open, but in fact the bank is closed. If you were to ask John, he would
tell you that the bank is open. If you pressed him with “Are you sure?” he would
answer “What do you mean ‘am I sure,’ Iknowthat it is open.” But of course this
cannot be knowledge, since it is false. In contrast, you can imagine that John is
pretty sure that the bank is open, sufficiently so to make substantial plans based
on this belief. In this case if you were to ask John “Is the bank open?” he might
answer “I believe so, but I am not sure.” In this case John would be the first to
admit that this is a mere belief on his part, not knowledge.5

From a technical point of view, we can split theBi operator into two versions,
Bm

i for “mere belief” andBc
i for certainty. Even before entering into a formal

account of such operators, we expect that the sentenceBc
iϕ → Bc

iKiϕ will be
valid, but the sentenceBm

i ϕ→ Bm
i Kiϕ will not.

This distinction between certainty and mere belief also calls into question some
of our assumptions about knowledge, in particular the negative introspection prop-
erty. Consider the following informal argument. Suppose John is certain that the
bank in open (BcJopen). According to our interpretation of certainty, we have that
John is certain that he knows that the bank is open (Bc

JKJopen). Suppose that the
bank is in fact closed (¬open). This means that John does not know that the bank
is closed, because of the veridity property (¬KJopen). Because of the negative
introspection property, we can conclude that John knows that he does not know
that the bank is open (KJ¬KJopen). If we reasonably assume that knowledge
implies certainty, we also get that John is certain that he does not know that the
bank is open (BcJ¬KJopen). Thus we get that John is certain of both the sentence
KJopen and its negation, which contradicts the consistency property of certainty.
So something has to give—and the prime candidate is the negative introspection
axiom for knowledge. And indeed, even absent a discussion of belief, this axiom
has attracted criticism early on as being counter-intuitive.

This is a good point at which to introduce a caveat. Commonsense can serve at
best as a crude guideline for selecting formal models. Human language and think-
ing are infinitely flexible, and we must accept at the outset a certain discrepancy
between the meaning of a commonsense term and any formalization of it. That
said, some discrepancies are more harmful than others, and negative introspection
for knowledge may be one of the biggest offenders. This criticism does not dimin-
ish the importance of the partition model, which as we have seen is quite useful for
modeling a variety of information settings. What it does mean is that perhaps the
partition model is better thought of as capturing something other than knowledge;
perhaps “possesses the implicit information that” would be a more apt descriptor
of theS5 modal operator. It also means then that we need to look for an alternative

5. A reader seeped in the Bayesian methodology would at this point be strongly tempted to protest that
if John is not sure he should quantify his belief probabilistically, rather than make a qualitative statement.
We will indeed discuss probabilistic beliefs in Section 14.1. But one should not discard qualitative beliefs
casually. Not only can psychological and commonsense arguments be made on behalf of this notion, but in
fact the notion plays an important role in game theory, which is for the most part Bayesian in nature. We
return to this later in this chapter, when we discussbelief revisionin Section 14.2.1.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.7 Combining knowledge and belief (and revisiting knowledge) 433

model that better captures our notion of knowledge, albeit still in a highly idealized
fashion.

Here is one such model. Before we present it, one final philosophical musing.
Philosophers have offered two informal slogans to explain the connection between
knowledge and belief. The first is “knowledge is justified, true belief.” The in-
tuition is that knowledge is a belief that not only is true, but is held with proper
justification. What “proper” means is open to debate, and we do not offer a formal
account of this slogan. The second slogan is “knowledge is belief that is stable
with respect to the truth.” The intuition is that, when presented with evidence to
the contrary, an agent would discard any of his false belief. It is only correct beliefs
that cannot be contradicted by correct evidence, and are thus stable in the face of
such evidence. Our formal model can be thought of a formal version of the second
informal slogan; we will return to this intuition when we discussbelief revision
later in Section 14.2.1.

In developing our combined formal model of knowledge and belief, we need to
be clear about which sense of belief we intend. In the following we restrict the
attention to the certainty kind, namely,Bc

i . Since there is no ambiguity, we will
use the simpler notationBi.

We have so far encountered two special classes of Kripke models—partitions
and quasi-partitions. We will now introduce a third special class, the class oftotal
preorders(a total preorder≤ over domainY is a reflexive and transitive binary
relation, such that for ally, y′ ∈ Y it is the case that eithery ≤ y′, or y′ ≤ y, or
both).

Definition 13.7.1 (KB- structure) An (n-agent) KB- structureis a tuple(W,≤1KB-structure
, . . . ,≤n), where

• W is a set of possible worlds, and

• each≤i is a finite total preorder overW .

An (n-agent) KB- modelover a languageΣ is a tupleA = (W,π,≤1, . . . ,≤n),KB-model
where

• W and≤i are as earlier, and

• π : Σ 7→ 2W is an interpretation function that determines which sentences in
the languages are true in which worlds.

Although there is merit in considering more general cases, we will confine our at-
tention towell-foundedtotal preorders; that is, we will assume that for no preorder
≤i does there exist an infinite sequence of worldsw1, w2, . . . such thatwj <i wj+1

for all j > 0 (where< is the anti-reflexive closure of≤).
A graphical illustration of a KB structure for a single agent is given in Fig-

ure 13.9. In this structure there are three clusters of pairwise connected worlds,
and each world in a given cluster is connected to all worlds in lower clusters.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

434 13 Logics of Knowledge and Belief

'
&

$
%s s s

s s
?'

&
$
%

s ss s
?'

&
$
%

s s s
s s

Figure 13.9: A KB structure.

We use KB structures to define both knowledge and certainty-type belief. First,
it is useful to attach an intuitive interpretation to the accessibility relation. Think
of it as describing the cognitive bias of an agent;w′ ≤ w iff w′ is at least as easy
for the agent to imagine asw. The agent’s beliefs are defined as truth in the most
easily imagined worlds; intuitively, those are the only worlds the agent considers,
given his current evidence. Since we are considering only finite hierarchies, these
consist of the “bottom-most” cluster. However, there are other worlds that are con-
sistent with the agent’s evidence; as implausible as they are, the agent’s knowledge
requires truth in them as well. (Beside being relevant to defining knowledge, these
worlds are relevant in the context of belief revision, discussed in Section 14.2.1.)
Figure 13.10 depicts the definitions graphically; the full definitions follow.

Definition 13.7.2 (Logical entailment for KB models) LetA = (W,π,≤1, . . . ,≤n

) be a KB- model overΣ, andw ∈W . Then we define the|= relation as

• If ϕ ∈ Σ, thenA,w |= ϕ if and only ifw ∈ π(ϕ)

• A,w |= Kiϕ if and only if for all worldsw′, if w′ ≤i w thenA,w′ |= ϕ.

• A,w |= Biϕ if and only ifϕ is true in all worlds minimal in≤i.

We can now ask whether there exists an axiom system that captures the prop-
erties of knowledge and belief, as defined by KB models. The answer is yes; the

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

13.7 Combining knowledge and belief (and revisiting knowledge) 435

'
&

$
%s s s

s s
?'

&
$
%

s ss s
?'

&
$
%

s s s
s s

w

Ki

Bi

Figure 13.10: Knowledge and belief in a KB model.

system that does it, while somewhat more complex thanS5 or KD45, is nonethe-
less illuminating. If we only wanted to capture the notion of knowledge, we would
need the so-calledS4.3 axiomatic system, a well-known system of modal logic
capturing total preorders. But we want to capture knowledge as well as belief. This
is done by the following axioms (to which one must add the two usual inference
rules of modal logic).

Knowledge:

Axiom 13.7.3Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

Axiom 13.7.4Kiϕ→ ϕ

Axiom 13.7.5Kiϕ→ KiKiϕ

Belief:

Axiom 13.7.6Bi(ϕ→ ψ)→ (Biϕ→ Biψ)

Axiom 13.7.7Biϕ→ ¬Bi¬ϕ
Axiom 13.7.8Biϕ→ BiBiϕ

Axiom 13.7.9 ¬Biϕ→ Bi¬Biϕ

Knowledge and belief:

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

436 13 Logics of Knowledge and Belief

Axiom 13.7.10Kiϕ→ Biϕ

Axiom 13.7.11Biϕ→ BiKiϕ

Axiom 13.7.12Biϕ→ KiBiϕ

Axiom 13.7.13¬Biϕ→ Ki¬Biϕ

The properties of belief are precisely the properties of aKD45 system, the
standard logic of belief. The properties of knowledge as listed consist of theKD4

system, also known asS4. However, by virtue of the relationship between knowl-
edge and belief, one obtains additional properties of knowledge. In particular, one
obtains the property of the so-calledS4.2 system, a weak form of introspection:

¬Ki¬Kiϕ→ Ki¬Ki¬Kiϕ.

This property is unintuitive, until one notes another surprising connection that can
be derived between knowledge and belief in our system:

¬Ki¬Kiϕ↔ Biϕ.

While one can debate the merits of this property, it is certainly less opaque than the
previous one; and, if this equivalence is substituted into the previous formula, then
we simply get one of the introspection properties of knowledge and belief!

13.8 History and references

The most comprehensive one-stop shop for logics of knowledge and belief is Fagin
et al. [1995]. It is written by computer scientists, but covers well the perspec-
tives of philosophy and game theory. Readers who would like to go directly to the
sources should start with Hintikka [1962] in philosophy, Aumann [1976] in game
theory (who introduced the partition model), Moore [1985] in computer science for
an artificial intelligence perspective, and Halpern and Moses [1990] in computer
science for a distributed systems perspective. The Muddy Children puzzle has its
origin in the Cheating Wives puzzle in Gamow and Stern [1958], and the Coordi-
nated Attack problem in Gray [1978]. Another good reference is provided by the
proceedings of Theoretical Aspects of Rationality and Knowledge—or TARK—
which can be found online atwww.tark.org. (The acronym originally stood for
Theoretical Aspects of Reasoning about Knowledge.) There are many books on
modal logic in general, not only when applied to reasoning about knowledge and
belief; from the classic Chellas [1980] to more modern ones such as Fitting and
Mendelsohn [1999] or Blackburn et al. [2002]. The application of logics of knowl-
edge in robotics is based on Brafman et al. [1997] and Brafman et al. [1998].

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

www.tark.org

14 Beyond Belief: Probability, Dynamics
and Intention

In this chapter we go beyond the model of knowledge and belief introduced in the
previous chapter. Here we look at how one might represent statements such as
“Mary believes that it will rain tomorrow with probability> .7,” and even “Bill
knows that John believes with probability .9 that Mary believes with probability
> .7 that it will rain tomorrow.” We will also look at rules that determine how
these knowledge and belief statements can change over time, more broadly at the
connection between logic and games, and consider how to formalize the notion of
intention.

14.1 Knowledge and probability

In a Kripke structure, each possible world is either possible or not possible for a
given agent, and an agent knows (or believes) a sentence when the sentence is true
in all of the worlds that are accessible for that agent. As a consequence, in this
framework both knowledge and belief are binary notions in that agents can only
believe or not believe a sentence (and similarly for knowledge). We would now
like to add a quantitative component to the picture. In our quantitative setting we
will keep the notion of knowledge as is, but will be able to make statements about
the degree of an agent’s belief in a particular proposition. This will allow us to
express not only statements of the form “the agent believes with probability .3 that
it will rain” but also statements of the form “agenti believes with probability .3
that agentj believes with probability .9 that it will rain.” These sort ofstatements
can become tricky if we are not careful —for example, what happens ifi = j in
the last sentence?1

There are several ways of formalizing a probabilistic model of belief in a multi-
agent setting, which vary in their generality. We will define a relatively restrictive
class of models, but will then mention a few ways in which these can be general-
ized.

1. Indeed, some years back theNew Yorkermagazine published a cartoon with the following caption:There
is now 60% chance of rain tomorrow, but there is 70% chance that later this evening the chance of rain
tomorrow will be 80%.

438 14 Beyond Belief: Probability, Dynamics and Intention

Our technical device will be to simply take our partition model and overlay a
commonly known probability distribution (called thecommon prior) over the pos-common prior
sible worlds.

Definition 14.1.1 (Multiagent probability structure) Given a setX, let Π(X)
be the class of all probability distributions overX. Then we define a(common-
prior) multiagent probability structurecommon prior
M over a nonempty setΦ of primitive propositions as the tuple(W,π, I1, . . . , In,P),

where

• W is a nonempty set ofpossible worlds;

• π : Φ 7→ 2W is aninterpretationthat associates with each primitive proposi-interpretation
tion p ∈ Φ the set of possible worldsw ∈W in whichp is true;

• EachIi is a partition relation, just as in the original partition model (see Defi-
nition 13.1.1); and

• P ∈ Π(W) is thecommon prior probability.

Adding the probability distribution does not change the set of worlds that an
agent considers possible from a worldw, but it does allow us to quantify how
likely an agent considers each of these possible worlds. In worldw, agenti can
condition on the fact that it is in the partitionI(w) to determine the probability that
it is in eachw′ ∈ I(w). For allw′ 6∈ Ii(w) it is the case thatPi(w

′ | w) = 0, and
for allw′ ∈ Ii(w) we have:

Pi(w
′|w) =

P(w′)∑
v|v∈I(w)P(v)

. (14.1)

Note that this means that ifw′ andw′′ lie in the same partition for agenti, then
Pi(w|w′) = Pi(w|w′′). This is one of the restrictions of our formulation to which
we return later.

We will often drop the designations “common prior” and “multiagent” when they
are understood from the context and simply use the term “probability structure.”
Next we discuss the syntax of a language to reason about probability structures
and its semantics. We define the syntax of this new language formally as follows.

Definition 14.1.2 (Well-formed probabilistic sentences)Given a setΦ of primi-
tive propositions, the set of well-formed probabilistic sentencesLP is defined by

• Φ ⊆ LP .

• If ϕ,ψ ∈ LP thenϕ ∧ ψ ∈ LP and¬ϕ ∈ LP .

• If ϕ ∈ LP thenPi(ϕ) ≥ a ∈ LP , for i = 1, . . . , n, anda ∈ [0, 1].

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.1 Knowledge and probability 439

The intuitive meaning of these statements is clear; in particular,Pi(ϕ) ≥ a
states that the probability ofϕ is at leasta. For convenience, we can use several
other comparison operators on probabilities, includingPi(ϕ) ≤ a ≡ Pi(¬ϕ) ≥ a,
Pi(ϕ) = a ≡ Pi(ϕ) ≥ a∧Pi(ϕ) ≤ a, andPi(ϕ) > a ≡ Pi(ϕ) ≥ a∧¬Pi(ϕ) =
a.

Now note that we can use this language and its abbreviations to express formally
our sample higher-order sentences given earlier. To express the sentence “agent 1
believes with probability0.3 that agent 2 believes with probability0.7 thatq,” we
would writeP1(P2(q) = 0.7) = 0.3. Similarly, to express the sentence “agent
1 believes with probability1 that she herself believes with probability at least0.5
thatp,” we would writeP1(P1(p) ≥ 0.5) = 1.

Now we define|=, the satisfaction relation, which links our syntax and seman-
tics.

Definition 14.1.3 (|= relation) Letp ∈ Φ be a primitive proposition andϕ andψ
be sentences of modal logic. We define the|= relation as

• M,w |= p if and only ifw ∈ π(p).

• M,w |= ¬ϕ if and only ifM,w 6|= ϕ.

• M,w |= ϕ ∧ ψ if and only ifM,w |= ϕ andM,w |= ψ.

• M,w |= Pi(ϕ) ≥ a if and only if
∑

v|(v∈I(w))∧(M,v|=ϕ) P(v)
∑

v|v∈I(w) P(v)
≥ a.

�� ��p, q, r 0.2
�� ��p,¬q, r 0.1�� ��p, q,¬r 0.1
�� ��p,¬q,¬r 0

�� ��¬p, q, r 0.1
�� ��¬p,¬q, r 0.25�� ��¬p, q,¬r 0.1
�� ��¬p,¬q,¬r 0.15

I1

I2

Figure 14.1: A KP structure with a common prior.

The following example illustrates the definitions. Consider Figure 14.1. The
interpretation of this structure is that each agent knows the truth of exactly one
proposition:p for agent 1, andq for agent 2. If the real world isw = (p, q, r),
then we haveM,w |= (P1(q) = 0.75), because conditioning on the partition

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

440 14 Beyond Belief: Probability, Dynamics and Intention

I1(w) yields: 0.2+0.1
0.2+0.1+0.1+0

= 0.75. We now go a level deeper to consider agent 2
modeling agent 1. In the partition for agent 2 containing the true world,I2(w), the
probability that agent 2 assigns to being in the partitionI1(w) is 0.2+0.1

0.2+0.1+0.1+0.1
=

0.6. Since the other partition for agent 1 yields a differentP1(q), we have the
sentenceM,w |= P2(P1(q) = 0.75) = 0.6.

This is a good point at which to discuss to some of the constraints of the the-
ory as we have presented it. To begin with, we have implicitly assumed that the
partition structure of each agent is common knowledge among all agents. Second,
we assumed that the beliefs of the agents are based on a common prior and are
obtained by conditioning on the worlds in the partition. Both are substantive as-
sumptions and have ramifications. For example, we have the fact that the beliefs
of an agent are the same within all worlds of any given partition. Also note that
we have a strong property of discreteness in the higher-order beliefs. Specifically,
the number of statements of the form “M,w |= Pi(Pj(ϕ) = a) = b” in which
b > 0 is equal to at most the number of partitions for agentj, and the sum of all
b’s from these statements is equal to 1. Thus, you do not need intervals to account
for all of the probability mass, as you would with a continuous distribution. In fact,
it is the case that for any depth of recursive modeling, you can always decompose
a probability over a range into a finite number of probabilities of individual points.
One could imagine an alternative formulation in which agenti did not know the
prior of agentj, but instead had a continuous distribution over agentj’s possible
priors. In that case, you could haveM,w |= Pi(Pj(ϕ) ≥ b) > 0 without there
being any specifica ≥ b such thatM,w |= Pi(Pj(ϕ) = a) > 0.

We could in fact endow agents with probabilistic beliefs without assuming a
common prior and with a much more limited use of the partition structure. For
example, we could replace, in each world and for each agent, the set of accessible
worlds by a probability distribution over a set of worldsPi,w. In this case the
semantic condition for belief would change to:

• M,w |= Pi(ϕ) ≥ a if and only if
∑

v;M,v|=ϕPi,w(v) ≥ a.

If we want to retain the partition structure so we can speak about knowledge as
well as (probabilistic) belief, we could add the requirement thatPi,w(w′) = 0 for
all w′ 6∈ I(w).

However, such interesting extensions bring up a variety of complexities, includ-
ing, in particular, the axiomatization of such a system, and throughout this book
we stay within the confines of the theory as presented.

As we have discussed, every probability space gives rise to an infinite hierarchy
of beliefs for each agent: beliefs about the values of the primitive propositions,
about other agents’ beliefs, beliefs about other agents’ beliefs about other agents’
beliefs, and so on. This collection of beliefs is called the “epistemic type space”
in game theory and plays an important role in the study of games of incomplete
information, or Bayesian games, discussed in Section 6.3. (There, each possible
world is a different game, and the partition of each agent represents the set of games
that the agent cannot distinguish between, given the signal it receives from nature.)

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.1 Knowledge and probability 441

One can ask whether the converse holds: Is it the case that every type space is given
rise to by some multiagent probability structure? The perhaps surprising answer is
yes so long as the type space isself coherent. Self coherence, which plays the role
analogous to a combination of the positive and negative introspection properties of
knowledge and (qualitative) belief, is defined as follows.

Definition 14.1.4 (Self-coherent belief)A collection of higher-order beliefs isself-
coherentiff, for any agenti, any propositionϕ, and anya ∈ [0, 1], if Pi(ϕ) ≥ aself-coherent

belief thenPi(Pi(ϕ) ≥ a) = 1.

Recall that in modal logics of knowledge and belief we augmented the single-
agent modalities with group ones. In particular, we defined the notion ofcommon
knowledge.We can now do the same for probabilistic beliefs and define the notion
of common (probabilistic) belief.common

probabilistic
belief Definition 14.1.5 (Common belief)A sentenceϕ is commonly believedamong

two agentsa and b, writtenCp
a,b(ϕ), if Pa(ϕ) = 1, Pb(ϕ) = 1, Pa(Pb(ϕ) =

1) = 1, Pb(Pa(ϕ) = 1) = 1, Pa(Pb(Pa(ϕ) = 1) = 1) = 1, and so on. The
definition extends naturally to common (probabilistic) belief among an arbitrary
setG of agents, denotedCp

G.

Now that we have the syntax and semantics of the language, we may ask whether
there exists an axiomatic system for this language that is sound and complete for
the class of common-prior probability spaces. The answer is that one exists, and it
is the following.

Definition 14.1.6 (Axiom systemAXP) The axiom systemAXP consists of the
following axioms and inference rules (in the schemas that follow,ϕ andψ range
over all sentences, andni, nj ∈ [0, 1]).

Axiom 14.1.7 (A1) All of the tautological schema of propositional logic

Axiom 14.1.8 (P1: Nonnegativity)Pi(ϕ) ≥ 0

Axiom 14.1.9 (P2: Additivity) Pi(ϕ ∧ ψ) + Pi(ϕ ∧ ¬ψ) = Pi(ϕ)

Axiom 14.1.10 (P3: Syntax independence)Pi(ϕ) = Pi(ψ) if ϕ⇔ ψ is a propo-
sitional tautology

Axiom 14.1.11 (P4: Positive introspection)(Pi(ϕ) ≥ a) → Pi(Pi(ϕ) ≥ a) =
1

Axiom 14.1.12 (P5: Negative introspection)(¬Pi(ϕ) ≥ a) → Pi(¬Pi(ϕ) ≥
a) = 1

Axiom 14.1.13 (P6: Common-prior assumption)Cp
i,j(Pi(ϕ) = ni ∧ Pj(ϕ) =

nj)→ ni = nj

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

442 14 Beyond Belief: Probability, Dynamics and Intention

Axiom 14.1.14 (R1) Fromϕ andϕ→ ψ inferψ

Axiom 14.1.15 (R2) Fromϕ inferPi(ϕ) = 1

Note that axioms P4 and P5 are the direct analogs of the positive and negative
introspection axioms in the modal logics of knowledge and belief. Axiom P6 is
novel and captures the common-prior assumption.

Now we are ready to give the soundness and completeness result.

Theorem 14.1.16The axiom systemAXP is sound and complete with respect to
the class of all common-prior multiagent probability structures.

14.2 Dynamics of knowledge and belief

We have so far discussed how to represent “snapshots” of knowledge and belief.
We did speak a little about how, for example, knowledge changes over time, for
example in the context of the Muddy Children problem. But the theories presented
were all static ones. For example, in the Muddy Children problem we used the
partition model to represent the knowledge state of the children after each time
the father asks his question, but did not give a formal account for how the system
transitions from one state to the other. This section is devoted to discussing such
dynamics.

We will first consider the problem ofbelief revision, which is the process of
revising an existing state of belief on the basis of newly learned information. We
will consider the revision of both qualitative and quantitative (i.e., probabilistic)
beliefs. Then we will briefly look at dynamic operations on beliefs that are different
from revision, such asupdateandfusion.

14.2.1 Belief revision

One way in which the knowledge and belief of an agent change is when the agent
learns new facts, whether by observing the world or by being informed by another
agent. Whether the beliefs are categorical (as in the logical setting) or quantitative
(as in the probabilistic setting), we call this processbelief revision.belief revision

When the new information is consistent with the old beliefs, the process is
straightforward. In the case of categorical beliefs, one simply adds the new be-
liefs to the old ones and takes the logical closure of the union. That is, consider a
knowledge base (or belief base—here it does not matter)K and new information
ϕ such thatK 6|= ¬ϕ. The result of revisingK by ϕ, writtenK ∗ ϕ, is simply
Cn(K,ϕ), whereCn denotes the logical closure operator. Or thought of semanti-
cally, the models ofK ∗ ϕ consist of the intersection of the models ofK and the
models ofϕ.

The situation is equally straightforward in the probabilistic case. Consider a
prior belief in the form of a probability distributionP (·) and new informationϕ
such thatP (ϕ) > 0. P ∗ ϕ is then simply the posterior distributionP (· | ϕ).

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.2 Dynamics of knowledge and belief 443

Note that in both the logical and probabilistic settings, the assumption that the
new information is consistent with the prior belief (or knowledge) is critical. Oth-
erwise, in the logical setting the result of revision yields the empty set of models,
and in the probabilistic case the result is undefined. Thus the bulk of the work in
belief revision lies in trying to capture how beliefs are revised by information that
is inconsistent with the prior beliefs (and, given their defeasibility, these are really
beliefs, as opposed to knowledge).

One might be tempted to argue that this is a waste of time. If an agent is mis-
guided enough to hold false beliefs, let him suffer the consequences. But this is
not a tenable position. First, it is not only the agent who suffers the consequences,
but also other agents—and we, the modelers—who must reason about him. But
beyond that, there are good reasons why agents might hold firm beliefs and later
retract them. In the logical case, if an agent were to wait for foolproof evidence
before adopting any belief, the agent would never believe anything but tautologies.
Indeed, the notion of belief is intimately tied to that ofdefault reasoningandnon-default

reasoning monotonic reasoning, which are motivated by just this observation.

nonmonotonic
reasoning

In the probabilistic case too there are times at which it is unnatural to assign
an event a probability other than zero. We encounter this, in particular, in the
context of noncooperative game theory. There are situations in which it is astrictly
dominant strategy(see Section 3.4.3) for an agent to take a certain action, as in the
following example.

Two foes, Lance and Lot, about to enter into a duel. Each of them
must choose a weapon and then decide on a fighting tactic. Lance can
choose among two swords—an old, blunt sword, and a new, sharp
one. The new one is much better than the old, regardless of the
weapon selected by Lot and the tactics selected by either foe. So
in selecting his fighting tactic, Lot is justified in assuming that Lance
will have selected the new sword with probability one. But what
should Lot do if he sees that Lance selected the old sword after all?

If this example seems a bit unnatural, the reader might refer to the discussion of
backward inductionin Chapter 3.backward

induction Indeed, a great deal of attention has been paid to belief revision by information
inconsistent with the initial beliefs. We first describe the account of belief revision
in the logical setting; we then show how the account in the probabilistic setting is
essentially the same.

Logical belief revision: The AGM model

We start our discussion of belief revision semantically and with a familiar structure—
the KB-models of Section 13.7. In that section, KB-models were used to distin-
guish knowledge from (a certain kind of) belief. Here we use them for an additional
purpose, namely, to reason about conditional beliefs. Technically, in Section 13.7,
KB-models were used to give meaning to the two modal operatorsKi and Bi.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

444 14 Beyond Belief: Probability, Dynamics and Intention

Given a particular world,Ki was defined as truth in all worlds “downward” from it
andBi was defined (loosely speaking) as truth in all worlds in the “bottom-most”
cluster. But the KB-model can be mined for further information, and here is the
intuition. Imagine a KB-model, and a piece of evidenceϕ. Now erase from that
model all the worlds that do not satisfyϕ and all the links to and from those worlds;
the result is a new, reduced KB-model. The new beliefs of the agent, after taking
ϕ into account, are the beliefs in this reduced KB-model. The following definition
makes this precise.

Definition 14.2.1 (Belief revision in a KB-model) Given a KB-modelA = (W,π,≤1

, . . . ,≤n) over Σ and anyϕ ∈ Σ, let W (ϕ) = {w ∈ W | A,w |= ϕ},
let ≤i (ϕ) = {(w1, w2) ∈≤i| A,w1 |= ϕ,A,w2 |= ϕ}, and letA(ϕ) =
(W (ϕ), π,≤1 (ϕ), . . . ,≤n (ϕ)). Then the beliefs of agenti after receiving evi-
denceϕ, denotedBϕ

i , are defined as

A,w |= Bϕ
i (ψ) iff A(ϕ), w |= Bψ.

Figure 14.2 illustrates this definition. The checkered areas contain all worlds
that do no satisfyϕ.

'
&

$
%s s s

s s
?'

&
$
%

s ss s
?

�
�

�
�

'
&

$
%

s s s
s s

Belief Revision
-

'
&

$
%s s s

s s
?'

&
$
%

s s

Figure 14.2: Example of belief revision.

Note some nice properties of this definition. First, note that you have that
Biψ ↔ Btrue

i ψ, wheretrue is any tautology. Second, recall the philosophical
slogan regarding knowledge as belief that is stable with respect to the truth. We
now see, in a precise sense, why our definitions of knowledge and belief can be

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.2 Dynamics of knowledge and belief 445

viewed as embodying this slogan. Considerψ such thatA,w |= Kiψ. Obvi-
ously,A,w |= Biψ, but it is also the case thatA,w |= Bϕ

i ψ for anyϕ such that
A,w |= ϕ. So we get one direction of the slogan—if a proposition is known, then
indeed it is a belief that will be retained in the face of any correct evidence. While
the converse—that any believed proposition that is not known can be falsified by
some evidence—is less straightforward, we point that it would hold if the language
Σ were rich enough to capture all propositions.

As usual, we ask whether this semantic definition can be characterized through
alternative means. The answer is yes, and in fact we will discuss two ways of do-
ing so. The first is via the so-calledAGM postulates, so named after Alchourrón,AGM postulate
Gärdenfors, and Makinson. These set-theoretic postulates take arbitrary belief re-
vision operator∗ and the initial belief setK and ask, for any evidenceϕ, what the
properties should be ofK ∗ ϕ, the revisionK byϕ. For example, one property is
the following:ϕ ∈ K ∗ ϕ. This is theprioritization rule, or thegullibility rule—prioritization

rule

gullibility rule

new information is always accepted and is thus given priority over old one. (As
we see below, other rules require that the theory be consistent, which can cause old
information to be discarded as a result of the revision.)

The AGM postulates for revising a theoryK are as follows. (Recall thatCn(T)
denotes the tautological consequence of the theoryT .)

(∗1) K ∗ ϕ = Cn(K ∗ ϕ).

(∗2) ϕ ∈ K ∗ ϕ.

(∗3) K ∗ ϕ ⊆ Cn(K,ϕ).

(∗4) If ¬ϕ 6∈ K thenCn(K,ϕ) ⊆ K ∗ ϕ.

(∗5) If ϕ is consistent thenK ∗ ϕ is consistent.

(∗6) If |= ϕ↔ ψ thenK ∗ ϕ = K ∗ ψ.

(∗7) K ∗ (ϕ ∧ ψ) ⊆ Cn(K ∗ ϕ,ψ)

(∗8) If ¬ψ 6∈ K ∗ ϕ thenCn(K ∗ ϕ,ψ) ⊆ K ∗ (ϕ ∧ ψ).

In a sense that we will make precise later, these exactly characterize belief revi-
sion with KB-models. But before making this precise, let us discuss an alternative
axiomatic characterization of belief revision operators. This is an axiomatic the-
ory of consequence relations. By definition a meta-theory, this axiomatic theory
consists of rules of the form “if derivation x is valid then so is derivation y.”

It turns out that this meta-theoretic characterization lends particularly deep in-
sight into belief dynamics. For example, in the classical logic setting, themono-
tonicity rule is valid.monotonicity

rule

(Monotonicity) α⊢β
α,γ⊢β

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

446 14 Beyond Belief: Probability, Dynamics and Intention

The analogous rule for belief revision would be “ifβ ∈ K ∗ α thenβ ∈ K ∗
(α ∧ γ).” This does not hold for belief revision, and indeed for this reason belief
revision is often callednonmonotonic reasoning. There are however other meta-nonmonotonic

reasoning rules that hold for belief revision. Consider the following rules; in these we use
the symbol|∼ to represent the fact that we are reasoning about a nonmonotonic
consequence relation, and not the classical⊢.

(Left logical equivalence)|=α↔β,α|∼γ

β|∼γ

(Right weakening)|=α→β,γ|∼α

γ|∼β

(Reflexivity)α |∼ α

(And) α|∼β,α|∼γ

α|∼β∧γ

(Or) α|∼γ,β|∼γ

α∨β|∼γ

(Cautious monotonicity)α|∼β,α|∼γ

α∧β|∼γ

(Rational monotonicity)α∧β 6|∼γ,α6|∼¬β

α6|∼γ

A consequence relation that satisfies all of these properties is called arational
consequence relation.rational

consequence
relation

The following theorem ties together the semantic notion, the axiomatic one, and
the meta-axiomatic one.

Theorem 14.2.2Consider propositional languageL with a finite alphabet, a revi-
sion operator∗, and a theoryK ⊆ L. Then the following are equivalent:

1. ∗ is defined by a finite total preorder: There is a single-agent KB-modelA and
a worldw such thatA,w |= Bρ for eachρ ∈ K, and for eachϕ,ψ ∈ L it is
the case thatψ ∈ K ∗ ϕ iff A,w |= Bϕψ;

2. ∗ satisfies the AGM postulates;

3. ∗ is a rational consequence relation.

Probabilistic belief revision

As we have discussed, the crux of the problem in probabilistic belief revision is the
inability, in the traditional Bayesian view, to condition beliefs on evidence whose
prior probability is zero (also known as measure-zero events). Specifically, the
definition of conditional probability,

P (A | B) =
P (A ∩B)

P (B)
,

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.2 Dynamics of knowledge and belief 447

leaves the conditional beliefP (A | B) undefined when P(B)= 0.
There exist various extensions of traditional probability theory to deal with this

problem. In one of them, based on so-calledPopper functions, one takes the ex-Popper function
pressionP (A | B) as primitive, rather than defined. In another, called the theory
of nonstandard probabilities, one allows as probabilities not only the standard realnonstandard

probability numbers but alsononstandard reals. These two theories, as well as several oth-
ers, turn out to be essentially the same, except for some rather fine mathematical
subtleties. We discuss explicitly one of these theories, the theory of lexicographic
probability systems (LPSs).

Definition 14.2.3 (Lexicographic probability system)A (finite)lexicographic prob-
ability system (LPS)is a sequencep = p1, p2, ..., pn of probability distributions.lexicographic

probability
system (LPS)

Given such an LPS, we say that eventp(A | B) = c if there is an index1 ≤ i ≤ n
such that for all1 ≤ j < i, it is the case thatpj(B) = 0, pi(B) 6= 0, and (now
using the classical notion of conditional probability)pi(A|B) = c. Similarly, we
say that eventA has a higher probability than eventB (p(A) > p(B)) if there is
an index1 ≤ i ≤ n such that for all1 ≤ j < i, it is the case thatpj(A) = pj(B),
andpi(A) > pi(B).

In other words, to determine the probability of an event in an LPS, one uses
the first probability distribution if it is well defined for this event. If it is not, one
tries the second distribution, and so on until the probability is well defined. A
standard example of this involves throwing a die. It may land on one of its six
faces, with equal probability. There is also a possibility that it will land on one of
its twelve edges; minuscule as this probability is, it is nonetheless a possible event.
Finally, even more improbably, the die may land and stay perched on one of its
eight corners. In a classical probabilistic setting one usually accords each of the
first six events—corresponding to the die landing on one of the faces—a probability
of 1/6, and the other 20 events a probability of zero. In this more general setting,
however, one can define an LPS(p1, p2, p3) as follows.p1 would be the classical
distribution just described.p2 would give a probability of 1/12 to the die landing on
each of the edges, and 0 to all other events. Finally, thep3 would give a probability
of 1/8 to the die landing on each of the corners, and 0 to all other events.

LPSs are closely related to AGM-style belief revision.

Theorem 14.2.4Consider propositional languageL with a finite alphabet, a revi-
sion operator∗, and a theoryK ⊆ L. Then the following are equivalent.

1. ∗ satisfies the AGM postulates for revisingK.

2. There exists an LPSp = p1, . . . , pn such thatp1(K) = 1, and such that for
everyϕ andψ it is the case thatψ ∈ K ∗ ϕ iff p(ψ | ϕ) = 1.

Thus, we have extended the three-way equivalence of Theorem 14.2.2 to a four-
way one.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

448 14 Beyond Belief: Probability, Dynamics and Intention

14.2.2 Beyond AGM: update, arbitration, fusion, and friends

In discussing the dynamics of belief we have so far limited ourselves to belief
revision, and a specific type of revision at that (namely, AGM-style belief revision).
But there are other forms of belief dynamics, and this section discusses some of
them. We do so more briefly than with belief revision; at the end of the chapter we
provide references to further readings on these topics.

Expansion and contraction

To begin with, there are two simple operations closely linked to revision that are
worth noting. Expansionis simply the addition of a belief, regardless of whetherbelief expansion
it leads to a contradiction. The expansion of a theoryK by a formulaϕ, written
K + ϕ, is defined by

K + ϕ = Cn(K ∪ {ϕ}).

Contraction is the operation of removing just enough from a theory to make itbelief
contraction consistent with new evidence. The contraction of a theoryK by a formulaϕ,

writtenK − ϕ, is reduced to the revision operator via theHarper identity,Harper identity

K − ϕ = K ∩ (K ∗ ¬ϕ).

The Levi identityrelates the three operations of revision, expansion, and contrac-Levi identity
tion:

K ∗ ϕ = (K −¬ϕ) + ϕ.

Update

Belief updateis another interesting operation. Similar to revision, it incorporatesbelief update
new evidence into an existing belief state, ensuring that consistency is maintained.
But the intuition behind update is subtly different from the intuition underlying
revision. In revision, the second argument represents new evidence of facts that
were true all along. In update, the second argument represents facts that have
possibly become true only after the original beliefs were formed. Thus if an agent
believes that it is not raining and suddenly feels raindrops, in the case of revision
the assumption is that he was wrong to have those original beliefs, but in the case of
update the assumption is that he was right, but that subsequently it started raining.

The different intuitions underlying revision and update translate to different con-
clusions that they can yield. Consider the following initial belief: “Either the room
is white, or else the independence day of Micronesia is November 2 (or both).”
Now consider two scenarios. In the first one, you look in the room and see that it
is green; the white hypothesis is ruled out and you infer that the independence day
of Micronesia is November 2. This is an instance of belief revision. But now con-
sider a different scenario, in which a painter emerges from the room and informs

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.2 Dynamics of knowledge and belief 449

you that he has just painted the room green. You now have no business inferring
anything about Micronesia. This is an instance of belief update.2

Since revision and update are different, it is to be expected that the set of postu-
lates governing update will differ from the AGM postulates. The update of a theory
K by a formulaϕ is writtenK ⋄ ϕ. The so-called KM postulates for updating a
(consistent) theoryK (so named after Katsuno and Mendelzon) read as follows.

(⋄1) K ⋄ ϕ = Cn(K ⋄ ϕ).

(⋄2) ϕ ∈ K ⋄ ϕ.

(⋄3) If ϕ ∈ K thenK ⋄ ϕ = K.

(⋄4) K ⋄ ϕ is inconsistent iffϕ is inconsistent.

(⋄5) If |= ϕ ≡ ψ thenK ⋄ ϕ = K ⋄ ψ.

(⋄6) K ⋄ (ϕ ∧ ψ) ⊆ (K ⋄ ϕ) + ψ.

(⋄7) If ψ ∈ K ⋄ ϕ andϕ ∈ K ⋄ ψ thenK ⋄ ϕ = K ⋄ ψ.

(⋄8) If K is complete3 thenK ⋄ (ϕ ∧ ψ) ⊆ K ⋄ ϕ ∩K ⋄ ψ.

(⋄9) K ⋄ ϕ = ∩M∈Comp(K)M ⋄ ϕ, whereComp(K) denotes the set of all
complete theories that entailK.

As in the case of revision, the model theory of update is also well understood,
and is as follows (this discussion is briefer than that for revision, and we point the
reader to further reading at the end of the chapter).

Revision and update can be related by the identity

K ⋄ ϕ = ∩M∈Comp(K)M ∗ ϕ.

Comparing this property to the last postulate for update, onecan begin to gain
intuition for the model theoretic characterization of the operator. In particular, it
is the case that there is no distinction between revision and update when dealing
with complete theories. More generally, the following completely characterizes the
class of update operators that obey the KM postulates.

Theorem 14.2.5The following two statements about an update operator⋄ are
equivalent:

1. ⋄ obeys the KM postulates;

2. There exists a function that maps each interpretationM to a partial preorder
≤M such thatMod(K ⋄ ϕ) = ∪M∈Comp(K)Min(Mod(M),≤M).

2. And good thing too, as the Federated States of Micronesia, which have been independent since 1986,
celebrate independence day on November 3.
3. A theoryK is complete if for each sentenceϕ, eitherϕ ∈ K or ¬ϕ ∈ K.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

450 14 Beyond Belief: Probability, Dynamics and Intention

Note two important contrasts with the model-theoretic characterization of belief
revision. First, here the preorders need not be total. Second, and more critically, in
revision there is one global preorder on worlds; here each interpretation induces a
different preorder.

Arbitration

Returning to AGM-style revision, we note two aspects of asymmetry. The first is
blatant—new evidence is given priority over existing beliefs. The second is more
subtle—the first argument to any AGM revision operator is a “richer” type of object
than the second. In this subsection we discuss the first asymmetry, and in the next
subsection the second.

There are certainly situations in which new evidence is not necessarily given
precedence over existing beliefs. Indeed, from the multiagent perspective, each
revision can be seen as involving at least two agents—the believer and the informer.
When synthesizing a new belief, the believer may wish to accord himself higher
priority, to not favor one of them over the other, or to give priority to one over
the other depending on the subject matter. Various theories exist to capture this
intuition. One of them is the theory of beliefarbitration, which takes an egalitarianbelief arbitration
approach: it does not favor either of the two sides over the other. Technically
speaking, it does so by jettisoning the second AGM postulateϕ ∈ K ∗ ϕ, and
replaces it with a “fairness” axiom:

if K ∪ {ϕ} |= ⊥, thenK 6⊆ K ∗ ϕ andϕ 6∈ K ∗ ϕ.

The intuition is that if the new evidence is inconsistent with the initial beliefs, then
each must “give up something.”

Fusion

The other source of asymmetry in AGM revision is more subtle. The AGM postu-
lates obscure the asymmetry between the two arguments. InK ∗ ϕ, K is abelief
set, or a set of sentences (which happen to be tautologically closed). True, usuallybelief set
we think ofϕ as a single sentence, but for most purposes it would matter little if
we have it represent a set of sentences. However, it must be remembered that the
AGM postulates do not define the operator∗, but only constrain it. As is seen from
Theorem 14.2.2, any particular∗ is defined with respect to a completebelief statebelief state
or total preorder on possible worlds. This belief state defines the initial belief set,
but it defines much more, namely, all the beliefs conditional on new evidence. Thus
every specific AGM operator takes as its first input a belief state and as its second a
mere belief set. We now consider what happens when the second argument is also
a belief state.

The first question to ask is what does it mean intuitively to take a second be-
lief state as an argument. Here again the multiagent perspective is useful. We
think of a belief set as describing “current” beliefs and a belief state as describ-
ing “conditional” (i.e., “current” as well as “hypothetical”) beliefs. According to

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.2 Dynamics of knowledge and belief 451

AGM revision, then, the believer has access to his full conditional beliefs, but the
informer reveals only (some of his) current beliefs. However, one could imagine
situations in which the informer engages in “full disclosure,” revealing not only
all his current beliefs but also all his hypothetical ones. When this is the case, the
believer is faced with the task of merging two belief states; this process is called
belief fusion.

Belief fusion calls for resolving conflicts among the two belief states. From the
technical standpoint, the basic unit of conflict here is no longer the inconsistency
of two beliefs, but rather the inconsistency of the two orderings on possible worlds.
Here is how one theory resolves such conflicts; we present it in some detail since
it very explicitly adopts a multiagent perspective.

To develop intuition for the following definitions, imagine a set of information
sources and a set of agents. The sources can be thought of as primitive agents with
fixed belief states. Each source informs some of the agents of its belief state; in
effect, each source offers the opinion that certain worlds are more likely than others
and remains neutral about other pairs.

An agent’s belief state is simply the amalgamation of all these opinions, each
annotated by its origin (or “pedigree”). Of course, these opinions in general conflict
with one another. To resolve these conflicts, the agent places a strict “credibility”
ranking on the sources and accepts the highest-ranked opinion offered on every
pair of worlds.

We define thepedigreed belief stateas follows.

Definition 14.2.6 (Pedigreed belief state)Given a finite set of belief statesS (over
W), thepedigreed belief state(overW) induced byS is a functionΨ :W ×W 7→pedigreed belief

state 2S∪{s0} such thatΨ(w1, w2) = {(W,≤) ∈ S : w2 6≤ w1} ∪ {s0}.
In words,Ψ(w1, w2) is the set of all agents who do not believe that worldw2 is

at least as likely asw1. The agents0 has no beliefs and is thus always present.
We will useS to denote the set of all of sources overW, and throughout this

section we will consider pedigreed belief states that are induced by subsets ofS.
Note that both{} ands0 induce the same pedigreed belief state; by slight abuse of
notation we will denote it too bys0.

Next we define a particular policy for resolving conflicts within a pedigreed
belief state, since for any two worldsw1 andw2, we have the competing camps
of Ψ(w1, w2) andΨ(w2, w1). We assume a strict ranking< onS (and thus also
on the sources that induce any particularΨ). We interprets1 < s2 as “s2 is more
credible thans1.” As usual, we define⊑, read “as credible as,” as the reflexive
closure of<.

We also assume thats0 is the least credible source, which may merit some ex-
planation. It might be asked why equate the most agnostic source with the least
credible one. In fact we do not have to, but since in the definitions that follow, ag-
nosticism is overridden by any opinion regardless of credibility ranking, we might
as well assume that all agnosticism originates from the least credible source, which
will permit simpler definitions.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

452 14 Beyond Belief: Probability, Dynamics and Intention

Intuitively, given a pedigreed belief stateΨ, Ψ< will retain fromΨ the highest-
ranked opinion about the relative likelihood between any two worlds.

Definition 14.2.7 (Dominating belief state)GivenW, S, Ψ and < as defined
earlier, the dominating belief stateof Ψ is the functionΨ< : W ×W 7→ S suchdominating

belief state that∀w1, w2 ∈ W the following holds: Ifmax(Ψ(w2, w1)) < max(Ψ(w1, w2))
thenΨ<(w1, w2) = max(Ψ(w1, w2)). Otherwise,Ψ<(w1, w2) = s0.4

Clearly, for anyw1, w2 ∈ W eitherΨ<(w1, w2) = s0 or Ψ<(w2, w1) = s0 or
both.

It is not hard to see thatΨ< induces a standard (anonymous) belief state.

Definition 14.2.8 (Ordering induced byΨ<) Theordering induced byΨ< is the
relation�, a binary relation onW, such thatw1 � w2 iff Ψ<(w2, w1) = s0.

Clearly,� is a total preorder onW. Thus a dominating belief state is a general-
ization of the standard notion of belief state.

We are now ready to define the fusion operator.

Definition 14.2.9 (Belief fusion) Given a set of sourcesS and < as previously,
S1, S2 ⊂ S, the pedigreed belief stateΨ1 induced byS1, and pedigreed belief state
Ψ2 induced byS2, the fusionof Ψ1 and Ψ2, denotedΨ1 6 Ψ2, is the pedigreedbelief fusion
belief state induced byS1 ∪ S2.

Figure 14.3 illustrates the operation of the fusion operator. Of the three agents,
A has the highest priority at 3, followed byB andC with priorities of 2 and 1,
respectively. The first three lines describe the beliefs of the agents over the four
worldsa,b,c, andd in the form of a dominating belief state. An arrow from one
circle to another means that all worlds in the second circle are considered at least
as likely as all worlds in the first. Each arrow is labeled with the priority of the
agent who holds those beliefs. The final two lines show examples of fusion, with
the corresponding diagrams showing the resulting dominating belief state. When
fusing the beliefs ofA andC, we see that all ofA’s beliefs are retained because it
has a higher priority. SinceA has no opinion on the pairs(a, b) and(c, d), we take
C ’s beliefs. OfC ’s two remaining beliefs,c ≤C a is overruled bya ≤A c, while
b ≤c d is consistent withA’s belief and thus does not show up in the output. When
we fuse this dominating belief state with that ofB, the only possible changes that
can be made are on the pairs(a, b) and(c, d), sinceA has a belief on all other pairs
and has a higher priority thanB. AgentB has no opinion on(c, d), but disagrees
with C on (a, b), causing a reversal of the arrow, which is now labeled withB’s
priority.

4. Note the use of the restrictions. Finiteness assures that a maximal source exists; we could readily replace
it by weaker requirements on the infinite set. The absence of ties in the ranking< ensures that the maximal
source is unique; removing this restriction is not straightforward.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.3 Logic, games, and coalition logic 453

A

B

C

a bc

a b
A C B

3

2 2

3

a1 1

1 ab

2

dc

b d

1

c d13

3 3

33

c

c

d

b

a

d

1

2

A C

3

3

Figure 14.3: Example of a fusion operator. Only the dominating belief states are
shown.

14.2.3 Theories of belief change: a summary

We have discussed a number of ways in which beliefs change overtime. Starting
with AGM revision and its probabilistic counterpart, we went on to discuss the
operations of expansion, contraction, update, arbitration, and fusion.

It is important to emphasize that these examples are not exhaustive. Because it
is so important, we devote this short subsection to making just this point. There
are other specific theories, for example, theories accounting for theiteration ofiterated belief

revision belief revision; most of the theories we discussed do not say what happens if one
wishes to conduct, for example, two revisions in sequence. Other theories are more
abstract, and provide a general framework for belief change, of which revision,
update, and other operators are special instances. Among them, importantly, are
theories withinformation change operators. These are couched in propositionalinformation

change
operators

dynamic logic, which we will encounter in Section 14.4, but in which the modal
action operators are indexed by a logical proposition, denoting, for example, the
learning of that proposition. In Section 14.5 we provide some references to this
literature.

14.3 Logic, games, and coalition logic

So far in this chapter we looked at the use of logic to reason about purely “in-
formational" aspects of agents. Now we broaden the discussion to include also

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

454 14 Beyond Belief: Probability, Dynamics and Intention

“motivational" aspects. In this section we (briefly) look at the interaction between
modal logic and game theory.

The connection between logic and games is multifaceted. Even before the ad-
vent of modern-day game theory, in the context of classical logic, it was proposed
that a logical system be viewed as a game between a prover (the “asserter") and a
disprover (the “respondent"), with a sentence being valid if the prover had a win-
ning strategy. In this case, games are used to reason about logic. But much recent
work has been aimed in the opposite direction, with logic being used to reason
about games. Here games are meant in the formal sense of modern game theory,
and the logics are modal rather than classical.

We have so far seen how modal logic can be used to model and reason about
agents’ knowledge and the beliefs and how those change in time. But modal
logic can be used to reason also about their actions, preferences, and hence also
about games and (certain) solution concepts. Much of the literature here focuses
on extensive-form games of both perfect and imperfect (though not yet incomplete)
information. There exists a rapidly expanding literature on the topic which is some-
what complex. We will just mention here that these logics allow us to reason about
certain solution concepts, particularly those involving only pure strategies. And
so one can recapture in logic the notion of (pure strategy) dominant strategy, iter-
ated elimination of dominated strategies, rationalizability, and pure-strategy Nash
equilibria.

In lieu of full discussion of this somewhat complex material, to give a feel for
what can be expressed in such logics we briefly look at one particular exemplar—
so-calledcoalition logic(CL). In the language of CL we do not model the actionscoalition logic
of the agents, but rather the capabilities of groups. (In this respect, CL is similar to
coalitional game theory.) For any given set of agentsC, the modal operator[C] is
meant to capture the capability of the group.[C]ϕ means that the group can bring
aboutϕ (or, equivalently, can ensure thatϕ is the case), regardless of the actions
of agents outside the setC.

The formal syntax of CL is defined as follows. Given a (finite, nonempty) set of
agentsN and a set of primitive propositionsΦ0, the setΦ of well-formed formulas
is the smallest set satisfying the following:

Φ0 ⊂ Φ;

If ϕ1, ϕ2 ∈ Φ then¬ϕ1 ∈ Φ andϕ1 ∨ ϕ2 ∈ Φ;

If ϕ ∈ Φ,C ⊂ N , andϕ is [C ′]-free for allC ′, then[C]ϕ ∈ Φ.

⊤ is shorthand for¬⊥, and∧,→, and↔ are defined as usual.⊥ can be viewed
as shorthand forp ∧ ¬p, and[i]ϕ is shorthand for[{i}]ϕ for anyi ∈ N .5

The formal semantics of CL are as follows. A CL model is a triple(S,E, V),
such that:

5. This is in fact a simplified version of CL, which might be calledflat CL. The full definition allows for the
nesting of[C] operators, but that requires semantics that are too involved to include here.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.4 Towards a logic of “intention” 455

S is a set of states or worlds;

V : Φ0 7→ 2S is the valuation function, specifying the worlds in which primitive
propositions hold;

E : 2N 7→ 22S

such that

• E({}) = {S},
• if C ⊂ C ′ thenE(C ′) is a refinement ofE(C).

The satisfaction relation is defined as follows:

(S,E, V) 6|= ⊥;

for p ∈ Φ0, (S,E, V) |= p iff s ∈ V (p);

(S,E, V) |= ¬ϕ iff (S,E, V) 6|= ϕ;

(S,E, V) |= ϕ1 ∨ ϕ2 iff (S,E, V) |= ϕ1 or (S,E, V) |= ϕ2;

(S,E, V) |= [C]ϕ iff there existsS′ ∈ E(C) such that for alls ∈ S′ it is the
case thats |= ϕ (here|= is used in the classical sense).

What can be said about the sentences that are valid in this logic? For example,
clearly, both¬[C]⊥ and [C]⊤ are valid (no coalition can force a contradiction,
and tautologies are true in any model, and thus in any set forced by a coalition).
Equally intuitively, [C](ϕ1 ∧ ϕ2) → [C]ϕ2 is also valid (after all, if a coalition
can enforce an outcome to lie within a given set of worlds, it can also enforce it
to lie within a superset). Perhaps more insightful is the following valid sentence:
([C1]ϕ1∧[C2]ϕ2)→ [C1∪C2](ϕ1∧ϕ2), for anyC1∩C2 = ∅ (if one coalition can
force some set of worlds, and a disjoint coalition can force another set of worlds,
then together they can enforce their intersection). The discussion at the end of the
chapter points the reader to a more complete discussion of this and related logics.

14.4 Towards a logic of “intention”

In this section we look, briefly again, at modal logics that have explicit “motiva-
tional" modal operators, ones that capture the motivation of agents and their reason
for action. The specific notion we will try to capture is that ofintentionfirst as it isintention
attributed to a single agent and then as it is attributed to set of agents functioning
as a group. As we shall see, in service of “intention” we will need to define sev-
eral auxiliary notions. These extended theories are sometimes called jokinglyBDI
(pronounced ‘beady eye’) theories, because, beside the notion of belief (B), theyBDI theories
include the notions of desire (D) and intention (I), as well as several others.

It should be said at the outset that these extended theories are considerably more
complex and messy than the theories of knowledge and belief that were covered
in previous sections, and mathematically less well developed than those on games

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

456 14 Beyond Belief: Probability, Dynamics and Intention

and information dynamics. We will therefore not treat this subject matter with
the same amount of detail as we did the earlier topics. Instead we will do the
following. We will start with an informal discussion of notions such as intention
and some requirements on a formal theory of them. We will then outline only the
syntax of one such theory, starting with a single-agent theory and then adding a
multiagent component.

14.4.1 Some preformal intuitions

Let us start by considering what we are trying to achieve. Recall that our theories
of “knowledge” and “belief” only crudely approximated the everyday meanings of
those terms, but were nonetheless useful for certain applications. We would like
to strike a similar balance in a theory of “intention.” Such theories could be use to
reason about cooperative or adversarial planning agents, to create intelligent dialog
systems, or to create useful personal assistants, to mention a few applications.

What are some of the requirements on such theories? Different applications will
give rise to different answers. For motivation behind a particular theory we will
outline, consider the following scenario.

Phil is having trouble with his new household robot, Hector. He says,
“Hector, bring me a beer.” The robot replies, “OK, boss.” Twenty
minutes later, Phil yells, “Hector, why didn’t you bring that beer?” It
answers, “Well, I had intended to get you the beer, but I decided to do
something else.” Miffed, Phil sends the wise guy back to the manu-
facturer, complaining about a lack of commitment. After retrofitting,
Hector is returned, marked “Model C: The Committed Assistant.”
Again, Phil asks Hector to bring a beer. Again, it accedes, replying
“Sure thing.” Then Phil asks, “What kind do we have?” It answers,
“Anchor Steam.” Phil says, “Never mind.” One minute later, Hector
trundles over with an Anchor Steam in its gripper. This time, Phil
angrily return Hector for overcommitment. After still more tinkering,
the manufacturer sends Hector back, promising no more problems
with its commitments. So, being a somewhat trusting consumer, Phil
accepts the rascal back into his household, but as a test, he asks Hec-
tor to bring him the last beer remaining in the fridge. Hector again
accedes, saying, “Yes, sir.” The robot gets the beer and starts toward
Phil. As it approaches, it lifts its arm, wheels around, deliberately
smashes the bottle, and trundles off. Back at the plant, when inter-
rogated by customer service as to why it had abandoned its commit-
ments, the robot replies that according to its specifications, it could
not have a commitment that it believed to be unachievable. Once
the last remaining bottle was smashed, the commitment became un-
achievable. Despite the impeccable logic, and the correct implemen-
tation, Hector is dismantled.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.4 Towards a logic of “intention” 457

This example suggests that in order to capture the notions ofintentionwe mustintention
also tackle those ofcommitmentandcapability. In addition, we will consider the

commitment

capability
notions ofdesire, goal, and evenagency. This scenario also suggests some con-

desire

goal

agency

straints. Here are some of the intuitions that will underlie the formal development.

1. Desires are unconstrained; they need not be achievable, and not even consistent
(one can desire smoking and good health simultaneously). Goals in contrast
must be consistent with each other, and furthermore must be believed to be
achievable, or at least not believed to be unachievable. The same is true of in-
tentions, which have the additional property of being persistent in time. Loosely
speaking, these three notions form a hierarchy; goals imply desires, and inten-
tions imply goals. These mutual constraints among the difference notions are
sometimes calledrational balance. In the formulation in the next section werational balance
will consider goals and intentions, but not desires.

2. Intentions come in two varieties—intentions to achieve a particular state (such
as being in San Francisco) and intentions to take a particular action (such as
boarding a particular train to San Francisco). In particular, intentions are future
directed. The same is true of goals.

3. Plans consist of a set of intentions and goals. Plans are in generalpartial; that is,
they have some goals or intentions that are not directly achievable by the agent.
For example, an agent may intend to go to San Francisco, even though he may
not yet know whether he wants to drive there or take the train.

4. Plans give rise to further goals and intentions. For example, an intention to go
to San Francisco requires that the agent further specify some means for getting
there (e.g., driving or taking the train).

5. At the same time, since the plan of an agent must be internally consistent, a
given plan constrains the addition of new goals and intentions. For example, if
the agent’s plan already contains the intention of leaving his car at home for his
wife to use, then he cannot adopt the intention of driving it to San Francisco as
the means of getting there.

6. Intentions are persistent, but not irrevocable. For example, an intention to go
to San Francisco may be part of a larger plan serving a higher-level goal, such
as landing a new job. Our agent may find another means to achieve the same
goal and thus drop his intention to go to San Francisco. Or, he may obtain new
information that makes his trip to San Francisco infeasible, in which case too
that intention must be dropped.

7. Agents need not intend the anticipated side effects of their intentions. Driving
to San Francisco may necessarily increase one’s risk of a traffic accident, but
an agent intending the former does not generally intend the latter. Similarly,
an agent intending to go to the dentist does not typically have the intention of
experiencing great pain even if he may fully expect such pain.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

458 14 Beyond Belief: Probability, Dynamics and Intention

Philosophers have written at considerably greater length on these topics, but let
us stop here and look at what a formal theory might look like in light of some of
these considerations.

14.4.2 The road to hell: elements of a formal theory of intention

We will sketch a theory aimed at capturing the notion of intention. Our sketch
will be incomplete, and will serve primarily to highlight some of the surprising
elements that a complete theory requires. Certainly we will only consider a propo-
sitional theory; there is no special difficulty in extending the treatment to the first-
order case. More critically, we will discuss only the axiomatic theory, and will
have little to say about its formal semantics.

Since intentions are future directed, we must start by representing the passage of
time. Although we have just said that we will not discuss semantics, it is useful to
keep in mind the picture of a sequence of events, leading from one state to another.
Figure 14.4 shows an example.

���� ���� ���� ����
- - - - · · ·

actions: go to train station board train do nothing

states: at home at train station on train in San Francisco

Figure 14.4: An event sequence: actions lead from one state to another.

Such event sequences will form the basis for reasoning about intentions and
other notions. The language we use to speak about such events is based ondynamic
logic. Dynamic logic takes the basic events (such as going to the train station) as
the primitive objects. These basic events can be combined in a number of ways
to make complex events; see later. By associating an agent with an event (where
basic or complex) we get anaction. Since we will not consider agent-less events
here, we will use the term “event” and “action” interchangeably.

Thus one component of dynamic logic is a language to speak about actions. An-
other component is a language to speak about what is true and false in states, the
end points of actions. In this language we will have two primitive modal operators
– B (belief) andG (goal) – and define intention in terms of those. We will not
define desire in the language since our notion of intention will not depend on it.

Interestingly, the language of actions and the language of states are mutually
dependent. They are defined as follows.

Definition 14.4.1 (Action and state expressions)Given a set of agentsN , a set
E of primitive actions, a setV of variables (which will range over actions), and a
setP of primitive propositions (describing what is true and falsein states), the set

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.4 Towards a logic of “intention” 459

of action expressionsA and the set of state expressionsLBG are the smallest sets
satisfying the following constraints.

• E ⊆ A
• If a, b ∈ A thena; b ∈ A
• If a, b ∈ A thena|b ∈ A
• If a ∈ A thena∗ ∈ A
• If ϕ ∈ LBG thenϕ? ∈ A

Here is an intuitive explanation of these complex actions.a; b denotes compo-
sition: doing a followed byb. a|b denotes nondeterministic choice: doinga or b,
nondeterministically.a∗ denotes iteration: repeatinga zero or more times, nonde-
terministically.ϕ? is perhaps the most unusual action. It is the test action; it does
not change the state, but is successful only in states that satisfyϕ. Specifically, if
the actionϕ? is taken in a state, thenϕ must be true in that state.

• P ⊆ LBG

• If ϕ,ψ ∈ LBG thenϕ ∧ ψ,¬ϕ ∈ LBG

• If a ∈ A thenJustHappened(a) ∈ LBG

• If a ∈ A thenAboutToHappen(a) ∈ LBG

• If i ∈ N , anda ∈ A thenAgent(a) = i ∈ LBG

• If v ∈ V , andϕ ∈ LBG then∀vϕ ∈ LBG

• If a, b ∈ A ∪ V thena < b ∈ LBG

• If i ∈ N andϕ ∈ LBG thenBiϕ ∈ LBG

• If i ∈ N andϕ ∈ LBG thenGiϕ ∈ LBG

Again, an explanation is in order.JustHappened(a) captures the fact that ac-
tion a ended in the current state, andAboutToHappen(a) that it is about to start
in the current state.Agent(a) = i identifiesi as the agent of actiona. a < b
means that actiona took place before actionb. Finally, Bi andGi of course de-
note the belief and goal operators, respectively. However, especially forGi, it is
important to be precise about the reading;Giϕ means thatϕ is true in all the
states that satisfy the goals of agenti.

While we do not discuss formal semantics here, let us briefly discuss the belief
and goal modal operators. They are both intended to be interpreted via possible-
worlds semantics. So the question arises as to the individual properties of these
operators and the interaction between them.B is a standard (KD45) belief operator.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

460 14 Beyond Belief: Probability, Dynamics and Intention

We place no special restriction on theG operator, other than that it must be serial
(to ensure that goals are consistent). However, since goals must also be consistent
with beliefs, we require that the goal accessibility relation be a subset of the belief
accessibility relation. That is, if a possible world is ruled out by the agent’s beliefs,
it cannot be a goal. This assumption means that you cannot intend that be in San
Francisco on Saturday if you believe that you will be in Europe at the same time.
(Of course, you can intend to be in San Francisco on Saturday even though you are
in Europe today.)6

Before proceeding further, it will be useful to define several auxiliary operators.

Definition 14.4.2 Always(ϕ)
def≡ ∀a(AboutToHappen(a)→ AboutToHappen(a;ϕ?))

Eventually(ϕ)
def≡ ¬Always(¬ϕ)

Later (ϕ)
def≡ (¬ϕ) ∧ (Eventually(ϕ))

Before(ϕ,ψ)
def≡ ∀c(AboutToHappen(c;ψ?)) → ∃a((a ≤ c)∧AboutToHappen(a;ϕ?))

JustDid i(a)
def≡ JustHappened (a) ∧ Agent(a) = i

AboutToDoi(a)
def≡ AboutToHappen(a) ∧ Agent(a) = i

With these in place, we proceed to define the notion of intention as follows.
We first strengthen the notion of having a goal. TheGi operator defines a weak
notion; in particular, it includes goals that are already satisfied and thus provides
no impetus for action. Anachievement goal, orAGoal, focuses on the goals thatachievement

goal are yet to be achieved.

Definition 14.4.3 (Achievement goal)

AGoal iϕ
def≡ Gi(Later (ϕ)) ∧Bi(¬ϕ)

c An achievement goal is useful, but it is still not an intention. This is because an
achievement goal has no model of commitment. An agent might form an achieve-
ment goal, only to drop it moments later, for no apparent reason. In order to model
commitment, we should require that the agent not drop the goal until he reaches it.
We call such a goal a persistent goal, defined as follows.

Definition 14.4.4 (Persistent goal)

PGoal iϕ
def≡ AGoal iϕ ∧

Before(Bi(ϕ) ∨Bi(Always(¬ϕ)),¬Gi(Later (ϕ)))

In other words, a persistent goal is an achievement goal that the agent will not
give up until he believes that it is true or will never be true.

6. Note that this constraint means that the formulaBiϕ → Giϕ is valid in our models; this is where the
careful reading of theGi operator is required.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.4 Towards a logic of “intention” 461

The notion of a persistent goal brings us closer to a reasonable model of intention,
but it still misses an essential element of intentionality. In particular, it does not
capture the requirement that the agent himself do something to fulfill the goal, let
alone do so knowingly. The following definitions attempt to add these ingredients.

Recall that an agent may intend either to do an action or to achieve a state. For
this reason, we give two definitions of intention. The following is a definition of
intending an action.

Definition 14.4.5 (Intending an action)

IntendsAia
def≡ PGoali (JustDidi(Bi(AboutToDoi(a))?; a))

In other words, if an agent intends an action, he must have a persistent goal to
first believe that he is about to take that action and then to actually take it.

The second definition captures the intention to bring about a state with certain
properties.

Definition 14.4.6

IntendSi (ϕ)
def≡ PGoali∃eJustDidi(Bi(∃e′AboutToDoi(e

′;ϕ?)) ∧
¬Gi(¬AboutToDoi(e;ϕ?))?; e;ϕ?))

We explain this definition in a number of steps. Notice that to intend a state
in whichϕ holds, an agent is committed to taking a number of actionse himself,
after whichϕ holds. However, in order to avoid allowing him to intendϕ by doing
something accidentally, we require that he believe he is about to do some series
of eventse′ that brings aboutϕ. In other words, we require that he has a plane′,
which he believes that he is executing, which will achieve his goalϕ.

As was mentioned at the beginning of this section, the logic of intention is consid-
erably more complex, messy, and controversial than that of knowledge and belief.
We will not discuss the pros and cons of this line of definitions further, nor alter-
native definitions; the notes at the end of the chapter provide references to these.
Let us just note that these definitions do have some desirable formal properties.
For example, early intentions preempt later potential intentions (namely those that
undermine the objectives of the earlier intentions); agents cannot intend to achieve
something if they believe that no sequence of actions on their part will bring it
about; and agents do not necessarily intend all the side effects of their intentions.

14.4.3 Group intentions

The theory of intention outlined in the previous section considers a single agent.
We have seen that the extension of the logic of (e.g.,) knowledge to the multiagent
setting is interesting; in particular, it gives rise to the notion of common knowledge,
which is so central to reasoning about coordination. Is there similar motivation for
considering intention in a multiagent setting?

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

462 14 Beyond Belief: Probability, Dynamics and Intention

Consider a set of agents acting as a group. Consider specifically the notion
of convoy. Consisting of multiple agents, each making local decisions, a convoy
nonetheless moves purposefully as a single body. It is tempting to attribute beliefs
and intentions to this body, but how do these group notions relate to the beliefs and
intentions of the individual agents?

It certainly will not do to equate a group intention simply with all the individual
agents having that intention; it is not even sufficient to have those individual inten-
tions be common knowledge among the agents. Consider the following scenario.

Two ancient Inca kings, Euqsevel and Nehoc, aim to ride their horses
in a convoy to the Temple of Otnorot. Specifically, since King Euq-
sevel knows the way, he intends to simply ride there and King Nehoc
intends to follow him. They set out, and since King Euqsevel’s horse
is faster, he quickly loses King Nehoc, who never makes it to Otnorot.

Centuries later, in old Wales, two noblemen—Sir Ffegroeg and Sir
Hgnis—set out on another journey. Here again only one of them, Sir
Ffegroeg, knows the way. However, having learned from the Incan
mishap, they do not simply adopt their individual intentions. Instead,
Sir Ffegroeg agrees to go ahead on his faster horse, but to wait at
road junctions in order to show Sir Hgnis the way. They proceed in
this fashion until at some point Sir Ffegroeg discovers that snow is
covering the mountain pass and that it is impossible to get to their
destination. So he correctly jettisons his intention to get there and
therefore also the dependent intention to show Sir Hgnis the way. In-
stead he makes his way to a comfortable hotel he knows in a nearby
town; Sir Hgnis is left to wander the unfamiliar land to his last day.

Clearly, the interaction between the intentions of the individual agents and the
collective mental state is involved.

One way to approach the problem is to mimic the development in the single-
agent case. Specifically, one can first define the notion ofjoint persistent goaland
then use it to define the notion of ajoint intention. We give an informal outline of
such definitions.

Definition 14.4.7 (Weak achievement goal; informal)An agent has aweak achieve-
ment goalwith respect to a team of agents iff one of the following is true:weak

achievement
goal 1. The agent has a standard achievement goal (AGoal) to bring aboutϕ;

2. The agent believes thatϕ is true or will never be true, but has an achievement
goal that the status ofϕ be common belief within the team.

Definition 14.4.8 (Joint persistent goal; informal) A team of agents has ajoint
persistent goalto achieveϕ iff the following are all true:joint persistent

goal

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

14.5 History and references 463

1. They have common belief thatϕ is currently false;

2. They have common (and true) belief that they each have the goal thatϕ hold
eventually;

3. They have common (and true) belief that, until they come to have common belief
thatϕ is either true or never will be true, they will each continue tohaveϕ as
a weak achievement goal.

Definition 14.4.9 (Joint intention; informal) A team of agents has ajoint inten-
tion to take a set of actionsA (each action by one of the agents) iff the agentsjoint intention
have a joint persistent goal of (a) having doneA and (b) having common belief
throughout the execution ofA that they are doingA.

In addition to avoiding the pitfalls demonstrated in the earlier stories, these defi-
nitions have several potentially attractive properties, including the following.

– The joint persistent goals of a team consisting of a single agent coincide with
the intentions of that agent.

– If a team hasϕ as a joint persistent goal then so does every individual agent.

– If a team has a joint intention to take a set of actionsA, and actiona ∈ A
belongs to agenti, then agenti intends to take actiona.

However, these definitions are nothing if not complex, which is why we omit
their formal details here. Furthermore, as was said, there is not yet universal agree-
ment on the best definitions. The references point to the reader to further reading
on this fascinating, yet incomplete, body of work.

14.5 History and references

The combination of knowledge and probability as discussed in this chapter is based
on Fagin and Halpern [1994] and is covered also in Halpern [2005], which remains
a good technical introduction to the topic.

Theories of belief dynamics—revision, update, and beyond—are covered in Pap-
pas [2007], as well as in the older but still excellent Gärdenfors and Rott [1995].
Early seminal work includes that of Gärdenfors [1988], Alchourron, Gärdenfors
and Makinson [1985] (after whom “AGM revision” is named), and Katsuno and
Mendelzon [1991], who introduced the distinction between belief revision and
belief update. The material in the chapter on knowledge, certainty, and belief
is based on Boutilier [1992] and Lamarre and Shoham [1994]. The material in
the section on belief fusion is based on Maynard-Reid and Shoham [2001] and
Maynard-Zhang and Lehmann [2003]. A broader introduction to logical theories
of belief fusion can be found in Grégoire and Konieczny [2006]. Belief dynamics

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

464 14 Beyond Belief: Probability, Dynamics and Intention

are closely related to the topic ofnonmonotonic logics, a rich source of material.nonmonotonic
logic An early comprehensive coverage of nonmonotonic logics can be found in Gins-

berg [1987], and a more recent survey is provided in Brewka et al. [2007].
The recent trend toward modal logics of information dynamics is heralded in van

Benthem [1997]. The early seminal work with a game-like perspective on logic is
due to Peirce [1965]. A recent review of modal logic for games and information
change appears in van der Hoek and Pauly [2006]. Our discussion of coalition
logic is covered there in detail, and originally appeared in Pauly [2002].

In general, belief dynamics still constitute an active area of research, and the
interested reader will undoubtedly want to study the recent literature, primarily in
artificial intelligence and philosophical logic.

The literature on formal theories of “motivational” attitudes, such as desires,
goals, and intentions, is much sparser than the literature on the “informational"
attitudes discussed earlier. There are fewer publications on these topics, and the
results are still preliminary (which is reflected in the style and length of the book
section). The material presented is based largely on work in artificial intelligence
by Cohen and Levesque [1990; 1991], which in turn was inspired by philosophical
work such as that of Bratman [1987]. The Cohen-Levesque formulation has at-
tracted criticism and alternative formulations, some of which can be found in Rao
and Georgeff [1991], Rao and Georgeff [1998], Singh [1992], Meyer et al. [1999],
and van der Hoek and Wooldridge [2003]. Much of this literature is surveyed in
Wooldridge [2000]. This area presents many opportunities for further research.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Appendices: Technical Background

A Probability Theory

Probability theory provides a formal framework for the discussion of chance or
uncertainty. This appendix reviews some key concepts of the theory and establishes
notation. However, it glosses over some details (e.g., pertaining to measure theory).
Therefore, the interested reader is encouraged to consult a textbook on the topic for
a more comprehensive picture.

A.1 Probabilistic models

A probabilistic model is defined as a tuple(Ω,F , P), where:

• Ω is thesample space, also called theevent space;sample space

event space • F is aσ-algebra overΩ; that is,F ⊆ 2Ω and is closed under intersection and
countable union; and

• P : F 7→ [0, 1] is theprobability density function(PDF).probability
density function

Intuitively, the sample space is a set of things that can happen in the world ac-
cording to our model. For example, in a model of a six-sided die, we might have
Ω = {1, 2, 3, 4, 5, 6}. Theσ-fieldF is a collection of measurable events.F is re-
quired because some outcomes inΩ may not be measurable; thus, we must define
our probability density functionP overF rather than overΩ. However, in many
cases, such as the six-sided die example, all outcomesare measurable. In those
cases we can equateF with 2Ω and view the probability space as the pair(Ω, P)
andP asP : 2Ω 7→ [0, 1]. We assume this in the following.

A.2 Axioms of probability theory

The probability density functionP must satisfy the following axioms.

1. For anyA ⊆ Ω, P (∅) = 0 ≤ P (A) ≤ P (Ω) = 1.

2. For any pair of disjoint setsA,A′ ⊂ Ω, P (A ∪A′) = P (A) + P (A′).

468 A Probability Theory

That is, all probabilities must be bounded by0 and1; 0 is the probability of the
empty set and1 the probability of the whole sample space. Second, when sets of
outcomes from the sample space are nonoverlapping, the probability of achieving
an outcome from either of the sets is the sum of the probabilities of achieving
an outcome from each of the sets. We can infer from these rules that if two sets
A,A′ ⊆ Ω are not disjoint,P (A ∪A′) = P (A) + P (A′)− P (A ∩A′).

A.3 Marginal probabilities

We are often concerned with sample spacesΩ that are defined as the Cartesian
product of a set of random variablesX1, . . . ,Xn with domainsX1, . . . ,Xn respec-
tively. Thus, in this setting,Ω =

∏n

i=1 Xi. Our density functionP is thus defined
over full assignments of values to our variables, such asP (X1 = x1, . . . ,Xn =
xn). However, sometimes we want to ask aboutmarginal probabilities: the proba-marginal

probability bility that a single variableXi takes some valuexi ∈ Xi. We define

P (Xi = xi) =
∑

x1∈X1

· · ·
∑

xi−1∈Xi−1

∑

xi+1∈Xi+1

· · ·
∑

xn∈Xn

P (X1 = x1, . . . ,Xn = xn).

From this definition and from the axioms given earlier we can also infer that, for
example,

P (Xi = xi) =
∑

xj∈Xj

P (Xi = xi andXj = xj).

A.4 Conditional probabilities

We say that two random variablesXi and Xj are independentwhenP (Xi =
xi andXj = xj) = P (Xi = xi) · P (Xj = xj) for all valuesxi ∈ Xi, xj ∈ Xj .

Often, random variables are not independent. When this is the case, it can be
important to know the probability thatXi will take some valuexi given thatXj =
xj has already been observed. We define this probability as

P (Xi = xi|Xj = xj) =
P (Xi = xi andXj = xj)

P (Xj = xj)
.

We callP (Xi = xi|Xj = xj) aconditional probability; P (Xi = xi andXj =conditional
probability xj) is called ajoint probabilityandP (Xj = xj) a marginal probability, already

joint probability
discussed previously.

Finally, Bayes’ ruleis an important identity that allows us to reverse conditional

Bayes’ rule probabilities. Specifically,

P (Xi = xi|Xj = xj) =
P (Xj = xj|Xi = xi)P (Xi = xi)

P (Xj = xj)
.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

B Linear and Integer Programming

Linear programs and integer programs are optimization problems with linear ob-
jective functions and linear constraints. These problems are very general: linear
programs can be used to express a wide range of problems such as bipartite match-
ing and network flow, while integer programs can express an even larger range of
problems, including all of those in NP. We define each of these formalisms in turn.

B.1 Linear programs

Defining linear programs

A linear programis defined by:linear program

• a set of real-valued variables;

• a linear objective function (i.e., a weighted sum of the variables); and

• a set of linear constraints (i.e., the requirement that a weighted sum of the vari-
ables must be less than or equal to some constant).

Let the set of variables be{x1, . . . , xn}, with eachxi ∈ R. The objective
function of a linear program, given a set of constantsw1, . . . , wn, is

maximize
n∑

i=1

wixi.

Linear programs can also express minimization problems: these are just maxi-
mization problems with all weights in the objective function negated.

Constraints express the requirement that a weighted sum of the variables must
be greater than or equal to some constant. Specifically, given a set of constants
a1j, . . . , anj and a constantbj , a constraint is an expression

n∑

i=1

aijxi ≤ bj.

470 B Linear and Integer Programming

This form actually allows us to express a broader range of constraints than might
immediately be apparent. By negating all constants, we can express greater-than-
or-equal constraints. By providing both less-than-or-equal and greater-than-or-
equal constraints with the same constants, we can express equality constraints. By
setting some constants to zero, we can express constraints that do not involve all of
the variables. Furthermore, even problems with piecewise-linear constraints (e.g.,
involving functions like amax of linear terms) can sometimes be expressed as
linear programs by adding both new constraints and new variables. Observe that
we cannotalways write strict inequality constraints, though sometimes such con-
straints can be enforced through changes to the objective function. (For example,
see the linear program given in Equations (4.42)–(4.44) on p. 111, which enforces
the strict inequality constraints given in Equations (4.39)–(4.41).)

Bringing it all together, if we havem different constraints, we can write a linear
program as follows.

maximize
n∑

i=1

wixi

subject to
n∑

i=1

aijxi ≤ bj ∀j = 1 . . . m

xi ≥ 0 ∀i = 1 . . . n

Observe that the requirement that eachxi must be nonnegative is not restrictive:
problems involving negative variables can always be reformulated into equivalent
problems that satisfy the constraint.

A linear program can also be written in matrix form. Letw be ann × 1 vector
containing the weightswi, let x be ann× 1 vector containing the variablesxi, let
A be anm× n matrix of constantsaij , and letb be anm× 1 vector of constants
bj . We can then write a linear program in matrix form as follows.

maximize wT x

subject to Ax ≤ b

x ≥ 0

In some cases we care to satisfy a given set of constraints, butdo not have an
associated objective function; any solution will do. In this case the LP reduces to
a constraint satisfaction offeasibilityproblem, but we will sometimes still refer to
one as an LP with an empty objective function (or, equivalently, the trivial one).

Finally, every linear program (a so-calledprimal problem) has a correspondingprimal problem
dual problemwhich shares the same optimal solution. For the linear program given

dual problem earlier, the dual program is as follows.

minimize bTy

subject to ATy ≥ w

y ≥ 0

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

B.2 Integer programs 471

In this linear program our variables arey. Variables and constraints effectively
trade places: there is one variabley ∈ y in the dual problem for every constraint
from the primal problem and one constraint in the dual problem for every variable
x ∈ x from the primal problem.

Solving linear programs

In order to solve linear programs, it is useful to observe thatthe set of feasible
solutions to a linear program corresponds to a convex polyhedron inn-dimensional
space. This is true because all of the constraints are linear: they correspond to
hyperplanes in this space, and so the set of feasible solutions is the region bounded
by all of the hyperplanes. The fact that the objective function is also linear allows
us to conclude two useful things: any local optimum in the feasible region will be
a global optimum, and at least one optimal solution will exist at a vertex of the
polyhedron. (More than one optimal solution may exist if an edge or even a whole
face of the polyhedron is a local maximum.)

The most popular algorithm for solving linear programs is thesimplex algorithm.simplex
algorithm This algorithm works by identifying one vertex of the polyhedron and then taking

uphill (i.e., objective-function-improving) steps to neighboring vertices until an
optimum is found. This algorithm requires an exponential number of steps in the
worst case, but is usually very efficient in practice.

Although the simplex algorithm is not polynomial, it can be shown that other
algorithms calledinterior-point methodssolve linear programs in worst-case poly-interior-point

method nomial time. These algorithms get their name from the fact that they move through
the interior region of the polyhedron rather than jump from one vertex to another.
Surprisingly, although these algorithms dominate the simplex method in the worst
case, they can be much slower in practice.

B.2 Integer programs

Defining integer programs

Integer programsare linear programs in which one additional constraint holds: theinteger program
variables are required to take integral (rather than real) values. This makes it pos-
sible to express combinatorial optimization problems such as satisfiability or set
packing as integer programs. A useful subclass of integer programs are0–1 inte-
ger programs, in which each variable is constrained to take either the value0 or
the value1. These programs are sufficient to express any problem in NP. The form

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

472 B Linear and Integer Programming

of a0–1 integer program is as follows.

maximize
n∑

i=1

wixi

subject to
n∑

i=1

aijxi ≤ bj ∀j = 1 . . . m

xi ∈ {0, 1} ∀i = 1 . . . n

Another useful class of integer programs ismixed-integer programs, which in-mixed-integer
program volve a combination of integer and real-valued variables.

Finally, as in the LP case, both integer and mixed-integer programs can come
without an associated objective function, in which case they reduce to constraint-
satisfaction problems.

Solving integer programs

The introduction of an integrality constraint to linear programs leads to a much
harder computational problem: NP-hard even when variables are restricted to two
discrete values. Thus, it should not be surprising that there is no efficient procedure
for solving integer programs.

The most commonly used technique isbranch-and-bound search. The space ofbranch-and-
bound
search

variable assignments is explored depth-first: first one variable is assigned a value,
then the next, and so on; when a constraint is violated or a complete variable as-
signment is achieved, the search backtracks and tries other assignments. The best
feasible solution found so far is recorded as a lower bound on the value of the op-
timal solution. At each search node thelinear program relaxationof the integerlinear program

relaxation program is solved: this is the linear program where the remaining variables are al-
lowed to take real rather than integral values between the minimum and maximum
values in their domains. It is easy to see that the value of a linear program relax-
ation of an integer program is an upper bound on the value of that integer program,
since it involves a loosening of the latter problem’s constraints. Branch-and-bound
search differs from standard depth-first search because it sometimes prunes the tree.
Specifically, branch-and-bound backtracks whenever the upper bound at a search
node is less than or equal to the lower bound. In this way it can skip over large parts
of the search tree while still guaranteeing that it will find the optimal solution.

Other, more complex techniques for solving integer programs include branch-
and-cut and branch-and-price search. These methods offer no advantage over
branch-and-bound search in the worst case, but often outperform it in practice.

Although they are computationally intractable in the worst case, sometimes inte-
ger programs are provably easy. This occurs when it can be shown that the solution
to the linear programming relaxation is integral, meaning that the integer program
can be solved in polynomial time. One important example is when the constraint
matrix istotally unimodularand the vectorb is integral. A unimodular matrix is atotal

unimodularity

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

B.2 Integer programs 473

square matrix whose determinant is either−1 or 1; a totally unimodular matrix is
one for which every square submatrix is unimodular. This definition implies that
the entries in a totally unimodular matrix can only be−1, 0, and1.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

C Markov Decision Problems (MDPs)

We briefly review the main ingredients of Markov Decision Problems or MDPs,
which, as we discuss in Chapter 6, can be viewed as single-agent stochastic games.
The literature on MDPs is rich, and the reader is referred to the many textbooks on
the subject for further reading.

C.1 The model

An MDP is a model for decision making in an uncertain, dynamic world. The
(single) agent starts out in some state, takes an action, and receives some immediate
rewards. The state then transitions probabilistically to some other state and the
process repeats. Formally speaking, an MDP is a tuple(S,A, p, r). S is a set of
states andA is a set of actions. The functionp : S × A × S 7→ R specifies the
transition probability among states:p(s, a, s′) is the probability of ending in state
s′ when taking actiona in states. Finally, the functionr : S×A 7→ R returns the
reward for each state-action pair.

The individual rewards are aggregated in one of two ways.

The limit-average reward: lim∞
T=1

∑
T
t=1

r(t)

T
, wherer(t) is the reward at timet.

The future-discounted reward:
∑∞

t=1 βr
(t), where0 < β < 1 is the discount

factor.

(The reader will notice that both of these definitions must be refined to account for
cases in which (in the first case) the limit is ill defined, and in which (in the second
case) the sum is infinite. We do not discuss these subtleties here.)

A (stationary, deterministic) policyΠ : S 7→ A maps each state to an action.
For concreteness, in the next section we focus on the future-discounted reward

case.

C.2 Solving known MDPs via value iteration

Every policy yields a reward under either of the reward-aggregation schemes. A
policy that maximizes the total reward is called anoptimal policy. The primaryoptimal policy

476 C Markov Decision Problems (MDPs)

computational challenge associated with MDPs is to find an optimal policy for a
given MDP.

It is possible to use linear programming techniques (see Appendix B) to calculate
an optimal policy for a known MDP in polynomial time. However, we will focus
on an older, dynamic-programming-style method calledvalue iteration. We do sovalue iteration
for two reasons. First, in typical real-world cases of interest, the LP-formulation
of the MDP is too large to solve. Value iteration provides the basis for a number
of more practical solutions, such as those providing approximate solutions to very
large MDPs. Second, value iteration is relevant to the discussion of learning in
MDPs, discussed in Chapter 7.

Value iteration defines a value functionV π : S 7→ R, which specifies the value
of following policy π starting in states. Similarly, we can define a state-action
value functionQπ : S × A 7→ R as a function that captures the value of starting
in states, taking actiona, and then continuing according to policyπ. These two
functions are related to each other by the following pair of equations.

Qπ(s, a) = r(s, a) + β
∑

ŝ

p(s, a, ŝ)V π(ŝ)

V π(s) = Qπ(s, π(s))

For the optimal policyπ∗, the second equation becomesV π∗

(s) = maxaQ
π∗

(s, a)
and the set of equations is referred to as theBellman equations. Note that the opti-Bellman

equations mal policy is easily recovered from the solution to the Bellman equations, specifi-
cally from theQ function; the optimal action in states is arg maxaQ

π∗

(s, a).
The Bellman equations are interesting not only because they characterize the op-

timal policy, but also—indeed, primarily—because they give rise to a procedure for
calculating theQ andV values of the optimal policy, and hence the optimal policy
itself. Consider the following two assignment versions of the Bellman equations.

Qt+1(s, a)← r(s, a) + β
∑

ŝ

p(s, a, ŝ)Vt(ŝ)

Vt(s)← max
a
Qt(s, a)

Given an MDP, and starting with arbitrary initialQ values, we can repeatedly it-
erate these two sets of assignment operators (“sets,” since each choice ofs anda
produces a different instance). It is well known that any “fair" order of iteration
(by which we mean that each instance of the rules is updated after a finite amount
of time) converges on theQ andV values of an optimal policy.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

D Classical Logic

The following is not intended as an introduction to classical logic, but rather as
a review of the concepts and a setting of notation. We start with propositional
calculus and then move to first-order logic. (We do the latter for completeness, but
in fact first-order logic plays almost no role in this book.)

D.1 Propositional calculus

Syntax

Given a setP of propositional symbols, the set of sentences in the propositional
calculus is the smallest setL containingP such that ifϕ,ψ ∈ L then also¬ϕ ∈ L
andϕ ∧ ψ ∈ L. Other connectives such as∨,→, and≡ can be defined in terms
of ∧ and¬.

Semantics

A propositionalinterpretation(or a model) is a setM ⊂ P , the subset of trueinterpretation

model
primitive propositions. The satisfaction relation|= between models and sentences
is defined recursively as follows.

• For anyp ∈ P ,M |= p iff p ∈M .

• M |= ϕ ∧ ψ iff M |= ϕ andM |= ψ.

• M |= ¬ϕ iff it is not the case thatM |= ϕ.

We overload the|= symbol. First, it is used to denotevalidity; |= ϕmeans thatϕvalidity
is true in all propositional models. Second, it is used to denoteentailment; ϕ |= ψ

entailment means that any model that satisfiesϕ also satisfiesψ.

Axiomatics

The following axiom system is sound and complete for the classof all propositional
models:

478 D Classical Logic

A1. A→ (B → A)

A2. (A→ (B → C))→ ((A→ B)→ (A→ C))

A3. (¬A→ ¬B)→ (B → A)

R1 (Modus Ponens).A,A→ B ⊢ B.

D.2 First-order logic

This book makes very little reference to first-order constructs, but we include the
basic material on the first-order logic for completeness.

Syntax

Given a setC of constant symbols,V of variables,F of function symbols each of
a given arity, andR of relation (or predicate) symbols each of a given arity. The
set of terms is the smallest setT such thatC ∪ V ⊂ T , and iff ∈ F is ann-ary
functions symbol andt1, . . . , tn ∈ T then alsof(t1, . . . , tn) ∈ T . The set of
sentences is the smallest setL satisfying the following conditions.

If r is ann-ary relation symbol andt1, . . . , tn ∈ T then r(t1, . . . , tn) ∈ L.
These are the atomic sentences.

If ϕ,ψ ∈ L then also¬ϕ ∈ L andϕ ∧ ψ ∈ L.

If ϕ ∈ L andv ∈ V then∀vϕ ∈ L.

Semantics

A first-order interpretation(or a model) is a tupleM = (D,G,S, µ). D is theinterpretation

model
domain ofM , a set. G is a set of functions from the domain onto itself, each
of a given arity. S is a set of relations over the domain, each of a given arity.
µ is an (overloaded) interpretation function:µ : C ∪ V 7→ D, µ : F 7→ G,
µ : R 7→ S (we assume thatµ respects the arities of the function and relations).
We can liftµ to apply to any term by the recursive definitionµ(f(t1, . . . , tn)) =
µ(f)(µ(t1), . . . , µ(tn)).

The satisfaction relation|= between models and sentences is defined recursively.

• For any atomic sentenceϕ = r(t1, . . . , tn), M |= ϕ iff (µ(t1), . . . , µ(tn)) ∈
µ(r).

• M |= ϕ ∧ ψ iff M |= ϕ andM |= ψ.

• M |= ¬ϕ iff it is not the case thatM |= ϕ.

• M |= ∀vϕ iff M |= ϕ[v/t] for all termst, whereϕ[v/t] denotesϕ with all
free instances ofv replaced byt.

We overload the|= symbol as before.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

D.2 First-order logic 479

Axiomatics

We omit the axiomatics of first-order logic since they play no role at all in this
book.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

Bibliography

Alaei, S., Malekian, A., and Srinivasan, A. (2008). On random sampling auctions
for digital goods. Working Paper.

Alchourron, C. E., Gärdenfors, P., and Makinson, D. (1985). On the logic of theory
change: Partial meet contraction and revision functions.Journal of Symbolic
Logic, 50(2), 510–530.

Allen, J. F., Shubert, L. K., Ferguson, G., Heeman, P., Hwang, C. H., Kato, T.,
Light, M., Martin, N. G., Miller, B. W., Poesio, M., and Traum, D. R. (1995).
The TRAINS project: A case study in building a conversational planning agent.
Journal of Experimental and Theoretical AI,7, 7–48.

Altman, A., and Tennenholtz, M. (2005). Ranking systems: The PageRank axioms.
EC: Proceedings of the ACM Conference on Electronic Commerce(pp. 1–8).

Altman, A., and Tennenholtz, M. (2007). An axiomatic approach to personalized
ranking systems.Technion Israel Institute of Technology Technical Report.

Altman, A., and Tennenholtz, M. (2008). Axiomatic foundations for ranking sys-
tems.JAIR: Journal of Artificial Intelligence Research, 31, 473–495.

Archer, A., and Tardos, E. (2002). Frugal path mechanisms.DA: Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms(pp. 991–999).

Arrow, K. (1977). The property rights doctrine and demand revelation under in-
complete information. Stanford, CA: Institute for Mathematical Studies in the
Social Sciences, Stanford University.

Arrow, K. J. (1970).Social choice and individual values. New Haven, CT: Yale
University Press.

Aumann, R. (1959). Acceptable points in general cooperativen-person games.
Contributions to the Theory of Games, 4, 287–324.

Aumann, R. (1974). Subjectivity and correlation in randomized strategies.Journal
of Mathematical Economics, 1, 67–96.

482 BIBLIOGRAPHY

Aumann, R. (1995). Backward induction and common knowledge of rationality.
GEB: Games and Economic Behavior, 8(1), 6–19.

Aumann, R. (1996). Reply to Binmore.GEB: Games and Economic Behavior,
17(1), 138–146.

Aumann, R. J. (1976). Agreeing to disagree.Annals of Statistics, 4, 1236–1239.

Austin, J. L. (1962).How to do things with words: The William James lectures
delivered at Harvard University in 1955. Oxford: Clarendon.

Austin, J. L. (2006).How to do things with words: The William James lectures
delivered at Harvard University in 1955, 2nd edition. Harvard University Press.

Ausubel, L. M., and Milgrom, P. (2006). Ascending proxy auctions. In [Cramton
et al., 2006], chapter 3, 79–98.

Axelrod, R. (1984).The evolution of cooperation. New York: Basic Books.

Beckmann, M. J., McGuire, C. B., and Winsten, C. B. (1956).Studies in the
economics of transportation. New Haven, CT: Yale University Press.

Bell, D. E. (1982). Regret in decision making under uncertainty.Operations Re-
search, 30, 961–981.

Bellman, R. (1957).Dynamic programming. Princeton, NJ: Princeton University
Press.

Ben-Porath, E. (1990). The complexity of computing a best response automaton
in repeated games with mixed strategies.GEB: Games and Economic Behavior,
2(1), 1–12.

Berg, J., Forsythe, R., Nelson, F., and Rietz, T. (2001). Results from a dozen years
of election futures markets research.Handbook of Experimental Economics Re-
sults.

Berger, U. (2005). Fictitious play in 2×n games.Journal of Economic Theory,
120(2), 139–154.

Bernheim, B. D. (1984). Rationalizable strategic behavior.Econometrica, 52,
1007–1028.

Bertsekas, D. (1982). Distributed dynamic programming.IEEE Transactions on
Automatic Control, 27(3), 610–616.

Bertsekas, D. P. (1991).Linear network optimization: Algorithms and codes. Cam-
bridge, MA: MIT Press.

Bertsekas, D. P. (1992). Auction algorithms for network flow problems: A tutorial
introduction.Computational Optimization and Applications, 1(1), 7–66.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 483

Bhat, N., and Leyton-Brown, K. (2004). Computing Nash equilibria of action-
graph games.UAI: Proceedings of the Conference on Uncertainty in Artificial
Intelligence(pp. 35–42).

Binmore, K. (1996). A note on backward induction.GEB: Games and Economic
Behavior, 17(1), 135–137.

Blackburn, P., de Rijke, M., and Venema, Y. (2002).Modal logic. Cambridge, UK:
Cambridge University Press.

Blackwell, D. (1956). Controlled random walks.Proceedings of the International
Congress of Mathematicians(pp. 336–338). North-Holland.

Blum, B., Shelton, C., and Koller, D. (2006). A continuation method for nash
equilibria in structured games.Journal of Artificial Intelligence Resarch, 25,
457–502.

Border, K. C. (1985).Fixed point theorems with applications to economics and
game theory. Cambridge University Press.

Borodin, A., Roberts, G., Rosenthal, J., and Tsaparas, P. (2005). Link analysis
ranking: Algorithms, theory, and experiments.ACM Transactions on Internet
Technology, 5(1), 231–297.

Boutilier, C. (1992).Conditional logics for default reasoning and belief revision.
Doctoral dissertation, University of Toronto, Toronto, Canada.

Bowling, M., and Veloso, M. (2001). Rational and convergent learning in stochas-
tic games.IJCAI: Proceedings of the International Joint Conference on Artificial
Intelligence(pp. 1021–1026).

Braess, D. (1968). Über ein Paradoxon aus der Verkehrsplanung.Un-
ternehmensforschung, 12, 258–268.

Brafman, R., Halpern, J., and Shoham, Y. (1998). On the knowledge requirements
of tasks.Journal of Artificial Intelligence, 98(1–2), 317–350.

Brafman, R., Latombe, J. C., Moses, Y., and Shoham, Y. (1997). Applications of a
logic of knowledge to motion planning under uncertainty.Journal of the ACM,
44(5), 633–668.

Brafman, R., and Tennenholtz, M. (2002). R-max, a general polynomial time
algorithm for near-optimal reinforcement learning.Journal of Machine Learning
Research, 3, 213–231.

Bratman, M. E. (1987).Intention, plans, and practical reason. Stanford, CA: CSLI
Publications, Stanford University.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

484 BIBLIOGRAPHY

Brewka, G., Niemela, I., and Truszczynski, M. (2007). Nonmonotonic reasoning.
In F. van Harmelen, V. Lifschitz, B. Porter (Eds.),Handbook of knowledge rep-
resentation. St. Louis, MO: Elsevier.

Brouwer, L. E. J. (1912). Über Abbildung von Mannigfaltigkeiten.Mathematische
Annalen, 71, 97–115.

Brown, G. (1951). Iterative solution of games by fictitious play. InActivity analysis
of production and allocation. New York: John Wiley and Sons.

Bulow, J., and Klemperer, P. (1996). Auctions versus negotiations.The American
Economic Review, 86(1), 180–194.

Cassady, R. (1967).Auctions and auctioneering. University of California Press.

Cavallo, R. (2006). Optimal decision-making with minimal waste: Strategyproof
redistribution of VCG payments.AAMAS: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems(pp. 882–889).

Chalkiadakis, G., and Boutilier, C. (2004). Bayesian reinforcement learning for
coalition formation under uncertainty.AAMAS: Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems(pp. 1090–
1097).

Chellas, B. F. (1980).Modal logic: An introduction. Cambridge, UK: Cambridge
University Press.

Chen, X., and Deng, X. (2006). Settling the complexity of 2-player Nash-
equilibrium. FOCS: Proceedings of the Annual IEEE Symposium on Founda-
tions of Computer Science.

Clarke, E. H. (1971). Multipart pricing of public goods.Public Choice, 11, 17–33.

Claus, C., and Boutilier, C. (1998). The dynamics of reinforcement learning in
cooperative multiagent systems.AAAI: Proceedings of the AAAI Conference on
Artificial Intelligence(pp. 746–752).

Cohen, P. R., and Levesque, H. J. (1990). Intention is choice with commitment.
Artificial Intelligence, 42(2–3), 213–261.

Cohen, P. R., and Levesque, H. J. (1991). Teamwork.Noûs, 25(4), 487–512.

Conitzer, V. (2006).Computational aspects of preference aggregation. Doctoral
dissertation, Carnegie Mellon University.

Conitzer, V., and Sandholm, T. (2003a). Complexity of determining nonemptiness
of the core.IJCAI: Proceedings of the International Joint Conference on Artifi-
cial Intelligence.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 485

Conitzer, V., and Sandholm, T. (2003b). Complexity results about Nash equilibria.
IJCAI: Proceedings of the International Joint Conference on Artificial Intelli-
gence(pp. 761–771).

Conitzer, V., and Sandholm, T. (2004). Computing Shapley values, manipulating
value division schemes, and checking core membership in multi-issue domains.
AAAI: Proceedings of the AAAI Conference on Artificial Intelligence.

Conitzer, V., and Sandholm, T. (2005). Complexity of (iterated) dominance.EC:
Proceedings of the ACM Conference on Electronic Commerce(pp. 88–97).

Correa, J. R., Schulz, A. S., and Stier-Moses, N. E. (2005). On the inefficiency
of equilibria in nonatomic congestion games.IPCO: Proceedings of the Confer-
ence on Integer Programming and Combinatorial Optimization(pp. 167–181).

Cramton, P., Shoham, Y., and Steinberg, R. (Eds.). (2006).Combinatorial auctions.
Cambridge, MA: MIT Press.

Crawford, V. P., and Sobel, J. (1982). Strategic information transmission.Econo-
metrica, 50(6), 1431–1451.

Daskalakis, C., Fabrikant, A., and Papadimitriou, C. (2006a). The game world is
flat: The complexity of Nash equilibria in succinct games.ICALP: Proceedings
of the International Colloquium on Automata, Languages and Programming.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2006b). The complex-
ity of computing a Nash equilibrium.STOC: Proceedings of the Annual ACM
Symposium on Theory of Computing.

Daskalakis, C., and Papadimitriou, C. (2006). Computing pure Nash equilibria via
Markov random fields.EC: Proceedings of the ACM Conference on Electronic
Commerce(pp. 91–99).

d’Aspremont, C., and Gérard-Varet, L. (1979). Incentives and incomplete informa-
tion. Journal of Public Economics, 11(1), 25–45.

Davis, R., and Smith, R. G. (1983). Negotiation as a metaphor for distributed
problem solving.Artificial Intelligence, 20, 63–109.

Day, R., and Milgrom, P. (2008). Core-selecting package auctions.International
Journal of Game Theory, 36(3), 393–407.

de Borda, J.-C. C. (1781). Mémoire sur les élections au scrutin.Histoire de
l’Académie Royale des Sciences.

de Condorcet, M. J. A. N. C. (1784). Essay on the application of analysis to the
probability of majority decisions.

Deng, X., and Papadimitriou, C. H. (1994). On the complexity of cooperative
solution concepts.Mathematics of Operations Research, 19, 257.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

486 BIBLIOGRAPHY

Dubins, L., and Freedman, D. (1981). Machiavelli and the Gale-Shapley algorithm.
The American Mathematical Monthly, 88(7), 485–494.

Edelman, B., Schwarz, M., and Ostrovsky, M. (2007). Internet advertising and the
generalized second price auction: Selling billions of dollars worth of keywords.
American Economic Review, 97(1), 242–259.

Elkind, E., Goldberg, L. A., Goldberg, P. W., and Wooldridge, M. (2007). Com-
putational complexity of weighted threshold games.AAAI: Proceedings of the
AAAI Conference on Artificial Intelligence.

Elkind, E., Sahai, A., and Steiglitz, K. (2004). Frugality in path auctions.DA:
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms(pp. 701–
709).

Fabrikant, A., Papadimitriou, C., and Talwar, K. (2004). The complexity of pure
Nash equilibria.STOC: Proceedings of the Annual ACM Symposium on Theory
of Computing.

Fagin, R., and Halpern, J. Y. (1994). Reasoning about knowledge and probability.
Journal of the ACM, 41(2), 340–367.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995).Reasoning about
knowledge. Cambridge, MA: MIT Press.

Faltings, B. (2006). Distributed constraint programming. In F. Rossi, van P. Beek,
T. Walsh (Eds.),Handbook of constraint programming, Foundations of Artificial
Intelligence, 699–729. Elsevier.

Farrell, J. (1987). Cheap talk, coordination, and entry.RAND Journal of Eco-
nomics, 18(1), 34–39.

Farrell, J. (1993). Meaning and credibility in cheap-talk games.GEB: Games and
Economic Behavior, 5(4), 514–531.

Farrell, J. (1995). Talk is cheap.American Economic Review, 85(2), 186–190.
Papers and Proceedings of the Meeting of the American Economic Association.

Farrell, J., and Rabin, M. (1996). Cheap talk.Journal of Economic Perspectives,
10(3), 103–118.

Feigenbaum, J., Krishnamurthy, A., Sami, R., and Shenker, S. (2003). Hardness
results for multicast cost sharing.Theoretical Computer Science, 304(1Ű-3),
215–236.

Feigenbaum, J., Papadimitriou, C. H., and Shenker, S. (2001). Sharing the cost of
multicast transmissions.Journal of Computer System Sciences, 63(1), 21–41.

Feigenbaum, J., Schapira, M., and Shenker, S. (2007). Distributed algorithmic
mechanism design. In [Nisan et al., 2007], chapter 14, 363–384.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 487

Feldman, A. M., and Serrano, R. (2006).Welfare economics and social choice
theory. Kluwer Academic Publishers.

Ferguson, G., and Allen, J. F. (1998). TRIPS: An intelligent integrated problem-
solving assistant.AAAI: Proceedings of the AAAI Conference on Artificial Intel-
ligence(pp. 567–573).

Filar, J., and Vrieze, K. (1997).Competitive Markov decision processes. Springer-
Verlag.

Finin, T., Labrou, Y., and Mayfield, J. (1997). KQML as an agent communication
language. In J. Bradshaw (Ed.),Software agents. Cambridge, MA: MIT Press.

Fitting, M., and Mendelsohn, R. L. (1999).First-order modal logic. New York:
Springer.

Flores, F., Graves, M., Hartfield, B., and Winograd, T. (1988). Computer systems
and the design of organizational interaction.ACM Transactions on Office Infor-
mation Systems, 6(2), 153–172.

Foster, D., and Vohra, R. (1999). Regret in the on-line decision problem.GEB:
Games and Economic Behavior, 29, 7–36.

Fudenberg, D., and Levine, D. (1995). Universal consistency and cautious fictitious
play. Journal of Economic Dynamics and Control, 19, 1065–1089.

Fudenberg, D., and Levine, D. (1999). Conditional universal consistency.GEB:
Games and Economic Behavior, 29, 104–130.

Fudenberg, D., and Levine, D. K. (1998).The theory of learning in games. Cam-
bridge, MA: MIT Press.

Fudenberg, D., and Tirole, J. (1991).Game theory. Cambridge, MA: MIT Press.

Fujishima, Y., Leyton-Brown, K., and Shoham, Y. (1999a). Taming the compu-
tational complexity of combinatorial auctions: Optimal and approximate ap-
proaches.IJCAI: Proceedings of the International Joint Conference on Artificial
Intelligence(pp. 548–553).

Fujishima, Y., McAdams, D., and Shoham, Y. (1999b). Speeding up ascending-bid
auctions.IJCAI: Proceedings of the International Joint Conference on Artificial
Intelligence(pp. 554–563).

Gaertner, W. (2006).A primer in social choice theory. New York: Oxford Univer-
sity Press.

Gale, D., and Shapley, L. S. (1962). College admissions and the stability of mar-
riage.The American Mathematical Monthly, 69(1), 9–15.

Gamow, G., and Stern, M. (1958).Puzzle math. New York: Viking Press.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

488 BIBLIOGRAPHY

García, C. B., and Zangwill, W. I. (1981).Pathways to solutions, fixed points and
equilibria. Englewood Cliffs, NJ: Prentice Hall.

Gärdenfors, P. (1988).Knowledge in flux: Modeling the dynamics of epistemic
states. Cambridge, MA: Bradford Book, MIT Press.

Gärdenfors, P., and Rott, H. (1995). Belief revision. InHandbook of logic in arti-
ficial intelligence and logic programming, vol. 4, 35–132. Oxford, UK: Oxford
University Press.

Geanakoplos, J. (2005). Three brief proofs of Arrow’s impossibility theorem.Eco-
nomic Theory, 26(1), 211–215.

Gibbard, A. (1973). Manipulation of voting schemes: A general result.Economet-
rica, 41, 587–601.

Gilboa, I. (1988). The complexity of computing best-response automata in repeated
games.Journal of Economic Theory, 45, 342–352.

Gilboa, I., Kalai, E., and Zemel, E. (1989).The complexity of eliminating
dominated strategies(Technical Report). Northwestern University, Center for
Mathematical Studies in Economics and Management Science. Available at
http://ideas.repec.org/p/nwu/cmsems/853.html.

Gilboa, I., and Zemel, E. (1989). Nash and correlated equilibria: Some complexity
considerations.GEB: Games and Economic Behavior, 1, 80–93.

Ginsberg, M. L. (Ed.). (1987).Readings in nonmonotonic reasoning. San Fran-
cisco, CA: Morgan Kaufmann Publishers Inc.

Goldberg, A., Hartline, J., Karlin, A., Saks, M., and Wright, A. (2006). Competi-
tive auctions.GEB: Games and Economic Behavior, 55(2), 242–269.

Goldberg, P. W., and Papadimitriou, C. H. (2006). Reducibility among equilibrium
problems. STOC: Proceedings of the Annual ACM Symposium on Theory of
Computing(pp. 61–70).

Gottlob, G., Greco, G., and Scarcello, F. (2003). Pure Nash equilibria: Hard and
easy games.TARK: Proceedings of the ACM Conference on Theoretical Aspects
of Rationality and Knowledge.

Govindan, S., and Wilson, R. (2003). A global Newton method to compute Nash
equilibria. Journal of Economic Theory, 110, 65–86.

Govindan, S., and Wilson, R. (2005a). Essential equilibria.Proceedings of the
National Academy of Sciences USA, 102, 15706–15711.

Govindan, S., and Wilson, R. (2005b). Refinements of Nash equilibrium. In
S. Durlauf, L. Blume (Eds.),The new Palgrave dictionary of economics, vol. II.
New York: Macmillan.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

http://ideas.repec.org/p/nwu/cmsems/853.html

BIBLIOGRAPHY 489

Graham, D., and Marshall, R. (1987). Collusive bidder behavior at single-object
second-price and English auctions.Journal of Political Economy, 95, 579–599.

Gray, J. (1978). Notes on database operating systems. In R. Bayers, R. M. Gra-
ham, G. Seegmuller (Eds.),Operating systems: An advanced course, vol. 66 of
Lecture Notes in Computer Science. New York: Springer-Verlag.

Green, J., and Laffont, J. (1977). Characterization of satisfactory mechanisms for
the revelation of preferences for public goods.Econometrica, 45(2), 427–438.

Grégoire, E., and Konieczny, S. (2006). Special issue on logic-based approaches
to information fusion.Information Fusion, 7(1), 4–18.

Grice, H. P. (1969). Utterer’s meaning and intention.The Philosophical Review,
78, 147–177.

Grice, H. P. (1989).Studies in the way of words. Harvard University Press.

Groves, T. (1973). Incentives in teams.Econometrica, 41(4), 617–31.

Guestrin, C. E. (2003).Planning under uncertainty in complex structured envi-
ronments. Doctoral dissertation, Department of Computer Science, Stanford
University.

Guo, M., and Conitzer, V. (2007). Worst-case optimal redistribution of VCG pay-
ments.EC: Proceedings of the ACM Conference on Electronic Commerce.

Halpern, J. Y. (2005).Reasoning about uncertainty. Cambridge, MA: MIT Press.

Halpern, J. Y., and Moses, Y. (1990). Knowledge and common knowledge in a
distributed environment.Journal of the ACM (JACM),37(3), 549–587.

Hannan, J. F. (1957). Approximation to Bayes risk in repeated plays.Contributions
to the Theory of Games, 3, 97–139.

Hanson, R. (2003). Combinatorial Information Market Design.Information Sys-
tems Frontiers, 5(1), 107–119.

Harsanyi, J. (1967–1968). Games with incomplete information played by
“Bayesian” players, parts I, II and III.Management Science, 14, 159–182, 320–
334, 486–502.

Harstad, R., Kagel, J., and Levin, D. (1990). Equilibrium bid functions for auctions
with an uncertain number of bidders.Economics Letters, 33(1), 35–40.

Hart, S., and Mas-Colell, A. (2000). A simple adaptive procedure leading to corre-
lated equilibrium.Econometrica, 68, 1127–1150.

Hillas, J., and Kohlberg, E. (2002). Foundations of strategic equilibrium. In R. Au-
mann, S. Hart (Eds.),Handbook of game theory, vol. III, chapter 42, 1597–1663.
Amsterdam: Elsevier.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

490 BIBLIOGRAPHY

Hintikka, J. (1962).Knowledge and belief. Ithaca, NY: Cornell University Press.

Hu, J., and Wellman, P. (1998). Multiagent reinforcement learning: Theoretical
framework and an algorithm.Proceedings of the Fifteenth International Confer-
ence on Machine Learning(pp. 242–250).

Hurwicz, L. (1960). Optimality and informational efficiency in resource allocation
processes. In K. Arrow, S. Karlin, P. Suppes (Eds.),Mathematical methods in
the social sciences, 27–46. Stanford, CA: Stanford University Press.

Hurwicz, L. (1972). On informationally decentralized systems. In C. McGuire,
R. Radner (Eds.),Decision and organization, 297–336. London: North-Holland.

Hurwicz, L. (1975). On the existence of allocation systems whose manipulative
Nash equilibria are Pareto optimal. Unpublished.

Hyafil, N., and Boutilier, C. (2004). Regret minimizing equilibria and mechanisms
for games with strict type uncertainty.UAI: Proceedings of the Conference on
Uncertainty in Artificial Intelligence(pp. 268–277).

Ieong, S., and Shoham, Y. (2005). Marginal contribution nets: A compact represen-
tation scheme for coalitional games.EC: Proceedings of the ACM Conference
on Electronic Commerce.

Ieong, S., and Shoham, Y. (2006). Multi-attribute coalitional games.EC: Proceed-
ings of the ACM Conference on Electronic Commerce(pp. 170–179).

Ieong, S., and Shoham, Y. (2008). Bayesian coalitional games.AAAI: Proceedings
of the AAAI Conference on Artificial Intelligence.

Jiang, A. X., and Leyton-Brown, K. (2006). A polynomial-time algorithm for
action-graph games.AAAI: Proceedings of the AAAI Conference on Artificial
Intelligence(pp. 679–684).

Johari, R. (2007). The price of anarchy and the design of scalable resource alloca-
tion mechanisms. In [Nisan et al., 2007], chapter 21, 543–568.

Johari, R., and Tsitsiklis, J. N. (2004). Efficiency loss in a network resource allo-
cation game.Mathematics of Operations Research, 29(3), 407–435.

Johari, R., and Tsitsiklis, J. N. (2005). Communication requirements of VCG-like
mechanisms in convex environments.Allerton Conference on Communication,
Control, and Computing.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning:
A survey.JAIR: Journal of Artificial Intelligence Research, 4, 237–285.

Kalai, E., and Lehrer, E. (1993). Rational learning leads to Nash equilibrium.
Econometrica, 61(5), 1019–1045.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 491

Katsuno, H., and Mendelzon, A. (1991). On the difference between updating a
knowledge base and revising it.KR: Proceedings of the International Confer-
ence on Knowledge Representation and Reasoning(pp. 387–394).

Kearns, M., Littman, M., and Singh, S. (2001). Graphical models for game theory.
UAI: Proceedings of the Conference on Uncertainty in Artificial Intelligence.

Kearns, M., and Singh, S. (1998). Near-optimal reinforcement learning in poly-
nomial time. ICML: Proceedings of the International Conference on Machine
Learning(pp. 260–268).

Kelly, F. P. (1997). Charging and rate control for elastic traffic.European Transac-
tions on Telecommunications, 8, 33–37.

Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment.Journal
of the ACM (JACM),46(5), 604–632.

Klemperer, P. (1999a). Auction theory: A guide to the literature.Journal of Eco-
nomic Surveys, 13(3), 227–286.

Klemperer, P. (Ed.). (1999b).The economic theory of auctions. Edward Elgar.

Knuth, D. E. (1976).Marriages stables. Montreal: Les Presses de I’Universite de
Montreal.

Kohlberg, E., and Mertens, J.-F. (1986). On the strategic stability of equilibria.
Econometrica, 54, 1003–1038.

Koller, D., and Megiddo, N. (1992). The complexity of two-person zero-sum
games in extensive form.GEB: Games and Economic Behavior, 4, 528–552.

Koller, D., Megiddo, N., and von Stengel, B. (1996). Efficient computation of equi-
libria for extensive two-person games.GEB: Games and Economic Behavior, 14,
247–259.

Koller, D., and Milch, B. (2003). Multi-agent influence diagrams for representing
and solving games.GEB: Games and Economic Behavior, 45(1), 181–221.

Koller, D., and Pfeffer, A. (1995). Generating and solving imperfect information
games.IJCAI: Proceedings of the International Joint Conference on Artificial
Intelligence(pp. 1185–1193).

Korf, R. E. (1990). Real-time heuristic search.Artificial Intelligence, 42(2-3),
189–211.

Koutsoupias, E., and Papadimitriou, C. H. (1999). Worst-case equilibria.Proceed-
ings of the 16th annual symposium on Theoretical Aspects of Computer Science
(STACS)(pp. 404–413).

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

492 BIBLIOGRAPHY

Kreps, D., and Wilson, R. (1982). Sequential equilibria.Econometrica, 50, 863–
894.

Kreps, D. M. (1988).Notes on the theory of choice. Boulder, CO: Westview Press.

Krishna, V. (2002).Auction theory. New York: Elsevier Science.

Krishna, V., and Perry, M. (1998).Efficient Mechanism Design(Technical Report).
Pennsylvania State University.

Kuhn, H. (1953). Extensive games and the problem of information.Contributions
to the Theory of Games(pp. 193–216). Princeton, NJ: Princeton University Press.
Reprinted in H. Kuhn (Ed.),Classics in Game Theory, Princeton, NJ: Princeton
University Press, 1997.

La Mura, P. (2000). Game networks.UAI: Proceedings of the Conference on
Uncertainty in Artificial Intelligence(pp. 335–342).

Lamarre, P., and Shoham, Y. (1994). Knowledge, certainty, belief, and condition-
alisation.KR: Proceedings of the International Conference on Knowledge Rep-
resentation and Reasoning(pp. 415–424).

Lehmann, D., Müller, R., and Sandholm, T. (2006). The winner determination
problem. In [Cramton et al., 2006], chapter 12, 297–318.

Lehmann, D., O’Callaghan, L., and Shoham, Y. (2002). Truth revelation in ap-
proximately efficient combinatorial auctions.JACM: Journal of the ACM, 49(5),
577–602.

Lemke, C. (1978). Some pivot schemes for the linear complementarity problem.
Mathematical Programming Study, 7, 15–35.

Lemke, C., and Howson, J. (1964). Equilibrium points of bimatrix games.Society
for Industrial and Applied Mathematics Journal of Applied Mathematics, 12,
413–423.

Littman, M., Ravi, N., Talwar, A., and Zinkevich, M. (2006). An efficient opti-
mal equilibrium algorithm for two-player game trees.UAI: Proceedings of the
Conference on Uncertainty in Artificial Intelligence.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforce-
ment learning.Proceedings of the 11th International Conference on Machine
Learning(pp. 157–163).

Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games.ICML:
Proceedings of the International Conference on Machine Learning.

Littman, M. L., and Szepesvari, C. (1996). A generalized reinforcement-learning
model: Convergence and applications.Proceedings of the 13th International
Conference on Machine Learning(pp. 310–318).

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 493

Loomes, G., and Sugden, R. (1982). Regret theory: An alternative theory of ratio-
nal choice under uncertainty.Economic Journal, 92, 805–824.

Luce, R., and Raiffa, H. (1957a).Games and decisions. New York: John Wiley
and Sons.

Luce, R. D., and Raiffa, H. (1957b).Games and decisions: Introduction and
critical survey. New York: John Wiley and Sons.

Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995).Microeconomic theory.
Oxford: Oxford University Press.

Maynard-Reid, P., and Shoham, Y. (2001). Belief fusion: Aggregating pedigreed
belief states.Journal of Logic, Language and Information, 10(2), 183–209.

Maynard Smith, J. (1982).Evolution and the theory of games. Cambridge Univer-
sity Press.

Maynard Smith, J., and Price, G. R. (1973). The logic of animal conflict.Nature,
246, 15–18.

Maynard-Zhang, P., and Lehmann, D. (2003). Representing and aggregating con-
flicting beliefs.JAIR: Journal of Artificial Intelligence Research, 19, 155–203.

McAfee, R., and MacMillan, J. (1987). Auctions and bidding.Journal of Economic
Literature, 25(3), 699–738.

McAfee, R., and McMillan, J. (1987). Auctions with a stochastic number of bid-
ders.Journal of Economic Theory, 43, 1–19.

McAfee, R., and McMillan, J. (1992). Bidding rings.American Economic Review,
82, 579–599.

McCarthy, J. (1994). A programming language
based on speech acts. Stanford University,
http://www-formal.stanford.edu/jmc/elephant/elephant.html.

McGrew, R., and Shoham, Y. (2004). Using contracts to influence the outcome of
a game.AAAI: Proceedings of the AAAI Conference on Artificial Intelligence
(pp. 238–244).

McKelvey, R., and McLennan, A. (1996). Computation of equilibria in finite
games.Handbook of Computational Economics, 1, 87–142.

McKelvey, R. D., McLennan, A. M., and Turocy, T. L. (2006). Gambit: Software
tools for game theory.http://econweb.tamu.edu/gambit.

Megiddo, N., and Papadimitriou, C. (1991). A note on total functions, existence
theorems, and computational complexity.Theoretical Computer Science, 81(1),
317–324.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www-formal.stanford.edu/jmc/elephant/elephant.html
http://econweb.tamu.edu/gambit
http://www.masfoundations.org

494 BIBLIOGRAPHY

Meisels, A. (2008).Distributed search by constrained agents. Springer-Verlag.

Meyer, J.-J. C., van der Hoek, W., and van Linder, B. (1999). A logical approach
to the dynamics of commitments.Artificial Intelligence, 113(1-2), 1–40.

Milgrom, P., and Weber, R. (1982). A theory of auctions and competitive bidding.
Econometrica, 50(5), 1089–1122.

Milgrom, P., and Weber, R. (2000). A theory of auctions and competitive bidding,
II. In P. Klemperer (Ed.),The economic theory of auctions. Edward Elgar.

Milgrom, P. R. (1981). Rational expectations, information acquisition, and com-
petitive bidding.Econometrica, 49, 921–943.

Monderer, D., and Shapley, L. (1996a). Potential games.GEB: Games and Eco-
nomic Behavior, 14, 124–143.

Monderer, D., and Shapley, L. S. (1996b). Fictitious play property for games with
identical interests.Journal of Economic Theory, 1, 258–265.

Monderer, D., and Tennenholtz, M. (2003).k-implementation.EC: Proceedings
of the ACM Conference on Electronic Commerce(pp. 19–28). San Diego, CA:
ACM Press.

Monderer, D., and Tennenholtz, M. (2006). Strong mediated equilibrium.AAAI:
Proceedings of the AAAI Conference on Artificial Intelligence.

Moore, R. C. (1985). A formal theory of knowledge and action. InFormal theories
of the commonsense world. Ablex Publishing Corporation.

Moulin, H. (1994). Social choice. In R. Aumann, S. Hart (Eds.),Handbook of
game theory with economic applications, vol. II. New York: Elsevier.

Muller, E., and Satterthwaite, M. (1977). The equivalence of strong positive asso-
ciation and strategy-proofness.Journal of Economic Theory, 14, 412–418.

Müller, R. (2006). Tractable cases of the winner determination problem. In [Cram-
ton et al., 2006], chapter 13, 319–336.

Myerson, R. (1978). Refinements of the Nash equilibrium concept.International
Journal of Game Theory, 7, 73–80.

Myerson, R. (1979). Incentive compatibility and the bargaining problem.Econo-
metrica, 47(1), 61–73.

Myerson, R. (1981). Optimal auction design.Mathematics of Operations Research,
6(1), 58–73.

Myerson, R. (1982). Optimal coordination mechanisms in generalized principal-
agent models.Journal of Mathematical Economics, 11, 67–81.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 495

Myerson, R. (1986). Multistage games with communication.Econometrica, 54(2),
323–358.

Myerson, R. (1991).Game theory: Analysis of conflict. Harvard Press.

Myerson, R. (2007). Virtual utility and the core for games with incomplete infor-
mation.Journal of Economic Theory, 136(1), 260–285.

Myerson, R., and Satterthwaite, M. (1983). Efficient mechanisms for bilateral
trading.Journal of Economic Theory, 29(2), 265–281.

Nachbar, J. (1990). Evolutionary selection dynamics in games: Convergence and
limit properties.International Journal of Game Theory, 19, 59–89.

Nachbar, J. H., and Zame, W. R. (1996). Non-computable strategies and discounted
repeated games.Journal of Economic Theory, 8(1), 103–122.

Nanson, E. J. (1882). Methods of election.Transactions and Proceedings of the
Royal Society of Victoria, 18, 197–240.

Nash, J. (1950). Equilibrium points inn-person games.Proceedings of the Na-
tional Academy of Sciences USA, 36, 48–49. Reprinted in H. Kuhn (Ed.),Clas-
sics in Game Theory, Princeton, NJ: Princeton University Press, 1997.

Nash, J. (1951). Non-cooperative games.Annals of Mathematics, 54, 286–295.

Neyman, A. (1985). Bounded complexity justifies cooperation in finitely repeated
prisoner’s dilemma.Economic Letters, 227–229.

Neyman, A., and Sorin, S. (2003).Stochastic games and applications. Kluwer
Academic Press.

Nisan, N. (2006). Bidding languages for combinatorial auctions. In [Cramton et al.,
2006], chapter 9, 215–232.

Nisan, N. (2007). Introduction to mechanism design (for computer scientists). In
[Nisan et al., 2007], chapter 9, 209–242.

Nisan, N., and Ronen, A. (2001). Algorithmic mechanism design.GEB: Games
and Economic Behavior, 35(1-2), 166–196.

Nisan, N., and Ronen, A. (2007). Computationally feasible VCG mechanisms.
JAIR: Journal of Artificial Intelligence Research, 29, 19–47.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. (Eds.). (2007).Algorith-
mic game theory. Cambridge, UK: Cambridge University Press.

Nudelman, E., Wortman, J., Shoham, Y., and Leyton-Brown, K. (2004). Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms.
AAMAS: Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems(pp. 880–887).

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

496 BIBLIOGRAPHY

Osborne, M. J., and Rubinstein, A. (1994).A course in game theory. Cambridge,
MA: MIT Press.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998).The PageRank citation
ranking: Bringing order to the web(Technical Report). Stanford Digital Library
Technologies Project.

Papadimitriou, C. (2005). Computing correlated equilibria in multiplayer games.
STOC: Proceedings of the Annual ACM Symposium on Theory of Computing.

Papadimitriou, C., and Yannakakis, M. (1994). On bounded rationality and com-
putational complexity.STOC: Proceedings of the Annual ACM Symposium on
Theory of Computing(pp. 726–733).

Papadimitriou, C. H. (1992). On players with a bounded number of states.GEB:
Games and Economic Behavior, 4(1), 122–131.

Papadimitriou, C. H. (1994). On the complexity of the parity argument and other
inefficient proofs of existence.Journal of Computer and System Sciences, 48(3),
498–532.

Pappas, P. (2007). Belief revision. In F. van Harmelen, V. Lifschitz, B. Porter
(Eds.),Handbook of knowledge representation. St. Louis, MO: Elsevier.

Parikh, P. (2001).The use of language. Stanford, CA: CSLI Publications.

Parkes, D. (2001).Iterative combinatorial auctions: Achieving economic and com-
putational efficiency. Doctoral dissertation, University of Pennsylvania.

Parkes, D. C. (2006). Iterative combinatorial auctions. In [Cramton et al., 2006],
chapter 2, 41–78.

Parkes, D. C., and Ungar, L. H. (2000). Iterative combinatorial auctions: Theory
and practice.AAAI: Proceedings of the AAAI Conference on Artificial Intelli-
gence(pp. 74–81).

Pauly, M. (2002). A modal logic for coalitional power in games.Logic and Com-
putation, 12(1), 149–166.

Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection.
Econometrica, 52, 1029–1050.

Peirce, C., Hartshorne, C., and Weiss, P. (1965).Collected papers of Charles
Sanders Peirce. Cambridge, MA: Harvard University Press.

Peleg, B., and Sudhölter, P. (2003).Introduction to the theory of cooperative games.
Kluwer Academic Publishers.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 497

Pennock, D. (2004). A dynamic pari-mutuel market for hedging, wagering, and
information aggregation.EC: Proceedings of the ACM Conference on Electronic
Commerce.

Pigou, A. C. (1920).The economics of welfare. Macmillan.

Poole, D., Mackworth, A., and Goebel, R. (1997).Computational intelligence: A
logical approach. Oxford, UK: Oxford University Press.

Porter, R., Nudelman, E., and Shoham, Y. (2004a). Simple search methods for find-
ing a Nash equilibrium.AAAI: Proceedings of the AAAI Conference on Artificial
Intelligence(pp. 664–669).

Porter, R., Shoham, Y., and Tennenholtz, M. (2004b). Fair imposition.Journal of
Economic Theory, 118(2), 209–228.

Powers, R., and Shoham, Y. (2005a). Learning against opponents with bounded
memory.IJCAI: Proceedings of the International Joint Conference on Artificial
Intelligence.

Powers, R., and Shoham, Y. (2005b). New criteria and a new algorithm for learning
in multi-agent systems. InAdvances in Neural Information Processing Systems
17. MIT Press.

Rabin, M. (1990). Communication between rational agents.Journal of Economic
Theory, 51(1), 144–170.

Rao, A. S., and Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture.KR: Proceedings of the International Conference on Knowledge
Representation and Reasoning(pp. 473–484).

Rao, A. S., and Georgeff, M. P. (1998). Decision procedures for BDI logics.Logic
and Computation, 8(3), 293–342.

Rastegari, B., Condon, A., and Leyton-Brown, K. (2007). Revenue monotonicity in
combinatorial auctions.AAAI: Proceedings of the AAAI Conference on Artificial
Intelligence(pp. 122–127).

Riley, J., and Samuelson, W. (1981). Optimal auctions.The American Economic
Review, 71(3), 381–392.

Roberts, K. (1979). The characterization of implementable choice rules.Aggrega-
tion and Revelation of Preferences, 321–348.

Robinson, J. (1951). An iterative method of solving a game.Annals of Mathemat-
ics, 54, 298–301.

Rosenthal, R. (1981). Games of perfect information, predatory pricing and the
chain-store paradox.Journal of Economic Theory, 25(1), 92–100.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

498 BIBLIOGRAPHY

Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilib-
ria. International Journal of Game Theory, 2, 65–67.

Roth, A. E. (1984). The evolution of the labor market for medical interns and
residents: A case study in game theory.Journal of Political Economy, 92, 991–
1016.

Roth, A. E., and Sotomayor, M. A. O. (1990).Two-sided matching: A study in
game-theoretic modeling and analysis. Cambridge University Press.

Roughgarden, T. (2005).Selfish routing and the price of anarchy. Cambridge, MA:
MIT Press.

Roughgarden, T., and Tardos, E. (2004). Bounding the inefficiency of equilibria
in nonatomic congestion games.GEB: Games and Economic Behavior, 47(2),
389–403.

Rubinstein, A. (1998).Modeling bounded rationality. Cambridge, MA: MIT Press.

Rubinstein, A. (2000).Economics and language: Five essays. Cambridge Univer-
sity Press.

Russell, S., and Norvig, P. (2003).Artificial intelligence: A modern approach, 2nd
edition. Englewood Cliffs, NJ: Prentice Hall.

Sandholm, T. (2006). Optimal winner determination algorithms. In [Cramton et al.,
2006], chapter 14, 337–368.

Sandholm, T., and Boutilier, C. (2006). Preference elicitation in combinatorial
auctions. In [Cramton et al., 2006], chapter 10, 233–264.

Sandholm, T. W. (1993). An implementation of the contract net protocol based on
marginal cost calculations.Proceedings of the 12th International Workshop on
Distributed Artificial Intelligence(pp. 295–308).

Sandholm, T. W. (1998). Contract types for satisficing task allocation: I Theoretical
results.AAAI: Proceedings of the AAAI Conference on Artificial Intelligence.

Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions: Existence
and correspondence theorems for voting procedures and social welfare functions.
Journal of Economic Theory, 10, 187–217.

Savage, L. J. (1954).The foundations of statistics. New York: John Wiley and
Sons. (2nd edition, Mineola, NY: Dover Press, 1972).

Savani, R., and von Stengel, B. (2004). Exponentially many steps for finding a
Nash equilibrium in a bimatrix game.FOCS: Proceedings of the Annual IEEE
Symposium on Foundations of Computer Science(pp. 258–267).

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 499

Scarf, H. (1967). The approximation of fixed points of continuous mappings.SIAM
Journal of Applied Mathematics, 15, 1328–1343.

Schelling, T. C. (1960).The strategy of conflict. Cambridge, MA: Harvard Univer-
sity Press.

Schmeidler, D. (1973). Equilibrium points of nonatomic games.Journal of Statis-
tical Physics, 7(4), 295–300.

Schummer, J., and Vohra, R. V. (2007). Mechanism design without money. In
[Nisan et al., 2007], chapter 10, 243–265.

Schuster, P., and Sigmund, K. (1982). Replicator dynamics.Theoretical Biology,
100, 533–538.

Searl, J. R. (1979).Expression and meaning: Studies in the theory of speech acts.
London: Cambridge University Press.

Segal, I. (2006). The communication requirements of combinatorial allocation
problems. In [Cramton et al., 2006], chapter 11, 265–295.

Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nach-
frageträgheit.Zeitschrift fur die gesamte Staatswissenschaft, 12, 301–324.

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points
in extensive games.International Journal of Game Theory, 4, 25–55.

Shapley, L. (1964). Some topics in two-person games. In M. Drescher, L. Shapley,
A. Tucker (Eds.),Advances in game theory. Princeton, NJ: Princeton University
Press.

Shapley, L. (1974).A note on the Lemke-Howson algorithm. RAND.

Shapley, L. S. (1953). Stochastic games.Proceedings of the National Academy of
Sciences, 39, 1095–1100.

Shoham, Y. (1993). Agent oriented programming.Artificial Intelligence, 60(1),
51–92.

Shoham, Y. (1997).Rational programming(Technical Report). Stanford Univer-
sity Computer Science Department, Stanford, CA.

Shoham, Y., Powers, W. R., and Grenager, T. (2007). If multiagent learning is the
answer, what is the question?Artificial Intelligence, 171(1). Special issue on
foundations of multiagent learning.

Shoham, Y., and Tennenholtz, M. (1995). On social laws for artificial agent soci-
eties: Off-line design.Artificial Intelligence, 73(1-2), 231–252.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

500 BIBLIOGRAPHY

Shoham, Y., and Tennenholtz, M. (1997). On the emergence of social conventions:
Modeling, analysis and simulations.Journal of Artificial Intelligence, 94(1-2),
139–166.

Singh, M. P. (1992). A critical examination of the Cohen–Levesque theory of inten-
tions. ECAI: Proceedings of the European conference on Artificial intelligence
(pp. 364–368).

Smith, J. H. (1973). Aggregation of preferences with variable electorate.Econo-
metrica, 41, 1027–1041.

Smith, R. G. (1980). The contract net protocol: High-level communication and
control in a distributed problem solver.IEEE Transactions on Computers, C-
29(12), 1104–1113.

Solan, E., and Vohra, R. (2002). Correlated equilibrium payoffs and public sig-
nalling in absorbing games.International Journal of Game Theory, 31, 91–121.

Spann, M., and Skiera, B. (2003). Internet-based virtual stock markets for business
forecasting.Management Science, 49(10), 1310–1326.

Spence, A. M. (1973). Job market signaling.Quarterly Journal of Economics, 87,
355–374.

Sperner, E. (1928). Neuer Beweis fur die Invarianz der Dimensionszahl und des
Gebietes.Abhandlungen aus dem Mathematischen Seminar der Hamburgischen
Universität, 6, 265–272.

Stalnaker, J. M. (1953). The matching program for intern replacement: The second
year of operation.Journal of Medical Education, 28, 13–19.

Suijs, J., Borm, P., Wagenaere, A. D., and Tijs, S. (1999). Cooperative games with
stochastic payoffs.European Journal of Operations Research, 113, 193–205.

Taylor, P., and Jonker, L. B. (1978). Evolutionarily stable strategies and game
dynamics.Mathematical Biosciences, 40, 145–156.

van Benthem, J. (1997).Exploring logical dynamics. Stanford, CA: Center for the
Study of Language and Information.

van der Hoek, W., and Pauly, M. (2006). Modal logic for games and information.
In P. Blackburn, van J. Benthem, F. Wolter (Eds.),Handbook of modal logic, 3.
St. Louis, MO: Elsevier.

van der Hoek, W., and Wooldridge, M. (2003). Towards a logic of rational agency.
Logic Journal of the IGPL, 11(2), 135–159.

Varian, H. (2007). Position auctions.International Journal of Industrial Organiza-
tion, 25(6), 1163–1178.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

BIBLIOGRAPHY 501

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders.
The Journal of Finance, 16(1), 8–37.

Vlassis, N., Elhorst, R., and Kok, J. (2004). Anytime algorithms for multiagent de-
cision making using coordination graphs.SMC: IEEE Transactions on Systems,
Man, and Cybernetics. The Hague, The Netherlands.

Vohra, R., and Wellman, M. P. (Eds.). (2007).Special issue on foundations of
multiagent learning, vol. 171. New York: Elsevier.

von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele.Mathematische
Annalen, 100, 295–320.

von Neumann, J., and Morgenstern, O. (1944).Theory of games and economic
behavior. Princeton, NJ: Princeton University Press.

von Neumann, J., and Morgenstern, O. (1947).Theory of games and economic
behavior, 2nd edition. Princeton, NJ: Princeton University Press.

von Stackelberg, H. F. (1934).Marktform und Gleichgewicht (market and equilib-
rium). Vienna: Julius Springer.

von Stengel, B. (1996). Efficient computation of behavior strategies.GEB: Games
and Economic Behavior, 14, 220–246.

von Stengel, B. (2002). Computing equilibria for two-person games. In R. Au-
mann, S. Hart (Eds.),Handbook of game theory, vol. III, chapter 45, 1723–1759.
Amsterdam: Elsevier.

Vu, T., Powers, R., and Shoham, Y. (2006). Learning against multiple opponents.
AAMAS: Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems.

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research.Proceed-
ings of the Institute of Civil Engineers, Pt. II(pp. 325–378).

Watkins, C. J. (1989).Learning from delayed rewards. Doctoral dissertation, Cam-
bridge University.

Watkins, C. J. C. H., and Dayan, P. (1992). Technical note: Q-learning.Machine
Learning, 8, 279–292.

Wellman, M. P. (1993). A market-oriented programming environment and its appli-
cation to distributed multicommodity flow problems.JAIR: Journal of Artificial
Intelligence Research, 1, 1–23.

Wellman, M. P., Walsh, W. E., Wurman, P. R., and MacKie-Mason, J. K. (2001).
Auction protocols for decentralized scheduling.GEB: Games and Economic
Behavior, 35(1-2), 271–303.

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

502 BIBLIOGRAPHY

Williams, S. (1999). A characterization of efficient, Bayesian incentive compatible
mechanisms.Economic Theory, 14(1), 155–180.

Wilson, R. (1969). Competitive bidding with disparate information.Management
Science, 15(7), 446–448.

Wilson, R. (1987a). Auction theory. In J. Eatwell, M. Milgate, P. Newman (Eds.),
The new Palgrave dictionary of economics, vol. I. London: Macmillan.

Wilson, R. (1987b). Game-theoretic approaches to trading processes.Advances in
Economic Theory: Fifth World Congress(pp. 33–77).

Winograd, T., and Flores, C. F. (1986).Understanding computers and cognition:
A new foundation for design. Ablex Publishing Corporation.

Wooldridge, M. (2000).Reasoning about rational agents. Cambridge, MA: The
MIT Press.

Wurman, P., Wellman, M., and Walsh, W. (2001). A parametrization of the auction
design space.GEB: Games and Economic Behavior, 35(1-2), 304–338.

Yokoo, M. (1994). Weak-commitment search for solving constraint satisfaction
problems.AAAI: Proceedings of the AAAI Conference on Artificial Intelligence
(pp. 313–318).

Yokoo, M. (2001).Distributed constraint satisfaction: Foundations of cooperation
in multi-agent systems. Springer-Verlag.

Yokoo, M. (2006). Pseudonymous bidding in combinatorial auctions. In [Cramton
et al., 2006], chapter 7, 161–188.

Yokoo, M., and Hirayama, K. (2000). Algorithms for distributed constraint satis-
faction: A review. AAMAS: Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems(pp. 185–207).

Yokoo, M., and Ishida, T. (1999). Search algorithms for agents. In G. Weiss
(Ed.), Multiagent systems: A modern approach to distributed artificial intelli-
gence, 165–200. Cambridge, MA: MIT Press.

Young, H. P. (2004).Strategic learning and its limits. Oxford University Press.

Zermelo, E. F. F. (1913). Über eine Anwendung der Mengenlehre auf die Theorie
des Schachspiels.Fifth International Congress of Mathematicians, II, 501–504.

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Index

ǫ-Nash equilibrium,85, 85–87, 189, 214,
215

ǫ-competitive equilibrium,35, 36
ǫ-core,394, 395, 396

absolute continuity,212, 213, 214
absorbing state,208
ABT algorithm,10, 11–13, 16–18
accessibility relation, 411,414, 415, 416,

418–421, 430, 431, 434, 460
achievable match,319
achievement goal,460, 462, 463
action, 1, 19, 22, 24–27, 46–49, 54, 55,

56, 57–64, 72, 73, 77, 78, 80, 81, 84,
85, 89, 90, 94–98, 102–106, 108, 112–
114, 117–119, 121, 122, 124–126, 128,
130, 131, 133–139, 143, 147, 149, 151,
152, 154, 155, 160–163, 166–168, 170,
171, 173–181, 183–192, 195, 197, 199–
202, 206–209, 216–221, 223–228, 231,
235–237, 239, 240, 248, 250, 274–277,
284, 311, 322, 325, 332, 373, 383, 407,
427–429, 454, 458, 459, 461, 463

action graph,190, 191, 192, 197
action profile,56, 57, 61, 72, 77, 78, 113,

154, 160, 162, 169, 174, 176–179, 187,
189–191, 206, 208, 217–220, 276, 277,
284

action-graph game (AGG), 185, 190,191,
197

activity rule, 363, 374
additive game,386
admissible heuristic,21, 22
advisor-optimal matching,318
affiliated values,350, 373
affine independence,65
affine maximizer,304, 305
agency,457

agent-based simulation, 224, 230,231
Agent-Oriented Programming (AOP),251,

252
AGM postulate,445, 446, 447, 449, 450
AGoal, 460, 462
AGV mechanism,seeArrow; d’Aspremont–

Gérard-Varet (AGV) mechanism
algorithmic mechanism design,307, 309,

327
all-or-nothing bid,351
alpha-beta pruning, 125–128, 172
alternativeness relation,414
anonymity,174, 191, 232, 270
anonymous learning rule,232
Anti-Coordination game,208, 209, 227
anytime property,28
appeal function,306
approval voting,257, 267, 270
arc consistency,5
Arrow’s impossibility theorem,260
Arrow; d’Aspremont–Gérard-Varet (AGV)

mechanism,302, 303, 327
ascending combinatorial auction,375
ascending-auction algorithm,41, 43
assignment problem,30, 31, 32, 35–39
asymmetric auction,343
asymptotically stable state,226, 227, 228,

230
asynchronous backtracking,seeABT algo-

rithm
asynchronous dynamic programming, 19,20,

21
asynchronous forward checking,17
atomic bid,369, 370–372
auction

ascending combinatorial,seeascending
combinatorial auction

combinatorial,seecombinatorial auction

504 Index

continuous double,seecontinuous dou-
ble auction

Dutch,seeDutch auction
elimination,seeelimination auction
English,seeEnglish auction
first-price,seefirst-price auction
generalized first-price,seegeneralized first-

price auction
generalized second-price,seegeneralized

second-price auction
Japanese,seeJapanese auction
auction
kth-price auction,seekth-price auction

multiunit, seemultiunit auction
optimal,seeoptimal auction
periodic double,seeperiodic double auc-

tion
position,seeposition auction
random sampling,seerandom sampling

auction
reverse,seereverse auction
sealed-bid,seesealed-bid auction
second-price,seesecond-price auction
simultaneous ascending,seesimultane-

ous ascending auction
two-sided,seetwo-sided auction
Vickrey, seesecond-price auction

auction theory,274, 329–381
autocompatibility,222
average reward,150, 151–153, 160–162, 200

babbling equilibrium,237
Backoff game, 54
backward induction,121, 124, 125–129, 145,

149, 156, 172, 194,443
balanced game,325
balanced matrix,366
balanced set,392, 393
Barcan formula,416
bargaining set, 407
Battle of the Sexes game,58, 59, 63, 73, 83,

165
Bayes’ rule, 143, 144, 211, 240,468
Bayes–Nash equilibrium,170, 173, 276, 277,

279, 280, 302, 335, 336
ex post, see ex postequilibrium

Bayes–Nash incentive compatibility,278, 302
Bayesian game, 55, 84, 88, 148,163, 164,

165, 166,167, 168–170, 172, 173, 196,

201, 241, 274–277, 280, 284, 333, 359,
440

Bayesian game setting,275, 276, 284
Bayesian learning,211
Bayesian updating,211, 212–215
BDI theories, 245,455
behavioral strategy

extensive-form game, 132–134, 137, 138
stochastic game,161

belief
arbitration, 448,450, 453
contraction,448, 453
expansion,448, 453
fusion, 253, 442, 448, 450, 451,452, 453,

463
revision, 129, 432–434,442, 443–448,

450, 453, 463
self-coherent,seeself-coherent belief
update, 211, 442,448, 449, 463

belief set, 445,450
belief state, 448,450, 451, 452

dominating,452, 453
pedigreed,451, 452

Bellman equations, 22,476
best response,62, 63, 64, 74, 75, 77–79, 81,

82, 85, 86, 90, 94–97, 106, 119, 122,
129, 132, 138, 139, 142, 143, 151, 152,
154, 158, 159, 169–171, 176, 178, 201,
202, 204–206, 212–214, 221–223, 226,
228, 230, 236, 240, 310, 333, 336, 340

in a Bayesian game,169, 170, 171, 236,
240, 310, 333, 336, 340

bidding language,356, 368, 370–373, 375,
381

all-or-nothing bid,seeall-or-nothing bid
atomic bid,seeatomic bid
divisible bid,seedivisible bid
OR bid,seeOR bid
OR* bid, seeOR* bid
OR-of-XOR bid,seeOR-of-XOR bid
XOR bid,seeXOR bid

bidding ring,345, 346–348
bidding rule,29, 277, 331
bijective,70
Borda voting,257, 258–260, 271
bounding query,375
Braess’ paradox,183, 196
branch-and-bound search,472
Brouwer’s fixed-point theorem,69, 70

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Index 505

budget balance,286, 287, 295–297, 300–
302, 312–314, 327, 346, 348, 353, 357,
358, 364, 379, 388, 389, 391

ex ante, 286
strict, 388
weak,286, 287, 296, 297, 302, 353, 357,

358, 364, 388

call market,377, 378, 379
capability, 454,457
cartel,345, 346, 347
Centipede game,129, 145, 149
centroid,68, 70
characteristic function,384, 389
Chernoff bounds,219
chess, 13, 20, 125, 128, 145, 153, 222
Chicken game,202
choice rule, 264,284, 303, 304
choice-set monotonicity,295, 296
chronological backtracking,9
Church–Rosser property,80
Clarke tax,293
click-through rate,360, 361
coalition logic, 453,454, 464
coalitional game

in partition form, 406
with nontransferable utility, 405, 406
with transferable utility, 384

coalitional game theory,47, 313, 383–408,
454

coalitional structure, 386, 387,406, 407
collusion, 298,345, 347, 364, 374, 380
combinatorial auction, 326, 329, 359,363,

361–377, 380, 394
commitment, 27, 326, 351, 363, 378, 456,

457, 460
common belief, 92,430, 441, 462, 463

probabilistic, 441
common knowledge, 129, 150, 163, 167,

172, 244, 305, 322, 342, 409, 420,422,
423, 427–429, 440, 441, 461, 462

common prior, 163–165, 167, 333,438, 439,
440

common value,348, 350, 380
common-payoff game,57, 58, 61, 245, 246
common-prior assumption,164, 442
compactness,68, 70–72
compensation and penalty mechanism,308,

309

competitive equilibrium,31, 32, 33, 35,38,
39–41, 43,310, 311

ǫ-, seeǫ-competitive equilibrium
complementarity,38, 362
complementarity condition,94, 96
completely labeled subsimplex,66, 67, 68,

70
concurrent dynamic backtracking,17
conditional probability, 194, 446,468
conditional strategy,26
conditional strict dominance,103
conditional utility independence,284
Condorcet condition,254, 255, 256, 258
Condorcet winner,255, 256, 258
configuration (of an action-graph game),191,

192
congestion game, 148,174, 175–181, 183,

186, 191, 196
nonatomic, 178–181, 183, 196

consecutive ones property,366
consistency, 205,418, 430, 432, 448
constant-sum game

coalitional,386, 393
noncooperative,57, 58

constraint satisfaction problem (CSP),2, 3–
5, 7, 8, 10, 12, 13, 18, 93, 189, 470

continuous double auction (CDA),377, 379
contract

cluster,28
multiagent,28
swap,28

contract net,28, 29, 30, 46
contraction,seebelief contraction
convergence,203
conversational implicature,244, 245
convex combination,65
convex game,386, 387, 393, 394, 404
convexity,65
cooperative principle,243, 247
Coordination game, 57, 105, 165, 201, 236
coordination graph, 27
core, 325, 383,391, 392–396, 398–403, 405–

408
correlated equilibrium, 83,84, 113, 114, 187,

204
cumulative voting,257

default reasoning,443
defeasible,431
degenerate game, 96

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

506 Index

demand curve, 310
demand query,374
descendant, 118, 122
descriptive theory,203
desire, 245, 455,457, 458, 464
detail-free auction,344, 358
dialog system,248, 252, 456
direct mechanism,277, 278, 279, 285, 289,

320, 321, 333, 373, 374, 376
disambiguation,245
discriminatory pricing rule,351
divisible bid,351
dominance solvable,seesolvable by iter-

ated elimination
dominant strategy, 79, 107, 132, 150, 153,

156, 173, 181, 183, 200, 235, 240, 276–
280, 289–291, 293, 297, 302–304, 307,
319–321, 324, 325, 327, 333–335, 341,
343, 347, 349, 354, 361, 374, 394, 443,
454

dominated strategy, 78,79, 80–82, 86, 88,
89, 108, 109, 112, 115, 210, 454

domination
strict,78, 81, 110, 111
very weak,79, 81, 109, 111
weak,78, 81, 109, 111

double auction, 329,377
dual operator,414
dual problem, 33,470, 471
dummy player,389
Dutch auction,331, 335, 352, 354

multiunit, 352
dynamic programming, 19,20, 21, 46, 366

E3 algorithm,219, 234
economic efficiency,seeefficiency
efficiency,285, 287, 288, 290, 301–303, 305,

311–314, 337, 343, 344, 373, 377
coalitional, 388, 389, 394, 395

elimination auction,331, 380
empirical frequency,65, 203, 221
English auction, 32, 329,330, 331, 333–

335, 349, 352, 354, 361
multiunit, 352

entailment, 411, 434,477
entry cost, 341,342
epistemic type, 164, 166,167, 275
equilibrium,seesolution concept
equilibrium in dominant strategies,79, 240,

276

Euclidean accessibility relation,419
evaluation function,128
event space,467
evolutionarily stable strategy (ESS), 88,228,

228–230
weak, 229

ex antebudget balance,seebudget balance,
ex ante

ex postequilibrium, 173, 277, 319, 320, 374
excess of a coalition,397
exchange,377
expansion,seebelief expansion
expected utility, 48, 54,60, 73, 74, 76, 83,

89, 90, 94, 102, 112, 114, 138–140,
143, 144, 168, 170, 185, 187, 193, 237,
281

ex ante, 169, 170, 171
ex interim, 168, 169–171, 292, 335, 336,

338, 346, 349, 350, 354, 360, 361
ex post, 168

EXPECTEDUTILITY problem, 185–187, 189,
192, 194

expectimax algorithm,172
exposure problem,362, 363
extensive-form game, 117–145

of imperfect information, 117,130, 130–
144, 166, 247, 332

of perfect information,118, 117–130, 238
with chance nodes, 165–166, 172, 193,

194
external regret, 221

false-name bidding,364
feasibility program,93, 102, 103, 107, 111,

114
feasible assignment,30, 32, 36
feasible payoff, 161,388
feasibly truthful,306
fictitious play, 201,206, 207–211, 220–222,

233, 234
filtering algorithm,4, 6–8
finite-state automaton,154, 154–159
first-price auction,331, 335–337, 339–343,

346, 347, 350, 351, 355, 360, 363, 364,
380

fitness,225
fixed-point axiom,422
fixed-point theorem, 69–87
focal point,237, 247
folk theorem,151, 151–153, 161, 196, 323

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Index 507

frugal mechanism,299
fully mixed strategy,60, 85, 143, 144, 228
fusion,seebelief fusion
future discounted reward,150, 153, 160, 162,

216
futures market,379

GALA, 185,195, 196, 197
GAMBIT, 115
game in strategic form,seenormal-form game
game network,197
game of incomplete information,seeBayesian

game
game tree,seeextensive-form game of per-

fect information
games of asymmetric information,241
GAMUT, 115
generalized first-price auction (GFP),360
generalized second-price auction (GSP),360
generalized Vickrey auction,seeGroves mech-

anism
goal,457, 458–464
grain of truth,213
graphical game, 92, 185,188, 189–192, 197
greedy allocation scheme,376, 377
Gricean maxims,243, 244
Groves mechanism,288, 289, 290, 292, 293,

295, 297, 301–303, 305–307, 309, 314,
326, 333

Groves-based mechanism,305, 306, 327
gullibility rule, 445

Hannan consistency,205, 217
Harper identity,448
Hawk–Dove game, 229, 234
highest cumulative reward (HCR),232
history, 118, 149, 152, 154, 159–161, 201,

204, 211–215, 217, 232, 233,421, 422,
423, 425

homeomorphism,70, 71
homotopy method,107, 115
hyper-resolution,7, 8, 10–12
hyperstable set,88

illocutionary act,242
imperfect-information game,seeextensive-

form game of imperfect information
implementation

in Bayes–Nash equilibrium,276
in dominant strategies,276, 277, 279, 327

in ex postequilibrium,277
implementation theory,274
implicature,243, 244
imputation,388, 389, 391
incentive compatibility in dominant strate-

gies,278
independence of irrelevant alternatives (IIA),

261, 263, 269
independent private value (IPV),333, 334,

335, 348, 353, 380
indirect speech act,245
individual rationality, 295, 309, 317, 357,

388, 389
ex ante, 302
ex interim, 286, 301, 302
ex post, 286, 295, 297, 353, 358, 364

individually rational matching,317
induced normal form, 117, 124, 135, 138,

142, 170–173, 186
inessential game, 386
information change operators,453
information dissemination rule,29
information market,378
information set

in a Bayesian game, 164–168, 193
in an extensive-form game, 130–140, 142–

144, 154
integer program, 29, 30, 36, 38, 40, 356,

365, 469,471, 471–473
intention, 236, 238, 242, 245, 249, 423, 437,

455, 456,457, 458, 460–464
interchangeable agents,388
interior,70, 71, 97
interior-point method,471
interpretation, 246, 247, 372, 410, 411, 414,

417, 433, 434,438, 449, 450,477, 478
interpretation complexity,372
iterated belief revision,453

Japanese auction,330, 332, 334, 349, 350,
352, 375

multiunit, 352
Job Hunt game, 239
joint intention, 462,463
joint persistent goal,462, 463
joint probability, 84, 85, 187,468

k-face, 66
k-implementation,324, 327
KB-model,433, 443–446

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

508 Index

KB-structure,433
kernel, 407
KQML, 250, 252
Kripke model, 411,415, 416, 417, 433
Kripke structure,414, 415, 418–420, 422,

423, 429, 430, 437
kth-price auction, 331

learning and teaching, 199,200, 221
learning real-time A∗(LRTA∗), 20, 21
least core, 394,395, 396
Lemke–Howson algorithm,93, 94, 95, 97–

101, 107, 115, 134, 142
Levi identity,448
lexicographic disutility for complexity,157
lexicographic probability system (LPS),447
linear complementarity problem (LCP),93,

94, 115, 141
linear program, 29–31, 33, 36, 40, 46, 89–

91, 94, 98, 110–114, 138–141, 162,
187, 218, 365–367, 391, 393, 395, 397,
402,469, 469–472, 476

relaxation, 40, 365,472
linkage principle,350
local learning rule,232
locally envy free,361
locutionary act,242
logical omniscience,417, 430
lottery,49, 50–53, 281–283

machine game,155, 156–159
makespan,307, 308, 309
marginal contribution net (MC-net),403
marginal probability,468
market clearing rule,29
Markov decision problem (MDP), 19, 22,

23, 28, 46, 160, 162, 196, 215, 216,
218, 234,475, 475–476

Markov game,160
Markov perfect equilibrium (MPE),161
Markov strategy,161
matching,317
Matching Pennies game,58, 64, 65, 76, 81,

165, 203, 207, 208, 217, 219
maximum regret,78
maxmin fairness,287
maxmin strategy,73, 74–77, 108, 217–220
maxmin value,73, 74–76, 152, 233
mechanism,275, 329, 330, 332, 333, 337,

338, 343, 344, 346, 348, 353, 354, 357,

358, 360, 361, 363, 364, 368, 373–
377, 379, 381, 385, 390, 394

Arrow; d’Aspremont–Gérard-Varet (AGV),
seeArrow; d’Aspremont–Gérard-Varet
mechanism

Groves,seeGroves mechanism
Groves-based,seeGroves-based mecha-

nism
proportional allocation,seeproportional

allocation mechanism
quasilinear,284, 285–288, 293, 302, 305,

308, 310, 312, 332, 388
direct, 284, 285, 288, 293, 302, 305,
312

second-chance,seesecond-chance mech-
anism

Shapley value,seeShapley value mecha-
nism

Vickrey–Clarke–Groves (VCG) ,seeVickrey–
Clarke–Groves (VCG) mechanism

mechanism design, 29,79, 167, 184,274,
273–327, 329, 332, 374, 384

minimax algorithm,125, 172
minimax regret, 76, 77,78, 88
minimax-Q, 217, 218, 219
minimum ratio test,99
minmax strategy, 73,74, 75–77, 89, 90, 108,

140, 151, 152
minmax value,74, 75, 76, 151, 152, 161
minority game, 175
mixed strategy,59, 60, 62, 64, 70, 71, 73,

76, 78–80, 82, 84, 85, 87, 90, 94–97,
102, 109–113, 115, 120, 121, 129, 132,
134, 151, 158, 168, 169, 173, 201, 205–
209, 221, 222, 226–230

support of,60, 62–64, 72, 94–96, 101–
104, 108, 115, 228, 230

mixed-integer program,472
mixed-strategy profile,59, 60, 70, 74, 85,

86, 106, 109, 143, 169, 170, 173, 185,
188, 222, 227, 228

mixing time,219
modal operator, 411,413, 416, 417, 432,

443, 454, 455, 458, 459
model

first-order logic,478
propositional logic,477

Modus Ponens, 415, 417,430, 478
money pump,50

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Index 509

monotonicity, 51–53,264, 265, 266, 310,
312

monotonicity rule,445
Moore machine,154
multi-issue representation,402, 403, 404,

408
multiagent influence diagrams (MAIDs),192
multiagent MDP, 22,24, 28
multicast cost sharing,312, 314, 327, 385
multicast routing,312, 313
multicast routing tree,312, 313
multiunit auctions,351, 352, 354, 355, 359,

364
mutation,225
myopic best-response,175

n-simplex,65
Nanson’s method,257
Nash equilibrium, 60,62, 62–76, 79, 80,

82–89, 91–93, 95, 96, 100–109, 113–
115, 117, 119, 121, 123, 124, 128, 132,
134, 140–142, 148, 151–154, 156–158,
161, 162, 164, 166, 170, 171, 175–182,
186, 187, 189, 194, 197, 200, 203, 204,
206, 208, 209, 212, 213, 217, 220, 226–
230, 247, 311, 324, 325, 391, 392, 454

ǫ-, seeǫ-Nash equilibrium
strict,62, 63, 64
weak,62, 63, 64

Necessitation, 415, 417,430
negative introspection,419, 430, 432, 441,

442
neighborhood relation,188
no externalities,362
no fun in gambling,51
no negative externalities,295, 296
no single-agent effect,296, 297, 300, 301
no-regret, 204,205, 211, 220,221, 222, 223,

234
Nogood,6, 7, 8, 10–17
nonatomic congestion game,seecongestion

game, nonatomic
nondictatorship,261, 263,264, 267
nonlinear complementarity problem,105
nonmonotonic logic,464
nonmonotonic reasoning,443, 446
nonranking voting,256
nonstandard probability,447
normal-form game, 47,56, 54–60, 73, 117,

120, 121, 124, 132, 135, 137, 138, 141–

143, 148, 170–173, 185–187, 190, 208,
210

nucleolus, 383, 394,396, 397

observability,202
online auction, 267, 322, 335, 354,359
open-outcry auction,331, 354
optimal auction,343, 344
optimal policy, 22, 24, 216, 218, 219,475,

476
optimal single price,357, 358
optimal strategy,60, 204, 240
OR bid,369, 370, 372
OR* bid, 370,371
OR-of-XOR bid,370, 371
order book,377, 378
order query,375
order statistic,339

pairwise elimination,257, 259, 260
Pareto domination,61, 79, 259
Pareto efficiency (PE),260, 263, 265, 266
Pareto optimality, 60,61, 79, 87, 104, 114,

235,see alsostrict Pareto efficiency
partition model, 409,410, 411–414, 417–

420, 428–432, 436, 438, 442
payment rule, 277,284, 293, 303, 304, 351,

354, 358
payoff function,56, 134, 135, 137, 149, 160,

167, 173, 201, 406
perfect equilibrium,seetrembling-hand per-

fect equilibrium
perfect recall,133, 134, 136, 138, 143–145
perfect-information game,seeextensive-form

game of perfect information
performative,242, 250
periodic double auction,377
perlocutionary act,242
pivot algorithms,98
pivot mechanism,seeGroves mechanism
plan, 457, 461
plurality voting, 253,254, 255, 256, 258,

271
with elimination,257, 258

polynomial type,186, 187, 188
pooling equilibrium,241
Popper function,447
position auction,359, 360, 361, 380

generalized first-price,seegeneralized first-
price auction

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

510 Index

generalized second-price,seegeneralized
second-price auction

positive introspection,418, 419, 441
possible world, 410, 411,414, 415–417, 420–

423, 425, 428, 429, 431, 433, 437, 438,
440, 450, 451

possible-worlds structure,seeKripke struc-
ture

potential game,176, 177, 178, 196, 210
exact, 176
ordinal, 176
weighted, 176

PPAD,91
pre-imputation,388, 389
prediction market,378, 379, 381
preference ordering, 157,255, 257, 258, 260,

262–264, 274, 316, 317, 319, 320
preference profile,255, 260–266, 268–270,

280, 320
preferences, 47,49, 50, 54, 253–255, 257–

261, 263, 264, 267–269, 273–275, 277,
279–281, 284, 285, 303–305, 316–320,
333, 359, 406, 454

prescriptive theory,203
price of anarchy, 180,181, 182–184, 197,

287, 288,311
minimization, 288

price taker,310
primal problem, 33,470, 471
principle of optimality,20
prioritization rule,445
Prisoner’s Dilemma game,54, 55–58, 79,

80, 82, 121, 131, 132, 147–150, 153–
159, 165, 166, 196, 201, 205, 206, 211,
213–215, 221, 223, 224, 234, 235, 345

privacy, 284
probability density function, 343,467
probably approximately correct (PAC) learn-

ing, 218
production economy,33
proper equilibrium,85
proper labeling,66, 67, 69, 70
proper simple game,387
proportional allocation mechanism,310, 311,

327
proxy bidding,335
pruning, 4,125, 172, 367
pseudonymous bidding,364
pure coordination game,57

pure strategy,59, 60–65, 73, 76, 79, 81–84,
90, 94, 96, 102, 103, 105, 109, 110,
112, 113, 115, 119, 121, 131, 132, 135,
140, 142, 158, 167, 170, 205, 208, 220,
221, 225, 230, 454

pure-strategy profile,59, 60, 109, 113, 170,
174, 208

Q-learning,215, 216–220, 234
quasi-partition,430, 431, 433
quasilinear mechanism,seemechanism, quasi-

linear
quasilinear preferences,280, 281, 284, 288,

304, 305, 332
quasilinear utility functions,280, 301

R-max algorithm,219, 234
random sampling auction, 357, 358

optimal price,358, 359, 380
ranked independence of irrelevant alterna-

tives (RIIA), 269
ranking rule,267, 268–271
ranking systems setting,267, 268
ranking voting,257
rational balance,457
rational consequence relation,446
rational learning, 203,211, 212–214, 220,

234
rational programming,250, 252
rationality of a learning rule,205
rationalizable strategy,81, 82
reachability relation,414
realism,203
realization plan, 136,137, 138–140

of βi, 136
realization probability,136
reflexive accessibility relation,418
regret,77, 78, 204, 205, 211, 220,221, 222,

223, 234
regret matching,221, 222
reinforcement learning, 204,215, 216, 220,

234
relaxation method,365
repeated game, 65, 74, 147–151, 153–161,

175, 196, 200–204, 206–215, 217, 221,
223, 224, 226, 234, 359

replicator dynamic,224, 225–228, 230–232,
234

representation theorem,415
request for quote,341

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Index 511

revealing equilibrium,237
revelation principle, 277,278, 279, 280, 290,

303, 319, 326, 374
revenue maximization,287
revenue minimization,287
revenue monotonicity,299, 300, 326
reverse auction, 331,341
ring center,345, 346, 347
risk attitude,281, 282, 283, 333–335, 340,

341
risk averse,283, 334, 340, 341
risk neutral,283, 284, 285, 333, 334, 336,

339–341, 343, 345, 354
risk seeking,283, 334, 341

Rochambeau game,seeRock, Paper, Scis-
sors game

Rock, Paper, Scissors game, 58,59, 209
rules of conversation,243

safety,222
safety of a learning rule,205
sample space,467, 468
Santa Fe Bar problem,175
scheduling problem, 19,36, 37–41, 46, 307,

309
sealed-bid auction, 330,331, 332–334, 337,

339, 342, 344, 350, 351, 363
multiunit, 351

second-chance mechanism,306, 327
second-price auction, 326,331, 333–335,

337, 339–346, 349, 350, 353, 354, 364,
380, 394

security level,73
self-coherent belief,441
self-committing utterance,236
self-play,204, 205, 212, 220, 222, 223
self-revealing utterance,236
selfish routing,180, 181–184, 196, 274, 309,

311
Semantic Web,250
sensor network,1, 2, 3
separating equilibrium,241
sequence,135, 136–141
sequence form,134, 135, 137, 138, 140,

142, 145, 172, 187, 196
sequence-form payoff function,135
sequential auction,354, 380
sequential equilibrium,143, 142–144
serial accessibility relation,418
serial model, 418

set packing problem,38, 365
shadow price,33
Shapley value, 313, 314, 383,389, 390, 391,

393, 394, 398–400, 402–405, 408
Shapley value mechanism, 313–314
Shapley’s Almost-Rock-Paper-Scissors game,

210
Sharing game, 118, 119
shill bid, 364
signaling game, 235,239, 240, 246, 247,

251
simple exchange,301
simple game,387, 393
simplex algorithm,98, 471
simplicial subdivision,66, 67,106, 187
simplotope,70, 106
simultaneous ascending auction,363, 374
single-minded,375, 376
single-parameter valuation,305
single-sided auction, 285, 296,330, 377
slack variable,90, 91, 93, 94, 96
Smith set,256, 257, 271
smooth fictitious play, 211,221, 222
social choice correspondence,255
social choice function,255, 256, 260, 263–

266, 276–280, 289, 290, 297, 303–305,
316, 374

social choice problem,253, 267
social convention,44, 45,231, 232, 233
social law, 19,44, 45, 46,231, 321, 327
social welfare function,256, 260, 261, 264–

267
social welfare maximization,285
solution concept, 44,60, 62, 73, 74, 78,

80, 83, 85, 87, 89, 113, 117, 144, 145,
164, 187, 203, 204, 228, 276, 311, 383,
388, 392, 395, 397, 407, 408, 454

coalitional game theory
ǫ-core,seeǫ-core
core,seecore
least core,seeleast core
nucleolus,seenucleolus
Shapley value,seeShapley value

noncooperative game theory
ǫ-Nash equilibrium,seeǫ-Nash equi-
librium
Bayes–Nash equilibrium,seeBayes–
Nash equilibrium
correlated equilibrium,seecorrelated
equilibrium

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

512 Index

equilibrium in dominant strategies,see
equilibrium in dominant strategies
ex postequilibrium, see ex postequi-
librium
hyperstable set,seehyperstable set
maxmin strategies,seemaxmin strat-
egy
minmax strategies,seeminmax strat-
egy
Nash equilibrium,seeNash equilibrium
Pareto optimality,seePareto optimal-
ity
perfect equilibrium,seetrembling-hand
perfect equilibrium
proper equilibrium,seeproper equilib-
rium
rationalizable strategies,seerational-
izable strategy
sequential equilibrium,seesequential
equilibrium
solvable by iterated elimination,seesolv-
able by iterated elimination
stable equilibrium,seestable equilib-
rium
strong equilibrium,seestrong equilib-
rium
subgame-perfect equilibrium,seesubgame-
perfect equilibrium

solvable by iterated elimination,80, 210
Spence signaling game,241, 252
Sperner’s lemma,66, 66–70, 92
sponsored search auction,seeposition auc-

tion
stable equilibrium,88
stable marriage,317
stable matching,317, 318–320, 327
stable sets, 407
stable steady state,226, 228, 230
Stackelberg game,200
Stackelberg routing,184
Stag Hunt game,237, 238
stage game,148, 149, 150, 152, 160, 200,

201, 203–206, 208, 220, 221, 224
standardn-simplex,66
stationary strategy,149, 161, 203, 205
steady state,208, 226, 227, 228
stochastic game, 148, 159,160, 161, 162,

196, 201, 202, 204, 206, 215, 216, 219
irreducible,161

separable reward state independent tran-
sition (SR-SIT),162

single-controller,162
strategic relevance,194
strategic-form game,seenormal-form game
strategy

behavioral,seebehavioral strategy
Markov,seeMarkov strategy
mixed,seemixed strategy
pure,seepure strategy
stationary,seestationary strategy
trigger,seetrigger strategy

strategy-proof,seeincentive compatibility
in dominant strategies

strict budget balance,seebudget balance
strict Pareto efficiency,61, 104, 222, 260,

264,285, see alsoPareto optimality
strictly dominant strategy, 107, 132, 443
strong equilibrium,325, 391
strong quasi-transitivity,270
strong transitivity,268, 270
student-optimal matching,318
subadditive valuation function,seesubsti-

tutes
subgame, 44, 117, 121–124, 127, 128, 139,

142, 143, 145, 149, 153, 161, 247
subgame-perfect equilibrium (SPE), 117, 121,

122,123, 124, 128, 142–145, 153, 161
substitutes,38, 41,362

partial, 362
strict, 362

superadditive game,386, 398, 401, 408
superadditive valuation function,seecom-

plementarity
support,seemixed strategy, support of
support-enumeration method,103, 115
symmetric game, 222,224, 233, 325
synergy representation, 398,401, 402

targeted learning,222, 223, 234
efficient, 223

targeted optimality, 205,222
TCP user’s game,54, 55
team games,57
Tit-for-Tat (TfT), 150
tit-for-tat (TfT), 151, 154–156, 196, 201,

204, 205, 211, 214, 215, 221, 223, 234
total preorder, 267, 433, 446, 450, 452
total unimodularity,366, 472
tractability,286, 287, 301, 303, 375

Uncorrected manuscript ofMultiagent Systems, published by Cambridge University Press
Revision 1.1 © Shoham & Leyton-Brown, 2009, 2010.

Index 513

traffic, 19, 44, 46, 57, 178, 180–183, 274,
309, 321

transferable utility,283, 284, 383, 384, 405
tree-form game,seeextensive-form game
tree-structured bid,366, 367
trembling-hand perfect equilibrium,85, 228
trigger strategy,151, 152, 157,211, 214,

215, 347
truthful, 273,277, 278–280,285, 289–291,

293, 295, 297, 302–304, 306–309, 313,
314, 319, 326, 333, 335, 342, 344, 346,
353, 354, 357, 358, 360, 361, 363, 364,
374, 375, 377, 380, 394

two-sided auction,377
two-sided matching,316
type, 164, 167–173, 175, 225, 237, 275–

277, 279, 280, 284, 286, 305, 307, 308,
332, 333, 337–339, 440

unacceptable matching,316
unblocked matching,317
unconditional regret, 221
uniform pricing rule,351
unit resolution,6, 7
universal consistency,205, 220, 234
utility function, 41,47, 48, 49, 52–54,56,

61, 105, 108, 118, 125, 128, 157, 162,
166–168, 173, 174, 179, 191, 192, 255,
274–276, 278–281, 283–285, 289, 301,
332, 333, 335

utility theory,47, 49, 50, 87, 275

validity, 415, 431,477
valuation,284, 329, 333, 335–348, 350, 351,

353–358, 360–365, 367–376
valuation function, 38, 289, 310, 311,362

nonadditive,362
subadditive,seesubstitutes
superadditive,seecomplementarity

value
affiliated,seeaffiliated value
common,seecommon value
independent private,seeindependent pri-

vate values
value iteration,22, 162, 215, 234, 475,476
value of a zero-sum game,75

stochastic,217
value query,374
variable elimination,26, 27, 28

VCG mechanism,seeVickrey–Clarke–Groves
mechanism

veridity, 418, 429, 432
verification complexity,372
vertex, 45,66, 67, 97, 471
veto player,393, 398
Vickrey auction,seesecond-price auction
Vickrey–Clarke–Groves (VCG) mechanism,

184, 292,293, 294–302, 309, 312, 314,
326, 327, 333, 353, 355, 359, 361, 364,
373–375, 394

virtual valuation,343, 344
voting method, 256–258

approval,seeapproval voting
Borda,seeBorda voting
cumulative,seecumulative voting
nonranking,seenonranking voting
pairwise elimination,seepairwise elimi-

nation
plurality, seeplurality voting
plurality with elimination,seeplurality

with elimination
ranking,seeranking voting

Wardrop equilibrium,181, 196
weak achievement goal,462
weak budget balance,seebudget balance,

weak
weak monotonicity (WMON),304
weak Pareto efficiency,263, 264–266
weak transitivity,269, 270
weakS5, 429
weighted graph game, 398,399, 400, 408
weighted majority game,398
weighted matching,30
weighted voting games,398, 408
well-founded total preorder, 433
Wilson doctrine,344, 358, 380
winner determination problem

combinatorial auction,364
general multiunit auction, 356

winner’s curse,349

XML, 250
XOR bid,369, 370, 372

zero-sum game,57, 58, 61, 74–76, 89, 108,
115, 125, 127, 140, 145, 153, 162, 172,
204, 206, 216–218, 234,386

Free for on-screen use; please do not distribute. You can get another free copy
of this PDF or order the book athttp://www.masfoundations.org.

http://www.masfoundations.org

	Credits and Acknowledgments
	Introduction
	Distributed Constraint Satisfaction
	Defining distributed constraint satisfaction problems
	Domain-pruning algorithms
	Heuristic search algorithms
	The asynchronous backtracking algorithm
	A simple example
	An extended example: the four queens problem
	Beyond the ABT algorithm

	History and references

	Distributed Optimization
	Distributed dynamic programming for path planning
	Asynchronous dynamic programming
	Learning real-time A*

	Action selection in multiagent MDPs
	Negotiation, auctions and optimization
	From contract nets to auction-like optimization
	The assignment problem and linear programming
	The scheduling problem and integer programming

	Social laws and conventions
	History and references

	Introduction to Noncooperative Game Theory: Games in Normal Form
	Self-interested agents
	Example: friends and enemies
	Preferences and utility

	Games in normal form
	Example: the TCP user's game
	Definition of games in normal form
	More examples of normal-form games
	Strategies in normal-form games

	Analyzing games: from optimality to equilibrium
	Pareto optimality
	Defining best response and Nash equilibrium
	Finding Nash equilibria
	Nash's theorem: proving the existence of Nash equilibria

	Further solution concepts for normal-form games
	Maxmin and minmax strategies
	Minimax regret
	Removal of dominated strategies
	Rationalizability
	Correlated equilibrium
	Trembling-hand perfect equilibrium
	-Nash equilibrium

	History and references

	Computing Solution Concepts of Normal-Form Games
	Computing Nash equilibria of two-player, zero-sum games
	Computing Nash equilibria of two-player, general-sum games
	Complexity of computing a sample Nash equilibrium
	An LCP formulation and the Lemke–Howson algorithm
	Searching the space of supports
	Beyond sample equilibrium computation

	Computing Nash equilibria of n-player, general-sum games
	Computing maxmin and minmax strategies for two-player, general-sum games
	Identifying dominated strategies
	Domination by a pure strategy
	Domination by a mixed strategy
	Iterated dominance

	Computing correlated equilibria
	History and references

	Games with Sequential Actions: Reasoning and Computing with the Extensive Form
	Perfect-information extensive-form games
	Definition
	Strategies and equilibria
	Subgame-perfect equilibrium
	Computing equilibria: backward induction

	Imperfect-information extensive-form games
	Definition
	Strategies and equilibria
	Computing equilibria: the sequence form
	Sequential equilibrium

	History and references

	Richer Representations: Beyond the Normal and Extensive Forms
	Repeated games
	Finitely repeated games
	Infinitely repeated games
	``Bounded rationality": repeated games played by automata

	Stochastic games
	Definition
	Strategies and equilibria
	Computing equilibria

	Bayesian games
	Definition
	Strategies and equilibria
	Computing equilibria
	Ex post equilibrium

	Congestion games
	Definition
	Computing equilibria
	Potential games
	Nonatomic congestion games
	Selfish routing and the price of anarchy

	Computationally motivated compact representations
	The expected utility problem
	Graphical games
	Action-graph games
	Multiagent influence diagrams
	GALA

	History and references

	Learning and Teaching
	Why the subject of ``learning'' is complex
	The interaction between learning and teaching
	What constitutes learning?
	If learning is the answer, what is the question?

	Fictitious play
	Rational learning
	Reinforcement learning
	Learning in unknown MDPs
	Reinforcement learning in zero-sum stochastic games
	Beyond zero-sum stochastic games
	Belief-based reinforcement learning

	No-regret learning and universal consistency
	Targeted learning
	Evolutionary learning and other large-population models
	The replicator dynamic
	Evolutionarily stable strategies
	Agent-based simulation and emergent conventions

	History and references

	Communication
	``Doing by talking'' I: cheap talk
	``Talking by doing'': signaling games
	``Doing by talking'' II: speech-act theory
	Speech acts
	Rules of conversation
	A game-theoretic view of speech acts
	Applications

	History and references

	Aggregating Preferences: Social Choice
	Introduction
	Example: plurality voting

	A formal model
	Voting
	Voting methods
	Voting paradoxes

	Existence of social functions
	Social welfare functions
	Social choice functions

	Ranking systems
	History and references

	Protocols for Strategic Agents: Mechanism Design
	Introduction
	Example: strategic voting
	Example: buying a shortest path

	Mechanism design with unrestricted preferences
	Implementation
	The revelation principle
	Impossibility of general, dominant-strategy implementation

	Quasilinear preferences
	Risk attitudes
	Mechanism design in the quasilinear setting

	Efficient mechanisms
	Groves mechanisms
	The VCG mechanism
	VCG and individual rationality
	VCG and weak budget balance
	Drawbacks of VCG
	Budget balance and efficiency
	The AGV mechanism

	Beyond efficiency
	What else can be implemented in dominant strategies?
	Tractable Groves mechanisms

	Computational applications of mechanism design
	Task scheduling
	Bandwidth allocation in computer networks
	Multicast cost sharing
	Two-sided matching

	Constrained mechanism design
	Contracts
	Bribes
	Mediators

	History and references

	Protocols for Multiagent Resource Allocation: Auctions
	Single-good auctions
	Canonical auction families
	Auctions as Bayesian mechanisms
	Second-price, Japanese, and English auctions
	First-price and Dutch auctions
	Revenue equivalence
	Risk attitudes
	Auction variations
	``Optimal'' (revenue-maximizing) auctions
	Collusion
	Interdependent values

	Multiunit auctions
	Canonical auction families
	Single-unit demand
	Beyond single-unit demand
	Unlimited supply: random sampling auctions
	Position auctions

	Combinatorial auctions
	Simple combinatorial auction mechanisms
	The winner determination problem
	Expressing a bid: bidding languages
	Iterative mechanisms
	A tractable mechanism

	Exchanges
	Two-sided auctions
	Prediction markets

	History and references

	Teams of Selfish Agents: An Introduction to Coalitional Game Theory
	Coalitional games with transferable utility
	Definition
	Examples
	Classes of coalitional games

	Analyzing coalitional games
	The Shapley value
	The core
	Refining the core: -core, least core, and nucleolus

	Compact representations of coalitional games
	Weighted majority games and weighted voting games
	Weighted graph games
	Capturing synergies: a representation for superadditive games
	A decomposition approach: multi-issue representation
	A logical approach: marginal contribution nets

	Further directions
	Alternative coalitional game models
	Advanced solution concepts

	History and references

	Logics of Knowledge and Belief
	The partition model of knowledge
	Muddy children and warring generals
	Formalizing intuitions about the partition model

	A detour to modal logic
	Syntax
	Semantics
	Axiomatics
	Modal logics with multiple modal operators
	Remarks about first-order modal logic

	S5: An axiomatic theory of the partition model
	Common knowledge, and an application to distributed systems
	Doing time, and an application to robotics
	Termination conditions for motion planning
	Coordinating robots

	From knowledge to belief
	Combining knowledge and belief (and revisiting knowledge)
	History and references

	Beyond Belief: Probability, Dynamics and Intention
	Knowledge and probability
	Dynamics of knowledge and belief
	Belief revision
	Beyond AGM: update, arbitration, fusion, and friends
	Theories of belief change: a summary

	Logic, games, and coalition logic
	Towards a logic of ``intention''
	Some preformal intuitions
	The road to hell: elements of a formal theory of intention
	Group intentions

	History and references
	Appendices: Technical Background
	Probability Theory
	Probabilistic models
	Axioms of probability theory
	Marginal probabilities
	Conditional probabilities

	Linear and Integer Programming
	Linear programs
	Integer programs

	Markov Decision Problems (MDPs)
	The model
	Solving known MDPs via value iteration

	Classical Logic
	Propositional calculus
	First-order logic

	Bibliography
	Index

